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It has been postulated that fibroblast growth factor (FGF) treatment of cultured
limb bud mesenchyme cells reinforces the lateral inhibitory effect, but the cells also
show accelerated pattern appearance. In the present study, we analyze how a small
change in a specific parameter affects the speed of pattern appearance in a Turing
reaction-diffusion system using linear stability analysis. It is shown that the sign
of the change in appearance speed is qualitatively decided if the system is under
the diffusion-driven instability condition,and this is confirmed by numerical simu-
lations. Numerical simulations also show that a small change in parameter value
induced easily detectable differences in the appearance speed of patterns. Analysis
of the Gierer–Meinhardt model revealedthat a change in a single parameter can
explain two effects of FGF on limb mesenchyme cells—reinforcement of lateral
inhibition and earlier appearance of pattern. These qualitative properties and easy
detectability make this feature a promising tool to elucidate the underlying mecha-
nisms of biological pattern formation where the quantitative parameters are difficult
to obtain.

c© 2003 Society for Mathematical Biology. Published by Elsevier Ltd. All rights
reserved.

1. INTRODUCTION

Vertebrate limb development is widely studied both experimentally and theoreti-
cally [see, for example, the review byMaini and Solursh(1991)]. Most experimen-
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tal studies focus on the polarity and subsequent specification of each digit identity.
It has been shown that FGF4 and 8 secreted by the apical ectodermal ridge are crit-
ical for limb bud outgrowth and proximodistal patterning, while sonic hedgehog
secreted from the zone of polarizing activity plays a decisive role in establishing
anteroposterior polarity of the limb pattern [for review, seeWolpert(1998), Gilbert
(2000)]. On the other hand, theoretical studies concentrate on the periodic aspect of
pattern formation using the Turing reaction-diffusion model (Newman and Frisch,
1979; Othmer, 1986; Newmanet al., 1988; Downie and Newman, 1995) or its alter-
natives (Murray, 1993). They are largely ignored by experimental biologists, but
recently several reports provide supportive evidence for this periodic property. For
example, there exist several polydactylous mutant mice strains which have random
digit patterns which are difficult to explain using the one-by-one specification by
a positional information mechanism (Hayeset al., 1998). Moreover, the reaggre-
gated limb, which does not have normal anteroposterior gene expression, can form
normal digit-like structures (Roset al., 1994). Based on these findings the idea of
periodic pattern formation during limb development is gradually being accepted by
experimental biologists [see, for example,Wolpert (1998), Gilbert (2000)].

Since the analysis of periodic patternin vivo is quite difficult because the domain
shape is complex and growing, several researchers utilize the limb micromass cul-
ture system for these studies (Owens and Solursh, 1981). In this culture system,
limb bud mesenchyme cells are dissociated into separate cells using trypsin, then
cultured on a dish at high density. Some cells become chondrocytes while oth-
ers remain fibroblastic, resulting in a quasi-periodic, stripe-like chondrogenic pat-
tern. Since this final pattern can be directly correlated with the two-dimensional
reaction-diffusion pattern, it has been used to study periodic pattern formation in
biological systems (Newman, 1996). For example, it has been shown that the
wavelength of the pattern can be changed by modulating the diffusion coefficient
of the secreted molecules consistent with model predictions (Miura and Shiota,
2000a). It has also been shown that TGFβ—specifically the TGFβ2 protein—is a
good candidate to act as an activator molecule in the reaction-diffusion model in
this experimental system (Downie and Newman, 1994; Miura and Shiota, 2000b).
(Throughout this paper we define the word ‘activator’ and ‘inhibitor’ as those used
in a reaction-diffusion system, not the activator or inhibitor of differentiation as
used in some experimental papers.)

Recent experimental results address the issue of whether or not speed of pattern
appearance in the reaction-diffusion system can be changed by changing a specific
interaction within the system. A recent report suggested that fibroblast growth
factor (FGF), a signaling molecule that is expressed at the tip of the developing
limb bud, can indirectly reinforce the lateral inhibitory effect in limb bud micro-
mass culture (Moftah et al., 2002). Judging from its spatial distribution, FGF itself
does not seem to be an inhibitor molecule, but it seems to reinforce the effect of
the inhibitor. In the course of re-examining this result, we found that the peri-
odic pattern appears much earlier with FGF treatment [Fig. 1(b)] than in controls
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(a) Control-18h (b) FGF4(+) 18h

(c) Control-120h (d) FGF4(+) 120h

Figure 1. Speed of pattern appearance in cultured limb bud mesenchyme cells of GD10.5
mouse embryos. The method is described inMiura and Shiota(2000a). (a) Control cells
cultured for 18 h. Cell distribution is homogeneous and we could not detect any pattern.
(b) Cells treated with 100 ng ml−1 FGF4 cultured for 18h. Cell aggregates form a quasi-
periodic pattern, and later become chondrogenic sites. (c) Control cells cultured for 120
h. Chondrogenic cells are stained black by Alcian-blue. (d) FGF4 treated cells cultured
for 120 h. The degree of chondrogenic differentiation is suppressed compared with the
control. The difference in wavenumber is not as apparent between the control and FGF4
treated cultures. Scale bar, 500µm.

[Fig. 1(a)]. This looks puzzling for experimental biologists because even when
the appearance of pattern is earlier, final chondrogenic differentiation seems to be
suppressed by FGF treatment [Fig. 1(c) and1(d)]. The descriptive explanation by
Moftah et al. (2002) might account for both observations, but we need more rigor-
ous mathematical analysis to see whether these two phenomena can be explained
by a mechanism such as the reaction-diffusion model.

We undertook linear stability analysis to see whether a qualitative change in
one of the parameters in a Turing reaction-diffusion system results in increase or
decrease in the speed of pattern formation. We keep two points in mind to make
this analysis biologically relevant. Firstly, we confined our analysis to qualitative
characteristics because we cannot obtain all the parameters even in the simple bio-
logical system described above. Secondly, we confined our analysis to the linear
range because the initial pattern appearance seemed to bequite an early event.
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The cell aggregate pattern first appeared 18–24 h after culture, while the final
pattern settled after 96–120 h. In the present study, we analyze the change in
the maximum value of the dispersion relation in two types of reaction-diffusion
systems, one is the classic activator–inhibitor scheme and the other is the sub-
strate depletion scheme, and confirm the result using numerical calculation. We
also undertake detailed analysis of a more realistic nonlinear model and discuss its
biological relevance.

2. OBTAINING THE MAXIMUM IN THE DISPERSION RELATION

We consider the standard two species reaction-diffusion system as follows:

∂u

∂t
= f (u, v) + du�u

∂v

∂t
= g(u, v) + dv�v, (1)

whereu(x, t) and v(x, t) are chemical concentrations at positionx and timet .
Without loss of generality, we setf (0, 0) = g(0, 0) = 0 and initial spatial distri-
bution of u, v asu0 andv0 respectively, which represents the small noise expected
in a natural system.

The wavelength of the observed experimental pattern is much smaller than that of
the spatial domain, so we assert that the boundary conditions do not exert a strong
effect on the final pattern, and take periodic boundary conditions. Here we only
consider the linear approximation about the initial value because the appearance of
the pattern is quite an early event, as described above. We set

fu = ∂ f

∂u
, gu = ∂g

∂u
, fv = ∂ f

∂v
, gv = ∂g

∂v
(2)

all evaluated at(0, 0) and linearly approximate the equation around(0, 0) to give
(as usual)

∂u

∂t
= fuu + fvv + du�u

∂v

∂t
= guu + gvv + dv�v. (3)

Wesuppose that the parameters in this experimental system are in the diffusion-
driven instability range because if we culture cells at very low density and observe
each cell separately, which is equivalent to observing the dynamics of the reaction
terms only, they remain stable and no chondrogenic differentiation or oscillatory
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Figure 2. Schematic representations of activator–inhibitor and substrate depletion scheme.
Six parameters and their signs are shown.

behavior can be observed. Therefore, these parameters should be within the range
described below [see, for example,Murray (1993)]:

fu + gv < 0

fugv − fvgu > 0

dv fu + dugv > 0

(dv fu + dugv)
2 − 4dudv( fugv − fvgu) > 0. (4)

In this study we consider both activator–inhibitor and substrate depletion sche-
mes, and the sign of the parameters are as follows: (Fig. 2)

• Activator–inhibitor scheme

— fu > 0 (activator promotes its own production).
— fv < 0 (inhibitor inhibits the production of activator).
— gu > 0 (activator promotes the production of inhibitor).
— gv < 0 (inhibitor decays).
— dv > du (inhibitor diffuses faster than activator).

• Substrate depletion scheme (cross-type reaction-diffusion)

— fu > 0 (enzyme promotes its own production).
— fv > 0 (enzyme promote its production by substrate).
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Figure 3. Relationship between pattern appearance speed and dispersion relation. If a slight
change in parameter results in an increase in the maximum of the dispersion relation, then
the prediction is that the pattern will appear earlier.

— gu < 0 (substrate is consumed by an enzyme).
— gv < 0 (enzyme decays).
— dv > du (substrate diffuses faster than enzyme).

To determine an estimate on the time scale of patterning in the linear regime we
set

w =
(

u
v

)
, A =

(
fu fv
gu gv

)
, D =

(
du 0
0 dv

)
(5)

and the above equation can be simplified to the form below:

w′ = Aw + D�w (6)

where′ denotes differentiation with respect to time.
If we consider each wavenumber component separately using the Fourier trans-

form, the solution for each wavenumber component is in general of the form

w ∝ eλt sin(kx). (7)

Thenequation (6) becomes

(A − λI − k2D)w = 0. (8)

We require nontrivial solutions forw, so

Det(A − λI − k2D) = Det

(
fu − λ − duk2 fv

gu gv − λ − dvk2

)

= (λ − fu + duk2)(λ − gv + dvk2) − fvgu = 0 (9)

and hence we have the dispersion relation (seeFig. 3):

λ = 1
2

(
fu + gv − (du + dv)k

2 ±
√

4 fvgu + ( fu − gv + (dv − du)k2)2
)

. (10)
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Among the twoλ values, only the higherλ value is relevant in this case because
under the diffusion-driven instability condition the lowerλ will always be negative.

Thisλ value becomes positive in a certain range ofk2, indicating that only certain
wavelengths can grow. To obtain thek2 for which λ has the largest positive value,
we differentiateλ with respect tok2 and equate to zero, that is,

∂λ

∂(k2)
= 1

2

(
−du − dv + (dv − du)( fu − gv + (dv − du)k2)√

4 fvgu + ( fu − gv + (dv − du)k2)2

)
= 0. (11)

By solving this equation we obtain

k2 = −dudv( fu − gv) ± (du + dv)
√−dudv fvgu

dudv(dv − du)
. (12)

Looking at the value ofk2, the denominator should be positive and−dudv( fu −
gv) should be negative in both activator–inhibitor and substrate depletion schemes
( fu − gv > 0). Sincek2 should not be negative, thek2 which gives maximumλ

value is

k2 = −dudv( fu − gv) + (du + dv)
√−dudv fvgu

dudv(dv − du)
. (13)

From (13) we can predict that in the physiological parameter range such as
du, dv ≈ 10−5 cm2 s−1 and fu, fv, gu, gv ≈ 10−1 s−1 this model will produce a
structure with wavelength of order 10−1 cm, which is exactly the case in this experi-
mentalsystem.

There are three necessary conditions for this value to be an admissible maximum
value. First, since (13) is a square of the wavenumber, this must be larger than 0,
that is,

(du + dv)
√−dudv fvgu − dudv( fu − gv)

dudv(dv − du)
> 0. (14)

As du, dv, dv − du > 0, this condition is simplified as

(du + dv)
√−dudv fvgu − dudv( fu − gv) > 0. (15)

This condition can be derived from (4), but we use this inequality later for sim-
plicity.

Second, thisk2 value should give a localλ maximum, not minimum. This is
easily confirmed.

Third, this wavenumber should be an admissible mode, that is, of the form
k2 = n2π2

L2 , where L is the domain length andn an integer, to ensure that the
boundary conditions are satisfied. To simplify the analysis, we will assume that
theλmax we compute below is a reasonable approximation to the growth rate of the
admissible mode with maximum growth rate. While not strictly true, this is a good
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approximation for large wavenumber patterns where we change the parameter only
slightly.

So wecan obtain the maximumλ value (λmax) for the reaction-diffusion system
by substituting (10) with (13):

λmax = dv fu − du gv − 2
√−dudv fvgu

dv − du
. (16)

Wecan directly obtain the value and make a quantitative prediction if we know all
the parameters, but this is almost impossible in a biological experimental system.
However, in this case we have an experimental system in which a periodic pattern
is formed and we can sometimes detect whether the pattern appears earlier or later
by modifying a specific factor. If we can make qualitative predictions from the
model as to whether pattern should appear earlier or later by modifying a model
parameter in a specific direction, it is possible to qualitatively predict in which
pathway in the reaction-diffusion system the factor may be involved.

3. EFFECT ON λmax OF CHANGING A SPECIFIC PARAMETER

We assume that, at(0, 0), fu, fv, gu, gv, du anddv are independent parameters
and we consider howλmax changes as we vary each parameter in turn, keeping the
others fixed.

3.1. Varying fu. By simplecalculation we obtain

∂λmax

∂ fu
= dv

dv − du
. (17)

dv > du > 0, so this value should be positive. Therefore increasingfu always
increases the appearance speed.

3.2. Varying fv.
∂λmax

∂ fv
= dudvgu

(dv − du)
√−dudv fvgu

. (18)

The sign of this value is dependent on the sign ofgu. So in theactivator–inhibitor
scheme this value should be positive, and in the substrate depletion scheme this
value should be negative.

3.3. Varying gu.
∂λmax

∂gu
= dudv fv

(dv − du)
√−dudv fvgu

. (19)

The sign of this value is dependent on the sign offv. So in theactivator–inhibitor
scheme this value should be negative, and in the substrate depletion scheme this
value should be positive.
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3.4. Varying gv .
∂λmax

∂gv

= −du

dv − du
. (20)

dv > du > 0, so this value should be negative. Therefore increasinggv always
decreases the appearance speed.

3.5. Varying du.

∂λmax

∂du
= dudv( fu − gv) − (du + dv)

√−dudv fvgu

du(du − dv)2
. (21)

The denominator is positive, so the sign should be equal to the sign of the numer-
ator. From the inequality (15) presented above, the numerator must obey the follo-
wing inequality:

− (du + dv)
√−dudv fvgu + dudv( fu − gv) < 0. (22)

As a result,this value is always negative.

3.6. Varying dv.

∂λmax

∂dv

= (du + dv)
√−dudv fvgu − dudv( fu − gv)

dv(du − dv)2
. (23)

The denominator is positive, so the sign should be equal to the sign of the numer-
ator. From the inequality (15) presented above, the numerator must obey the follo-
wing inequality:

(du + dv)
√−dudv fvgu − dudv( fu − gv) > 0. (24)

As a result,this value is always positive.
These results are summarized inTable 1.

4. NUMERICAL CALCULATION

To confirm the analysis we present numerical simulations for a simple reaction-
diffusion model. Currently no quantitative data on the interaction is known, so we
use a very simple model here, which only contains linear terms and a cubic term
which limits the range ofu. The model we use is

∂u

∂t
= 0.6u − v − u3 + 0.004�u

∂v

∂t
= 1.5u − 2v + 0.05�v (25)
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Table 1. Summary of change in appearance speed in response to parameter variation in (3).
(+) denotes earlier appearance and (−) denotes later appearance as a specific parameter is
increased.

Change in appearance speed

Parameter varied Activator–inhibitor scheme Substrate depletion scheme

fu + +
fv + −
gu − +
gv − −
du − −
dv + +

for the activator–inhibitor scheme and

∂u

∂t
= 0.5u + 0.6v − u3 + 0.004�u

∂v

∂t
= −1.9u − 2v + 0.05�v (26)

for the substrate depletion scheme.
Weundertook one-dimensional simulations on a domain of size 2π with periodic

boundary conditions. Initial conditions in each case are random white noise about
the equilibrium point, i.e.,f (u, v) = g(u, v) = 0 and the magnitude of initial
white noise is of order 1.0 × 10−3.

FromSection 3it is predicted that an increase infu, fv or dv results in the earlier
appearance of the pattern and an increase ingu, gv or du results in later appearance
of the pattern in the activator–inhibitor scheme. To confirm this, we visualized
the time evolution of the pattern of the control system and ‘experimentally treated’
system where one of these six parameters is increased by 10%. All of them seem
to reach steady state aftert = 200, but the speed of appearance of the pattern is
quite different among these groups. It is observed that an increase infu, fv anddv

results in earlier appearance of the pattern and an increase ingu, gv anddu results in
later appearance of the pattern (Fig. 4), which is consistent with the mathematical
prediction. On the other hand, in the substrate depletion scheme, an increase infu,
gu anddv results in the earlier appearance of the pattern and an increase infv, gv

anddv results in later appearance of the pattern (Fig. 5), which is also consistent
with the mathematical prediction.

The difference in the speed of pattern appearance seems quite obvious in all cases
and usually we can detect the difference by a single run of numerical calculation.
To confirm the result above is not a specific case, we carried out the simulation
40 times each with different initial conditions and automatically detected the time
required for the difference between highest and lowest concentration ofu to be 0.1.
Statistically significant differences are detected among all the treated and control



Turing Pattern Appearance Speed 637

fu, t = 90 fv, t = 90

gu, t = 200

gv, t = 140

du, t = 130

dv, t  = 100

0.4

0.2

20 40 60 80 100

−0.2

−0.4

0.4

0.2

20 40 60 80 100

−0.2

−0.4

0.4

0.2

20 40 60 80 100

−0.2

−0.4

0.4

0.2

20 40 60 80 100

−0.2

−0.4

0.4

0.2

20 40 60 80 100

−0.2

−0.4

0.4

0.2

20 40 60 80 100

−0.2

−0.4

Figure 4. Speed of pattern appearance in activator–inhibitor scheme (25). The simulation
is undertaken on the domain(0, 2π) with periodic boundary conditions. We set the initial
condition as white random noise whose magnitude is of order 1.0×10−3 and simulateuntil
t = 200. The modified parameter and observed time is described at the top of each graph.
Dashed lines represent the original pattern ofu distribution and the thick, continuous lines
represent the pattern in which one specific parameter is increased by 10%. From these
pictures we can see that increasingfu , fv or dv results in earlier appearance of the pattern
and increasinggu , gv or du results in later appearance of the pattern.

groups, and their directions are the same as predicted by the mathematical analysis
(Fig. 6).

Moreover, it is possible to analytically predict how much the time required for
the pattern to reach a certain amplitude will change by varying a specific parame-
ter. Suppose we change parameters such thatλmax in (16) changes fromλmax1 to
λmax2 and fix the initial and detection threshold amplitude ofu asu0 anduthreshold

respectively. Then if the time required for the pattern to reach a certain amplitude
is t1 andt2, respectively,

uthreshold= u0eλmax1t1 = u0eλmax2t2. (27)
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Figure 5. Speed of pattern appearance in substrate depletion scheme (26). The simulation
is undertaken on the domain(0, 2π) with periodic boundary conditions. We set the initial
condition as white random noise whose magnitude is of order 1.0×10−3 and simulateuntil
t = 200. The modified parameter and observed time is described at the top of each graph.
Dashed lines represent the original pattern ofu distribution and the thick, continuous lines
represent the pattern in which one specific parameter is increased by 10%. From these
pictures we can see that increasingfu , gu anddv results in earlier appearance of the pattern
and increasingfv , gv or du results in later appearance of the pattern.

Hence weobtain

t2 = λmax1

λmax2
t1. (28)

Wecalculate the predicted time by analytically obtainingλmax1/λmax2and numer-
ically obtaining the control value (t1). As can be seen inFig. 6, the numerical
calculation results agree very closely with the analytical predictions. In conclu-
sion, the numerical calculation results are consistent with the mathematical analy-
sis described above.



Turing Pattern Appearance Speed 639

Control fu fv gu gv du dv

* *
*

*
*

**

**

** **

**

** **

T
im

e 
re

qu
ire

d 
to

 d
et

ec
t p

at
te

rn

T
im

e 
re

qu
ire

d 
to

 d
et

ec
t p

at
te

rn

Changed parameters

Control fu fv gu gv du dv

Changed parameters

(a) Activator-inhibitor scheme   (25) (b) Substrate-depletion scheme   (26)

0

50

100

150

200

0

50

100

150

200

250

300

Analytical prediction
Simulation result

*
**

Pattern appears earlier, p < 0.01 
Pattern appears later, p < 0.01 

Figure 6. Statistical analysis ofthe speed of pattern appearance in the activator–inhibitor
(25) and substrate depletion (26) scheme. The simulation is for the domain(0, 2π) with
periodic boundary conditions. Numerical simulation with a specific parameter set was car-
ried out 40 times each with different random initial distribution. We set the magnitude
of the random noise to be of order 1.0 × 10−3. The time required for the amplitude of
pattern to reach the pattern detection threshold (which is set to 1.0× 10−1, a considerably
smaller value than the final amplitude of the pattern) is automatically detected. Statistically
significant differences between control and treated groups are detected by analysis of vari-
ance (ANOVA) and the direction of difference is identical to the mathematical predictions
from Section 3. Thetime required to detect the pattern by varying a specific parameter is
analytically predicted and shown next to the numerically obtained value.

5. ANALYSIS OF THE GIERER–MEINHARDT TYPE REACTION

DIFFUSION MODEL

5.1. The model. The analysis above can be useful to determine what will happen
when a specific interaction is blocked or promoted, but in actual experimental con-
ditions the interactions are sometimes cross-linked and it is unrealistic to consider
that the 4 linear reaction term parameters are independent. Here we undertake
detailed analysis of the Gierer–Meinhardt type reaction-diffusion model (Gierer
and Meinhardt, 1972), which is widely utilized in modeling various biological pat-
tern formation phenomena.

The equations we use are

∂u

∂t
= k1 − k2u + k3

u2

v
+ du�u

∂v

∂t
= k4u2 − k5v + dv�v, (29)
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Table 2. Summary of change in appearance speed in response to parameter variation in
(29). (+) denotes earlier appearance and (−) denotes later appearance as a specific param-
eter is increased. (±) indicates that the appearance speed depends on other parameters.

Parameter varied Change in appearance speed

k1 −
k2 +
k3 +
k4 −
k5 ±

wherek1, k2, k3, k4, k5 > 0. The analysis is similar to that above (details given in
the appendix) and a summary of the results is presented inTable 2.

5.2. Numerical calculation—both reinforcement of lateral inhibition and ear-
lier pattern appearance can be induced by a single parameter change. We car-
ried out exactly the same numerical calculation as inSection 4using the Gierer–
Meinhardt type reaction-diffusion system. We undertook one-dimensional simula-
tions on a domain of size 2π with periodic boundary conditions. Initial conditions
in each case are random white noise about the equilibrium point (A.1) and the
magnitude of initial white noise is of order 1.0 × 10−3. From appendix it is pre-
dicted that increasingk2 or k3 results in the earlier appearance of the pattern while
increasingk1 or k4 results in later appearance of the pattern. The effect ofk5 should
depend on the parameter set. To confirm this, we calculated the time evolution of
the pattern of the control system and ‘experimentally treated’ system where one
of these five parameters is increased by 10%, and automatically detected the time
required for the pattern amplitude to reach the pattern detection threshold, which
is set to 1.0× 10−1. The results, shown inFig. 7, are consistent with the analytical
predictions.

From the above analytical results, that involvingk1 is of special interest for us
because it represents the base production of the activator and increasingk1 should
result in higher final activator concentration. However, the analytical result showed
that increasingk1 results in a slowing down of the pattern appearance speed. There-
fore, decreasingk1 will both explain promoted lateral inhibition and earlier pattern
appearance. To see whether this is the case we undertook numerical calculation to
assay both initial pattern appearance speed and final concentration ofu. We first
set(k1, k2, k3, k4, k5, du, dv) = (0.1, 0.3, 0.2, 0.4, 0.7, 0.02, 0.8), and changedk1

from 0.3 to 0.0 and compared the results.Fig. 8 shows that in the initial phase
of morphogenesis the case withk1 = 0.0 forms the pattern much earlier than the
k1 = 0.3 case, but finally the activator concentration in the latter attains a higher
value on average. To show this is not a special case caused by specific initial con-
ditions, we again carried out 40 simulations with different white noise initial con-
ditions. The time required to detect the pattern is significantly shorter and average
u (activator) concentration is statistically lower under lowk1.
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Figure 7. Statistical analysis of the speed of pattern appearance in the Gierer–Meinhardt
reaction-diffusion system (29). Numerical calculation with a specific parameter set was
carried out 300 times each with different randominitial distribution. We set the magni-
tude of the random noise to be of order 1.0 × 10−3. The simulations are carried out on
the domain(0, 2π) with periodic boundary conditions. The time required for the ampli-
tude of pattern to reach the pattern detection threshold (which we set to 1.0 × 10−1, con-
siderably smaller than the final amplitude of the pattern) is automatically detected. (a)
(k1, k2, k3, k4, k5, du , dv) = (0.1, 0.3, 0.2, 0.4, 0.7, 0.02, 0.8), where∂λmax/∂k5 > 0.
(b) (k1, k2, k3, k4, k5, du , dv) = (0.3, 0.4, 0.8, 0.1, 0.6, 0.02, 0.4), where∂λmax∂k5 < 0.
A statistically significant difference is detected between control and treated groups by
ANOVA and the direction of difference is identical to the mathematical predictions from
appendix. The time required to detect the pattern by varying a specific parameter is ana-
lytically predicted and shown next to thenumerically obtained value.

6. DISCUSSION

In the present study, we mathematically analyzed how the speed of pattern appe-
arance in the very early phase of pattern formation is affected by modification of
specific linear terms of the reaction-diffusion system, and confirmed the analyti-
cal prediction using numerical simulation. In summary, in the activator–inhibitor
scheme, increasingfu or fv causes earlier appearance of the pattern and increasing
gu or gv results in delay of pattern emergence. In the substrate depletion scheme
(cross-type reaction-diffusion system), increasingfu or gu results in earlier appear-
ance of the pattern, while increasingfv or gv results in later appearance of the pat-
tern. In both reaction types, increasingdu results in later appearance and increasing
dv results in earlier appearance of the pattern.

We have tobe careful when usingλmax as a measure of pattern appearance speed
because in some cases the boundary condition can affect the result. For example,
in the case when the wavelength of the pattern is similar to the length of the spa-
tial domain, boundary conditions may restrict admissible wavenumbers to values
which are away from the peak of the dispersion relation. In that case we have
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Figure 8. Results of numerical simulations of the Gierer–Meinhardt model (29), which
may represent FGF treatment of the limb bud mesenchyme cells. The numerical simulation
details are identical toFig. 7(b) except forthe value ofk1. (a) Resultof numerical calcu-
lation at the onset of pattern formation. The spatial distribution ofu at t = 80 is shown.
(b) Final pattern (att = 200) obtained by numerical calculation. The spatial distribution
of u concentration is shown. (c) Statistical analysis of the speed of pattern appearance in
the Gierer–Meinhardt system. A total of 40 numerical simulations for each parameter set
were carried out with different random initial distribution. We set the magnitude of the
random noise to be of order 1.0× 10−3. Thetime required for the amplitude of the pattern
to reach the pattern detection threshold (which we set to 1.0× 10−1, considerablysmaller
than the final amplitude of pattern) is automatically detected. A statistically significant dif-
ference is detected between control and treated groups (Studentt-test) and the direction of
difference is identical to the mathematical prediction in appendix. (d) Statistical analysis
of the average concentration of u. A statistically significant difference is detected between
control and treated groups (Studentt-test).

to differentiate (10) for k constant to see whether the pattern at the admissible
wavenumbers will appear earlier or later. Interestingly, it is possible to decide the
sign of ∂λ/∂ fu, ∂λ/∂ fv, ∂λ/∂gu, ∂λ/∂gv, ∂λ/∂du, ∂λ/∂dv in all k, which means
that by modifying one specific linear parameter the dispersion relation curve sim-
ply goes up or down and no intersection of two dispersion relation curves occurs.
This is not true when we modify two or more parameters simultaneously, where
intersection can happen.
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The result of the mathematical analysis in the activator–inhibitor scheme can be
descriptively explained as follows: for the rate of initial pattern appearance, a posi-
tive feedback loop of activator is crucially important. So a change that reinforces
the positive feedback loop results in the earlier appearance of the pattern, and a
change that suppresses the positive feedback loop results in the later appearance of
the pattern. For diffusion coefficients, faster activator diffusion coefficient blocks
the activator positive feedback because diffusion is inhibitory for peak formation.
A larger inhibitor diffusion coefficient results in the suppression of inhibitor peaks
at the same places as activator peaks, which reinforces the activator positive feed-
back loop. Therefore increasingdu results in later pattern appearance and increas-
ing dv results in earlier appearance of the pattern. Concerning our original question,
in the activator–inhibitor scheme there is no parameter range in which a single lin-
ear parameter change results in both a reinforcing of the lateral inhibitory effect
and the earlier appearance of the pattern.

However, analysis of the Gierer–Meinhardt model shows that a single parameter
change does result in both a reinforcing of the lateral inhibitory effect and earlier
appearance of the pattern. In this model, decreasingk1, which means decreasing
the basal production of activator and hence a relative reinforcement of the lateral
inhibitory effect, will always result in the speeding up of pattern appearance. This
seems to be counterintuitive at first, but the qualitative explanation of this phe-
nomenon is as follows: when we increasek1, we increase the equilibrium concen-
tration. The positive feedback reaction of the activator nears saturation and results
in decreasedfu around the equilibrium point. In this case, the average ofu is
increased while the amplitude of spatialu distribution is decreased, which results
in higheru concentration at the ‘valley’ of the pattern but not at the peak. If we
assume the concentration ofu corresponds to chondrogenic differentiation, this is
exactly what is happening in the actual experimental system (Fig. 1). It is impor-
tant to note that the term ‘more differentiated’ from an experimental point of view
can mean, from a theoretical interpretation, either an increase in amplitude of the
morphogen concentration and/or an upward shift in its baseline value.

Obviously we have to keep in mind that there are other interpretations for the
experimental and analytical results. The experimental result may simply reflect the
existence of two independent mechanisms—periodic pattern formation and pattern
formation speed—and FGF might affect both of them. Previous hypotheses suggest
that pattern formation occurs only in the progress zone (Newman and Frisch, 1979),
and FGF might play a role in enabling the reaction-diffusion system there. And the
above analysis does not suggest thatk1 in the Gierer–Meinhardt system is theonly
candidate for the FGF effect. If we use different models some parameters may play
the same role. For example, if we add a constant term in the first equation of (3) it
may work the same ask1.

Analysis of how changes indu and dv affect model predictions can be useful
in determining how the diffusion term arises in actual experimental systems. The
molecular nature of the activator and inhibitor remains to be elucidated and it is not
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certain whether the ‘diffusion’ term in the reaction-diffusion model actually reflects
diffusion of some secretory molecules. For example, this could be achieved by the
random motion of cells, which is actually observed in experimental systems we
are currently considering (Miura et al., 2000). Since the diffusion coefficient of
activator and inhibitor should be considerably different to form a stable pattern,
it is possible that these diffusion terms are implemented by completely different
mechanisms in actual biological systems. So if random cell movement is involved
for one of the diffusion terms, suppressing cell movement by altering the rate of cell
movement by modifying adhesion between cell and extracellular matrix (Delannet
et al., 1994) can result in either earlier or later appearance of the pattern. Thus we
could distinguish whether random cell movement is involved in the diffusion term
of activator or inhibitor by observing the time course of the formation of the pattern.

The limb bud micromass culture system is a promising system to elucidate the
underlying mechanisms of periodic pattern formation in biological systems. The
cells form a two-dimensional chondrogenic pattern, and they show various mor-
phological properties which can be experimentally manipulated. For example, we
can modify the wavenumber of the pattern (Miura and Shiota, 2000a; Miura et al.,
2000), or speed of appearance of the pattern as described above. The culture system
also exhibits stripe-spot transitions using retinoic acid (data not shown), which can
be mathematically explained using nonlinear analysis (Ermentrout, 1991; Lyons
and Harrison, 1992). A combination of experimental methods and mathematical
analysis as presented in this paper will, we hope, contribute to understanding the
mechanisms of pattern formation in actual biological systems.
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APPENDIX A: DETAILED ANALYSIS OF THE GIERER–MEINHARDT

TYPE REACTION-DIFFUSION MODEL

In the Gierer–Meinhardt system (29) the equilibrium point is

(u, v) =
(

k3k5 + k1k4

k2k4
,
(k3k5 + k1k4)

2

k2
2k4k5

)
, (A.1)
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and the linearization around this point yields

fu = k2(k3k5 − k1k4)

k3k5 + k1k4

fv = − k2
2k3k2

5

(k3k5 + k1k4)2

gu = 2(k3k5 + k1k4)

k2

gv = −k5. (A.2)

If we substitute (A.2) into (16), we obtain

λmax = duk5(k3k5 + k1k4) − dvk2(k3k5 − k1k4) − 2k5
√

2dudvk2k3(k3k5 + k1k4)

(dv − du)(k3k5 + k1k4)
.

(A.3)

A.1. Diffusion-driven instability condition in the Gierer–Meinhardt model. From
(4) wecan obtain the following inequalities for diffusion-driven instability:

k3k5(k2 − k5) − k1k4(k2 + k5) < 0 (A.4)

dvk2(k3k5 − k1k4) > duk5(k3k5 + k1k4) > 0 (A.5)

d2
v k2

2(k3k5 − k1k4)
2 + d2

u k2
5(k3k5 + k1k4)

2

− 2dudvk2k5(k3k5 + k1k4)(3k3k5 + k1k4) > 0. (A.6)

A.2. Varying k1. By simplecalculation we obtain

∂λmax

∂k1
= −2dvk2k3k4k5 + k4k5

√
2dudvk2k3(k3k5 + k1k4)

(dv − du)(k3k5 + k1k4)2
. (A.7)

dv > du > 0, so the denominator is positive. The first term of the numerator is
negative and the second term is positive, so the sign of the numerator should be
identical to(

−2dvk2k3k4k5 + k4k5

√
2dudvk2k3(k3k5 + k1k4)

)
×
(
2dvk2k3k4k5 + k4k5

√
2dudvk2k3(k3k5 + k1k4)

)
= 2dvk2k3k2

4k5(duk5(k3k5 + k1k4) − 2dvk2k3k5)

< 2dvk2k3k2
4k5(dvk2(k3k5 − k1k4) − 2dvk2k3k5) [From (A.5)]

= 2dvk2k3k2
4k5(−dvk2k3k5 − dvk1k2k4) < 0. (A.8)

Therefore increasingk1 always decreases the appearance speed.
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A.3. Varying k2. By simplecalculation we obtain

∂λmax

∂k2
= dvk2(k3k5 − k1k4) − k5

√
2dudvk2k3(k3k5 + k1k4)

(dv − du)k2(k3k5 + k1k4)
. (A.9)

dv > du > 0, so the denominator is positive. So the sign of the value is identical to

dvk2(k3k5 − k1k4) − k5

√
2dudvk2k3(k3k5 + k1k4). (A.10)

From (A.5), dvk2(k3k5 − k1k4) > 0. So the first term of this expression is positive
and the second term is negative. Therefore, the sign of this expression is identical
to

(
dvk2(k3k5 − k1k4) − k5

√
2dudvk2k3(k3k5 + k1k4)

)
×
(

dvk2(k3k5 − k1k4) + k5

√
2dudvk2k3(k3k5 + k1k4)

)
= d2

v k2
2(k3k5 − k1k4)

2 − 2dudvk2k3k52(k3k5 + k1k4)

> −(du2k5(k3k5 + k1k4)
2 − 2dudvk2k5(k3k5 + k1k4)(3k3k5 + k1k4))

− 2dudvk2k3k2
5(k3k5 + k1k4) [From (A.6)]

= −duk5(k3k5 + k1k4)(duk5(k3k5 + k1k4) − 2dvk2(2k3k5 + k1k4))

> −duk5(k3k5 + k1k4)(dvk2(k3k5 − k1k4) − 2dvk2(2k3k5 + k1k4))

[From (A.5)]

= 3dudvk2k5(k3k5 + k1k4)(k3k5 + k1k4)

> 0. (A.11)

Therefore∂λmax/∂k2 is always positive and increasingk2 always increases the pat-
tern appearance speed.

A.4. Varying k3. By simplecalculation we obtain

∂λmax

∂k3
= k1k4

(
2dvk2k3k5 − k5

√
2dudvk2k3(k3k5 + k1k4)

)
(dv − du)k3(k3k5 + k1k4)

2
. (A.12)

Fromdv > du , thedenominator is positive. So the sign of this value is identical to

2dvk2k3k5 − k5

√
2dudvk2k3(k3k5 + k1k4). (A.13)
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The first term of this expression is positive and the second term is negative. So
the sign of this expression is identical to

(
2dvk2k3k5 − k5

√
2dudvk2k3(k3k5 + k1k4)

)
×
(
2dvk2k3k5 + k5

√
2dudvk2k3(k3k5 + k1k4)

)
= 2dvk2k3k5(2dvk2k3k5 − duk5(k3k5 + k1k4))

> 2dvk2k3k5(2dvk2k3k5 − dvk2(k3k5 − k1k4)) [From (A.5)]

= 2d2
v k2

2k3k5(k3k5 + k1k4)

> 0. (A.14)

Therefore∂λmax/∂k3 is always positive and increasingk3 always increases the pat-
tern appearance speed.

A.5. Varying k4.

∂λmax

∂k4
= −2dvk1k2k3k5 + k1k5

√
2dudvk2k3(k3k5 + k1k4)

(dv − du)(k3k5 + k1k4)2
. (A.15)

The denominator is positive (dv > du), and the first term of the numerator is
negative and the second term is positive. So the sign of this expression is identical
to

(
−2dvk1k2k3k5 + k1k5

√
2dudvk2k3(k3k5 + k1k4)

)
×
(
2dvk1k2k3k5 + k1k5

√
2dudvk2k3(k3k5 + k1k4)

)
= 2dvk2

1k2k3k5(−2dvk2k3k5 + duk5(k3k5 + k1k4))

< 2dvk2
1k2k3k5(−2dvk2k3k5 + dvk2(k3k5 − k1k4)) [From (A.5)]

= −2d2
v k2

1k2
2k3k5(k3k5 + k1k4) < 0. (A.16)

Therefore ∂λmax/∂k4 is always negative and increasingk4 always decreases the
pattern appearance speed.

A.6. Varying k5.

∂λmax

∂k5
= (2dvk1k2k3k4 + du(k3k5 + k1k4)

2) − (2k1k4 + k3k5)
√

2dudvk2k3(k3k5 + k1k4)

(dv − du)(k3k5 + k1k4)2
.

(A.17)
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We cannot determine easily the sign of this expression. For example, when(k1,
k2, k3, k4, k5, du, dv)= (0.5, 1.0, 0.9, 0.4, 0.9, 0.01, 0.2), ∂λmax/∂k5 = 0.0476677
> 0. However, when(k1, k2, k3, k4, k5, du, dv)= (0.3, 0.4, 0.8, 0.1, 0.6, 0.02, 0.4),
∂λmax/∂k5 = −0.148849< 0. Both of the parameter sets satisfy the diffusion-
driven instability conditions.
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