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It has been postulated that fibroblast growth factor (FGF) treatment of cultured
limb bud mesenchyme cells reinforces thetat inhibitory effect, but the cells also

show accelerated pattern appearance. In the present study, we analyze how a small
change in a specific parameter affects the speed of pattern appearance in a Turing
reaction-diffusion system using linear stability analysis. It is shown that the sign
of the change in appearance speed is qualitatively decided if the system is under
the diffusion-driven instability conditiorand this is confirmed by numerical simu-
lations. Numerical simulations also show that a small change in parameter value
induced easily detectable differences ie Hpgarance speed of patterns. Analysis

of the Gierer-Meinhardt model revealdltht a change in a single parameter can
explain two effects of FGF on limb mesemgme cells—reinforcement of lateral
inhibition and earlier appearance of pattern. These qualitative properties and easy
detectability make this feature a promigitool to elucidate the underlying mecha-
nisms of biological pattern formation where the quantitative parameters are difficult
to obtain.

© 2003 Society for Mathematical Biology. Published by Elsevier Ltd. All rights
reserved.

1. INTRODUCTION

Vertebrate limb development is widely studied both experimentally and theoreti-
cally [see, for example, the review bjaini and Solurst{1991)]. Most experimen-
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tal studies focus on the polarity and subsequent specification of each digit identity.
It has been shown that FGF4 and 8 secreted by the apical ectodermal ridge are crit-
ical for limb bud outgrowth and proximodistal patterning, while sonic hedgehog
secreted from the zone of polarizing activity plays a decisive role in establishing
anteroposterior polarity of the limb pattern [for review, Sgelpert(1998, Gilbert
(2000]. On the other hand, theoretical studies concentrate on the periodic aspect of
pattern formation using the Turing reaction-diffusion modég\yman ad Frisch

1979 Othmer 1986 Newmanet al., 1988 Downie and NewmarL995 or its alter-
natives Murray, 1993. They are largely ignored by experimental biologists, but
recently several reports provide supportive evidence for this periodic property. For
example, there exist several polydactylous mutant mice strains which have random
digit patterns which are difficult to explain using the one-by-one specification by

a positional information mechanisniHéyeset al., 1998. Moreover, the reaggre-
gated limb, which does not have normal anteroposterior gene expression, can form
normal digit-like structuresRoset al., 1994. Based on these findings the idea of
periodic pattern formation during limb development is gradually being accepted by
experimental biologists [see, for exampl&plpert(1999, Gilbert (2000].

Since he analysis of periodic patternvivo is quite difficult because the domain
shape is complex and growing, several researchers utilize the limb micromass cul-
ture system for these studie®wWens and 8lursh 1981). In this culture system,
limb bud mesenchyme cells are dissociated into separate cells using trypsin, then
cultured on a dish at high density. Some cells become chondrocytes while oth-
ers remain fibroblastic, resulting in a quasi-periodic, stripe-like chondrogenic pat-
tern. Since this final pattern can be directly correlated with the two-dimensional
reaction-diffusion pattern, it has been used to study periodic pattern formation in
biological systemsNewman 1996. For example, it has been shown that the
wavelength of the pattern can be changed by modulating the diffusion coefficient
of the secreted molecules consistent with model predictidfisrg and Shiota
20003. It has also been shown that TGFspecifically the TGB, protein—is a
good candidate to act as an activator molecule in the reaction-diffusion model in
this experimental systenDpwnie and Newmarnl994 Miura and Shiota 20000).
(Throughout this paper we define the word ‘activator’ and ‘inhibitor’ as those used
in a reaction-diffusion system, not the activator or inhibitor of differentiation as
used in some experimental papers.)

Recent experimental results address the issue of whether or not speed of pattern
appearance in the reaction-diffusion system can be changed by changing a specific
interaction within the system. A recent report suggested that fibroblast growth
factor (FGF), a signaling molecule that is expressed at the tip of the developing
limb bud, can indirectly reinforce the lateral inhibitory effect in limb bud micro-
mass cultureNloftah et al., 2002. Judging from its spatial distribution, FGF itself
does not seem to be an inhibitor molecule, but it seems to reinforce the effect of
the inhibitor. In the course of re-examining this result, we found that the peri-
odic pattern appears much earlier with FGF treatmEig.[1(b)] than in controls
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(a) Control-18h (b) FGF4(+) 18h

(c) Control-120h

S

Figure 1. Speed of pattern appearance in cultured limb bud mesenchyme cells of GD10.5
mouse embryos. The method is describeiora and Shiotg20003. (a) Control cells
cultured for 18 h. Cell distribution is homogeneous and we could not detect any pattern.
(b) Cells treated with 100 ng mit FGF4 cultured for 1&. Cell aggregates form a quasi-
periodic pattern, and later become chondrogenic sites. (c) Control cells cultured for 120
h. Chondrogenic cells are stained black by Alcian-blue. (d) FGF4 treated cells cultured
for 120 h. The degree of chondrogenic differentiation is suppressed compared with the
control. The difference in wavenumber is not as apparent between the control and FGF4
treated cultures. Scale bar, 5a6n.

[Fig. 1(a)]. This looks puzzling for experimental biologists because even when
the appearance of pattern is earlier, final chondrogenic differentiation seems to be
suppressed by FGF treatmehid. 1(c) and1(d)]. The descriptive explanation by
Moftah et al. (2002 might account for both observations, but we need more rigor-
ous mathematical analysis to see whether these two phenomena can be explained
by a mechanism such as the reaction-diffusion model.

We undertook linear stability analysis to see whether a qualitative change in
one of the parameters in a Turing reaction-diffusion system results in increase or
decrease in the speed of pattern formation. We keep two points in mind to make
this analysis biologically relevant. Firstly, we confined our analysis to qualitative
characteristics because we cannot obtain all the parameters even in the simple bio-
logical system described above. Secondly, we confined our analysis to the linear
range because the initial pattern appearance seemedduiteean early event.
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The cell aggregate pattern first appeared 18—-24 h after culture, while the final
pattern settled after 96—120 h. In the present study, we analyze the change in
the maximum value of the dispersion relation in two types of reaction-diffusion
systems, one is the classic activator—inhibitor scheme and the other is the sub-
strate depletion scheme, and confirm the result using numerical calculation. We
also undertake detailed analysis of a more realistic nonlinear model and discuss its
biological relevance.

2. OBTAINING THE MAXIMUM IN THE DISPERSION RELATION

We mnsider the standard two species reaction-diffusion system as follows:

ou

i f(u,v) +d,Au

v

ﬁ = g(ua U) + dUAU, (1)

whereu(x, t) andv(x,t) are chemical concentrations at positierand timet.
Without loss of generality, we sdt(0, 0) = g(0, 0) = 0 and initial spatial distri-
bution of u, v asug andvg respectively, which represents the small noise expected
in a natural system.

The waveéngth of the observed experimental pattern is much smaller than that of
the spatial domain, so we assert that the boundary conditions do not exert a strong
effect on the final pattern, and take periodic boundary conditions. Here we only
consider the linear approximation about the initial value because the appearance of
the pattern is quite an early event, as described above. We set

_of _9g f_af g

f__5 _— ) vV — A 9 v —
Y7 au Y7 du v v

()

all evaluated at0, 0) and linearly approximate the equation aro0d0) to give
(as usual)

9
M fu+ o+ dyAu

at

v

ﬁ=QUU+gvv+dvAv. )

We suppose that the parameters in this experimental system are in the diffusion-
driven instability range because if we culture cells at very low density and observe
each cell separately, which is equivalent to observing the dynamics of the reaction
terms only, they remain stable and no chondrogenic differentiation or oscillatory
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(a) Activator-Inhibitor scheme (b) Substrate depletion scheme
fu (>0) fu (>0)
du u du
h (activator) # h #
gu (>0) -‘va(<0) gu (<0)J fv(>0)
dv dv
gv (<0) gv (<0)

Figure 2. Schematic representations of activatdribitor and substratdepléion scteme.
Six palameters and their signs are shown.

behavior can be observed. Therefore, these parameters should be within the range
described below [see, for exampMurray (1993]:

fu+g, <0

fugy — f,0u >0

d, fu +dyg, >0

(dy fu + du@y)® — 4dyd, (fug, — fugu) > 0. (4)

In this study we consider both activator—inhibitor and substrate depletion sche-
mes, and the sign of the parameters are as follotig}. )

e Activator—inhibitor scheme

— fy > 0 (activator promotes its own production).

— f, < 0 (inhibitor inhibits the production of activator).
— 0u > O (activator promotes the production of inhibitor).
— g, < 0 (inhibitor decays).

— d, > d, (inhibitor diffuses faster than activator).

e Substrate depletion scheme (cross-type reaction-diffusion)

— fy, > 0 (enzyme promotes its own production).
— f, > 0 (enzyme promote its production by substrate).
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Figure 3. Relationship between pattern appearance speed and dispersion relation. If a slight
change in parameter results in an increase in the maximum of the dispersion relation, then
the prediction is that the pattern will appear earlier.

— 0Oy < 0 (substrate is consumed by an enzyme).
— 0, < 0 (enzyme decays).
— d, > d, (substrate diffuses faster than enzyme).

To determine an estimate on the time scale of patterning in the linear regime we
set
u fu f, d, O
(v>’ <9u gu>’ (0 cn> ©
and the above equation can be simplified to the form below:
w = Aw + DAw (6)
where’ denotes differentiation with respect to time.
If we consider each wavenumber component separately using the Fourier trans-
form, the solution for each wavenumber component is in general of the form
w o € sin(kx). (7
Thenequation ¢) becomes
(A=Al —k’D)w = 0. (8)
We requre nontrivial solutions fow, so

_ _ 2
Det(A—AI—kZD)zDet(f“ A = duk fo )

gu gv_)‘_dvkz
=0 — fu+dkH -9, +dk) - f,gu =0 (9)

and hence we have the dispersion relation (§geJ):

A=13 (fu + gy — (dy + d)K? £ /4 fg0 + (fy — g, + (d, — du)kz)z) . (20
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Among the twoh values, only the highek value is relevant in this case because
under the diffusion-driven instability condition the lowewill always be negative.

This A value lecomes positive in a certain rangekéfindicating that only certain
wavelengths can grow. To obtain tk&éfor which A has the largest positive value,
we differentiatex with respect tk? and equate to zero, that is,

_ _ _ 2
3); _ } —d, — dv (dv du)( fU gv + (dv dU)k ) — 0 (11)
ks 2 VAT0u + (fu — gy + (dy — dyk?)?
By sohing this equation we obtain
k2 _ _dudv( fu - gv) + (du + dv)\/ _dudv fvgu (12)

du dv (dv - du)

Looking at the value dk?, the denominator should be positive aad,d, ( f, —
0.) should be negative in both activator—inhibitor and substrate depletion schemes
(fu — g, > 0). Sincek? should not be negative, theé which gives maximuni

value is
_ —dudv(fu - gv) + (du + dv)\/ _dudv fvgu
B dudv(dv - du) '

From (L3) we can predict that in the physiological parameter range such as
dy, oy &~ 107° cn? st andfy, f,, gu, g &~ 107! s this model will produce a
structure with wavelength of order 1bcm, which is exactly the case in this experi-
mentalsystem.

There are three necessary conditions for this value to be an admissible maximum
value. First, since {3) is a fjuare of the wavenumber, this must be larger than 0,

that is,
(du + dv)\/ _dudv fvgu - dudv( fu - gv)

k2 (13)

0. 14
4,0,(d, — d) > (14)

Asd,, d,, d, — d, > 0, this condition is simplified as
(du + dv)\/ _dudv fvgu - dudv( fu - gv) > 0 (15)

This condition can be derived frond), but we use this inequality later for sim-
plicity.

Second, thisk? value should give a local. maximum, not minimum. This is
easily confirmed.

Third, this wavenumber should be an admissible mode, that is, of the form
k? = % where L is the domain length and an integer, to ensure that the
boundary conditions are satisfied. To simplify the analysis, we will assume that
the Amax We conpute below is a reasonable approximation to the growth rate of the
admissible mode with maximum growth rate. While not strictly true, this is a good
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approximation for large wavenumber patterns where we change the parameter only
slightly.

So wecan obtain the maximur value (may) for the reaction-diffusion system
by substituting 10) with (13):

dv fu - dugv - 2\/ _dudv fvgu

A =
max d, —d,

Wecan directly obtain the value and make a quantitative prediction if we know all
the parameters, but this is almost impossible in a biological experimental system.
However, in this case we have an experimental system in which a periodic pattern
is formed and we can sometimes detect whether the pattern appears earlier or later
by modifying a specific factor. If we can make qualitative predictions from the
model as to whether pattern should appear earlier or later by modifying a model
parameter in a specific direction, it is possible to qualitatively predict in which
pathway in the reaction-diffusion system the factor may be involved.

(16)

3. EFFECT ON Apax OF CHANGING A SPECIFIC PARAMETER

We assume that, a0, 0), f,, f,, gu, 0., d, andd, are independent parameters
and we consider hown,,x changes as we vary each parameter in turn, keeping the
others fixed.

3.1. Varying f,. By simplecalculation we obtain

a)\max _ dv
afu - dv - du '

17)

d, > dy, > 0, so this value should be positive. Therefore increadinglways
increases the appearance speed.

3.2. Varying f,.
a)\max — dudvgu (18)
of,  (dy —dy)v/—dud, fugu
The sign of this alue is dependent on the signgf So in theactivator—inhibitor
scheme this value should be positive, and in the substrate depletion scheme this

value should be negative.

3.3. Varying g,.
9 Xmax dud, f,
gy (dy —dy)v/—dud, fogy
The sign of this alue is dependent on the signfif So in theactivator—inhibitor
scheme this value should be negative, and in the substrate depletion scheme this
value should be positive.

(19)
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34. Varying g,.
a)\max _ _du

agv B dv - du .
d, > d, > 0, so this value should be negative. Therefore increaginglways
decreases the appearance speed.

(20)

3.5. Varyingd,.

a)\max _ dudv( fu - gv) - (du + dv)\/ _dudv fvgu
ody dy(dy — d,)? '

(21)
The denominator is positive, so the sign should be equal to the sign of the numer-
ator. From the inequalityl®) presented above, the numerator must obey the follo-

wing inequality:

— (dy + dv)\/ —d,d, 1:vgu + dyd, (fy — Q) < 0. (22)

As a resultthis value is always negative.

3.6. Varyingd,.
3)\max _ (du + dv)\/ _dudv fvgu - dudv( fu - gv) (23)
adv B dv(du - dv)z ‘

The denominator is positive, so the sign should be equal to the sign of the numer-
ator. From the inequalityl®) presented above, the numerator must obey the follo-
wing inequality:

(dy + dv)\/ —d,d, 1:vgu — dyd, (fy — gy) > 0. (24)

As a resultthis value is always positive.
These results are summarizedTiable 1

4. NUMERICAL CALCULATION

To confirm the analysis we present numerical simulations for a simple reaction-
diffusion model. Currently no quantitative data on the interaction is known, so we
use a very simple model here, which only contains linear terms and a cubic term
which limits the range ofi. The nodel we use is

au
5= 0.6u — v — u® + 0.004Au

9
8_'; — 1.5U — 2v + 0.05Av (25)
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Table 1. Summary of change in appearance speed in response to parameter varigjion in (
(+) denotes earlier appearance ane) denotes later appearance as a specific parameter is
increased.

Change in appearance speed

Parameter varied  Activator—inhibitor scheme  Substrate depletion scheme

fu + +
fu + _
u - +
Qv - -
du - -
dy + +

for the activator—inhibitor scheme and

0
a_ltj =0.5u + 0.6v — u® + 0.004Au

9
8_: — —1.0u — 2v + 0.05Av (26)

for the substrate depletion scheme.

We undertook one-dimensional simulations on a domain of sizevi2h periodic
boundary conditions. Initial conditions in each case are random white noise about
the equilibrium point, i.e.,f(u,v) = g(u,v) = 0 and the magnitude of initial
white noise is of order D x 1073,

FromSection 3it is predicted that an increase fg, f, ord, results in the earlier
appearance of the pattern and an increasg,iq, or d, results in later appearance
of the pattern in the activator—inhibitor scheme. To confirm this, we visualized
the time evolution of the pattern of the control system and ‘experimentally treated’
system where one of these six parameters is increased by 10%. All of them seem
to reach steady state after= 200, but the speed of appearance of the pattern is
quite different among these groups. It is observed that an incredge fp andd,
results in earlier appearance of the pattern and an incregsegnandd, results in
later appearance of the pattefid. 4), which is consistent with the mathematical
prediction. On the other hand, in the substrate depletion scheme, an incrdgse in
gu andd, results in the earlier appearance of the pattern and an incredsegn
andd, results in later appearance of the pattdfig( 5, which is also consistent
with the mathematical prediction.

The dfference in the speed of pattern appearance seems quite obvious in all cases
and usually we can detect the difference by a single run of numerical calculation.
To confirm the result above is not a specific case, we carried out the simulation
40 times each with different initial conditions and automatically detected the time
required for the difference between highest and lowest concentratiotoddfe 0.1.
Stdistically significant differences are detected among all the treated and control
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-0.2r

-0.4f

Figure 4. Speed of pattern appearance in activator—inhibitor scHgBnelhe simulation

is undertaken on the domai, 2rr) with periodic boundary cortions. We set the initial
condition as white random noise whose magnitude is of order 10~3 and simuteurtil

t = 200. The modified parameter and observed time is described at the top of each graph.
Dashed lines represent the original patterm distribution and the thick, continuous lines
represent the pattern in whione specific parameter is increased by 10%. From these
pictures we can see that increasifig f, or d, results in earlier appearance of the pattern
and increasingy, g, or dy results in later appearance of the pattern.

groups, and their directions are the same as predicted by the mathematical analysis
(Fig. 6).

Moreover, it is possible to analytically predict how much the time required for
the pattern to reach a certain amplitude will change by varying a specific parame-
ter. Suppose we change parameters suchihgtin (16) changes fromiax; to
Amaxz @and fix the initial and detection threshold amplitudeudadsuy andUnreshold
respectively. Then if the time required for the pattern to reach a certain amplitude
ist; andt,, respectively,

Uthreshold = UOe}LmaX1t1 = UOe}Lmaxztz- (27)
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Figure 5. Speed of pattern appearance in substrate depletion sc@mehe simulation

is undertaken on the domai@, 2rr) with periodic boundary contions. We set the initial
condition as white random noise whose magnitude is of order 10~3 and simukteurtil

t = 200. The modified parameter and observed time is described at the top of each graph.
Dashed lines represent the original patterm distribution and the thick, continuous lines
represent the pattern in wiione specific parameter is increased by 10%. From these
pictures we can see that increasifig gy andd, results in earlier appearance of the pattern
and increasing,, g, or dy results in later appearance of the pattern.

Hence ve obtain

)Lmaxl

ty = ty. (28)

)Lmax2

We calculate the predicted time by analytically obtainiigyi/Amaxe@nd numer-
ically obtaining the control valuet,). As can be seen ifrig. 6, the numerical
calculation results agree very closely with the analytical predictions. In conclu-
sion, the numerical calculation results are consistent with the mathematical analy-
sis described above.
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(a) Activator-inhibitor scheme (25) (b) Substrate-depletion scheme (26)

c 200 c 300
g * "q'% *k
g —+ 8 250 _‘I‘
S 150 °
Q Q
© © 200
-8 *k *k g . -
S 100 S 150
o g
= * =i "
g . g oo
pust 50~ * = *
Q (] *
E E 50
= [

0 0

Control fu fv gu gv du dv Control fu gu gv du dv
Changed parameters Changed parameters
[ Analytical prediction *  Pattern appears earlier, p < 0.p1
[0 Simulation result *  Pattern appears later, p < 0.01

Figure 6. Statistical analysis tfie sged of pattern appearance in the activator—inhibitor
(25) and sibstrate dpldion (26) sckeme. The simulatio is for the domain(0, 2rr) with
periodic boundary conditions. Nwerical simulation with a spefic parameter set was car-

ried out 40 times each with different randomitial distribution. We set the magnitude

of the random noise to be of ordei0lx 10~3. Thetime requirel for the anplitude of
pattern to reach the pattern detection threshold (which is sebte 10~1, a mnsiderably
smaller value than the final amplitude of the pattern) is automatically detected. Statistically
significant differences between control and treated groups are detected by analysis of vari-
ance (ANOVA) and the déedion of difference is identical to the mathematical predictions
from Section 3 Thetime required to detect the pattern by varying a specific parameter is
analytically predicted and shown next to the numerically obtained value.

5. ANALYSISOF THE GIERER—MEINHARDT TYPE REACTION
DIFFUSION MODEL

5.1. Themodd. The analys albve can be seful to determine what will happen
when a spcific interaction is blocked or promoted, but in actual experimental con-
ditions the interactions are sometimes cross-linked and it is unrealistic to consider
that the 4 linear reaction term parameters are independent. Here we undertake
detailed analysis of the Gierer—Meinhardt type reaction-diffusion md@irgr
and Meinhardt1972, which is widely utilized in modeling various biological pat-
tern formation phenomena.

The euations we use are

au u?

— =k — kou + k3— +duAU
ot v

ov

— =kqu? — ksv + d, Av, (29)
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Table 2. Summary of change in appearance speed in response to parameter variation in
(29). (+) denotes earlier appearance ang) denotes later appearance as a specific param-
eter is increased) indicates that the appearance speed depends on other parameters.

Parameter varied Change in appearance speed

kq —
ko +
k3 +
kg —
ks +

whereky, ko, K3, k4, ks > 0. The analysis is similar to that above (details given in
the appendix) and a summary of the results is presentédhile 2

5.2. Numerical calculation—both reinforcement of lateral inhibition and ear-
lier pattern appearance can be induced by a single parameter change. We car-
ried out exactly the same numerical calculation aSeation 4using the Gierer—
Meinhardt type reaction-diffusion system. We undertook one-dimensional simula-
tions on a domain of sizer2with periodic boundary conditions. Initial conditions
in each case are random white noise about the equilibrium paid) @nd the
magnitude of initial white noise is of order.Q x 1073, From gpendix it is pre-
dicted that increasingy, or ks results in the earlier appearance of the pattern while
increasingk; or k4 results in later appearance of the pattern. The effeky siiould
depend on the parameter set. To confirm this, we calculated the time evolution of
the pattern of the control system and ‘experimentally treated’ system where one
of these five parameters is increased by 10%, and automatically detected the time
required for the pattern amplitude to reach the pattern detection threshold, which
is set to 10 x 107, The lesults, shown ifrig. 7, are onsistent with the analytical
predictions.

From the dove analytical results, that involvirly is of special interest for us
because it represents the base production of the activator and increashmould
result in higher final activator concentration. However, the analytical result showed
that increasingg, results in a slowing down of the pattern appearance speed. There-
fore, decreasing; will both explain promoted lateral inhibition and earlier pattern
appearance. To see whether this is the case we undertook numerical calculation to
assay both initial pattern appearance speed and final concentrationVéé first
set(ky, ko, k3, K4, ks, dy, d,) = (0.1,0.3,0.2,0.4,0.7,0.02, 0.8), and clangedk;
from 0.3 to 0.0 and compared the result§g. 8 shows that in the initial phase
of morphogenesis the case wkh = 0.0 forms the pattern much earlier than the
k, = 0.3 case, but finally the activator concentration in the latter attains a higher
value on average. To show this is not a special case caused by specific initial con-
ditions, we again carried out 40 simulations with different white noise initial con-
ditions. The time required to detect the pattern is significantly shorter and average
u (activator) concentration is statistically lower under liew
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[ Analytical prediction *  Pattern appears earlier, p < 0.p1
[0 Simulation result = Pattern appears later, p < 0.01

Figure 7. Statistical analysis of the speed of pattern appearance in the Gierer—Meinhardt
reactiondiffusion system Z9). Numerical calculation with a specific parameter set was
carried out 300 times each with different randamitial distribution. We set the magni-

tude of the random noise to be of orde® k 10~3. The simuléions are carried out on

the domain(0, 2rr) with periodic boundey conditions. The time required for the ampli-
tude of pattern to reach the pattern detection threshold (which we sl 10101, con-
siderably smaller than the final amplitude of the pattern) is automatically detected. (a)
(K1, ko, K3, kg, ks, dy, dy) = (0.1,0.3,0.2,0.4,0.7,0.02 0.8), wheredimax/dks > O.

(b) (k1, ko, k3, kg, ks, dy, dy) = (0.3, 0.4, 0.8,0.1, 0.6, 0.02, 0.4), wheredimaxdks < O.

A statistically significant difference is detected between control and treated groups by
ANOVA and the direction of difference is identical to the mathematical predictions from
appendix. The time required to detect the pattern by varying a specific parameter is ana-
lytically predicted and shown next thenumerically obtained value.

6. DISCuUSsSION

In the present study, we mathematically analyzed how the speed of pattern appe-
arance in the very early phase of pattern formation is affected by modification of
specific linear terms of the reaction-diffusion system, and confirmed the analyti-
cal prediction using numerical simulation. In summary, in the activator—inhibitor
scheme, increasing, or f, causes earlier appearance of the pattern and increasing
Ou Or g, results in delay of pattern emergence. In the substrate depletion scheme
(cross-type reaction-diffusion system), increasfp®r g, results in earlier appear-
ance of the pattern, while increasirigor g, results in later appearance of the pat-
tern. In both reaction types, increasidgresults in later appearance and increasing
d, results in earlier appearance of the pattern.

We have tdbe careful when usingmax as a measure of pattern appearance speed
because in some cases the boundary condition can affect the result. For example,
in the case when the wavelength of the pattern is similar to the length of the spa-
tial domain, boundary conditions may restrict admissible wavenumbers to values
which are away from the peak of the dispersion relation. In that case we have
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(a) (c) Time required to detect pattern
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Figure 8. Results of numerical simulations of the Gierer—Meinhardt m&$| (hich

may represent FGF treatment of the limb bud mesenchyme cells. The numerical simulation
detals are identical td~ig. 7(b) except forthe valie ofks. (a) Resulof numerical calcu-

lation at the onset of pattern formation. The spatial distribution aft = 80 is shown.

(b) Final pattern (at = 200) obtained by numerical calculation. The spatial distribution

of u concentration is shown. (c) Statistical analysis of the speed of pattern appearance in
the Gerer—Meinhardt system. A total of 40 numerical simulations for each parameter set
were carried out with different random initialstribution. We set the magnitude of the
random noise to be of order@x 10~3. Thetime required for the amplitude of the pattern

to reach the pattern detection threshold (which we set@o<1107 1, considerablysmaller

than the final amplitude of pattern) is automatically detected. A statistically significant dif-
ference is detected between control and treated groups (Sttuiest) and the direction of
difference is identical to the mathematicakgriction in appendix. (dStdistical aralysis

of the averageancentréion of u. A staistically significant diffeence is detected between
control and treated groups (Studertest).

to differentiate {0) for k constant to see whether the pattern at the admissible
wavenumbers will appear earlier or later. Interestingly, it is possible to decide the
sign ofax/afy, oa/of,, dA/0Qy, 0A/00,, 0A/ddy, d1/ad, in all k, which means

that by modifying one specific linear parameter the dispersion relation curve sim-
ply goes up or down and no intersection of two dispersion relation curves occurs.
This is not true when we modify two or more parameters simultaneously, where
intersection can happen.
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The result of the mathematical analysis in the activator—inhibitor scheme can be
descriptively explained as follows: for the rate of initial pattern appearance, a posi-
tive feedback loop of activator is crucially important. So a change that reinforces
the positive feedback loop results in the earlier appearance of the pattern, and a
change that suppresses the positive feedback loop results in the later appearance of
the pattern. For diffusion coefficients, faster activator diffusion coefficient blocks
the activator positive feedback because diffusion is inhibitory for peak formation.
A larger inhibitor diffusion coefficient results in the suppression of inhibitor peaks
at the same places as activator peaks, which reinforces the activator positive feed-
back loop. Therefore increasimyy results in later pattern appearance and increas-
ing d, results in earlier appearance of the pattern. Concerning our original question,
in the activator—inhibitor scheme there is no parameter range in which a single lin-
ear parameter change results in both a reinforcing of the lateral inhibitory effect
and the earlier appearance of the pattern.

However, analysis of thei@&er—Meinhardt model shows that a single parameter
change does result in both a reinforcing of the lateral inhibitory effect and earlier
appearance of the pattern. In this model, decredsingvhich means decreasing
the basal production of activator and hence a relative reinforcement of the lateral
inhibitory effect, will always result in the speeding up of pattern appearance. This
seems to be counterintuitive at first, but the qualitative explanation of this phe-
nomenon is as follows: when we incredgewe increase the equilibrium concen-
tration. The positive feedback reaction of the activator nears saturation and results
in decreasedf, around the equilibrium point. In this case, the averagel i
increased while the amplitude of spatiatistribution is decreased, which results
in higheru concentration at the ‘valley’ of the pattern but not at the peak. If we
assume the concentration witorresponds to chondrogenic differentiation, this is
exadly what is happening in the actual experimental systéig.(1). It is impor-
tant to note that the term ‘more differentiated’ from an experimental point of view
can mean, from a theoretical interpretation, either an increase in amplitude of the
morphogen concentration and/or an upward shift in its baseline value.

Obviously we have to keep in mind that there are other interpretations for the
experimental and analytical results. The experimental result may simply reflect the
exigence of two independent mechanisms—periodic pattern formation and pattern
formation speed—and FGF might affect both of them. Previous hypotheses suggest
that pattern formation occurs only in the progress zd&tewman ad Frisch 1979,
and FGF might play a role in enabling the reaction-diffusion system there. And the
above analysis does not suggest than the Gierer—Meinhardt system is thily
candidate for the FGF effect. If we use different models some parameters may play
the same role. For example, if we add a constant term in the first equati8hiof (
may work he same ak;.

Analysis of how changes ird, andd, affect model predictions can be useful
in determining how the diffusion term arises in actual experimental systems. The
molecular nature of the activator and inhibitor remains to be elucidated and it is not
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certain whether the ‘diffusion’ term in the reaction-diffusion model actually reflects
diffusion of some secretory molecules. For example, this could be achieved by the
random motion of cells, which is actually observed in experimental systems we
are currently consideringMiura et al., 2000. Since the diffusion coefficient of
activator and inhibitor should be considerably different to form a stable pattern,
it is possible that these diffusion terms are implemented by completely different
mechanisms in actual biological systems. So if random cell movement is involved
for one of the diffusion terms, suppressing cell movement by altering the rate of cell
movement by modifying adhesion between cell and extracellular mabDidénnet

et al., 19949 can result in either earlier or later appearance of the pattern. Thus we
could distinguish whether random cell movement is involved in the diffusion term
of activator or inhibitor by observing the time course of the formation of the pattern.

Thelimb bud micromass culture system is a promising system to elucidate the
underlying mechanisms of periodic pattern formation in biological systems. The
cells form a two-dimensional chondrogenic pattern, and they show various mor-
phological properties which can be experimentally manipulated. For example, we
can modify the wavenumber of the patteMigra and Shiota2000a Miura et al.,

2000, or speed of appearance of the pattern as described above. The culture system
also exhibits stripe-spot transitions using retinoic acid (data not shown), which can
be mathematically explained using nonlinear analygisnrirout, 1991, Lyons

and Harrison1992. A combination of experimental methods and mathematical
analysis as presented in this paper will, we hope, contribute to understanding the
mechanisms of pattern formation in actual biological systems.
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APPENDIX A: DETAILED ANALYSISOF THE GIERER—MEINHARDT
TYPE REACTION-DIFFUSION M ODEL

In the Gierer—Meinhardt systerq) the equilibrium point is

2
(U v) = <k3k5 + kiks  (ksks + kika) ) ’ (A1)

keke 7 KZkako
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and the linearization around this point yields
i ka(ksks — kiKa)

! kaks + kika

¢ k2ksk2

T (ks + kika)?

_ 2(ksks + kiks)
W=
2

Oy = —Ks. (AZ)

If we substitute A.2) into (16), we obtain

_ duks(ksks + kiks) — d,Ko(Ksks — kiks) — 2ks+/2d,d,Koks(ksks + Kika)
e (dy — dy) (KsKs + KiKa) '

(A.3)

A.l. Diffusion-driven instability condition in the Gierer—Meinhardt model. From
(4) we can obtain the following inequalities for diffusion-driven instability:

ksks(kz — ks) — kika(kz +ks) < O (A.4)
d,Ka(ksks — kiks) > dyks(ksks + kiks) > 0 (A.5)
d2k3 (Ksks — kika)® + dikg(ksks + kika)?

— 2dyd, koKs (Ksks + kiKs) (3ksks + kiks) > O. (A.6)

A.2. Varying k;. By simplecalculation we obtain
Ormax _ —20Kokskaks + Kaks+/2dy,d, Koka(ksks + kiks)
oky (dy — dy) (Ksks + kikas)? '

d, > d, > 0, so the denominator is positive. The first term of the numerator is
negative and the second term is positive, so the sign of the numerator should be
identical to

(—2dvk2k3k4k5 + KaKs/ 20,0 ko (kaKs + k1k4>)

(A7)

x (20 kokakaks + kekey/20,d, ok (kaks + Kika))
= 2d,KokskjKs(dyKs(Ksks + Kika) — 2d, koksks)
< 20, koksk2ks (0, ko (ksks — Kiks) — 20, Koksks) [From (A.5)]
= 2, kokakZKs(—d, koksks — dykikaKs) < O. (A.8)

Therefore increasing; always decreases the appearance speed.
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A.3. Varying k,. By simplecalculation we obtain

0 Amax _ dyKo(ksks — kiks) — ks+/2d,d, Kok (ksks + kika) (A.9)
ko (d, — dy)ka(ksks + kika) ' '

d, > d, > 0, so the denominator is positive. So the sign of the value is identical to

d,Ka(Ksks — KiKa) — Ks/20,d, koks(Ksks + KiKa). (A.10)

From (A.5), d,ko(ksks — kiks) > 0. So the first term of this expression is positive
and the second term is negative. Therefore, the sign of this expression is identical
to

(dkalicsks — kaks) — ksy/20, 0, keka(kaks + kike)

x (i ka(keks — kike) + ksy/20, 0, Kok (kaks + Kike)
= d2k3(ksks — kika)? — 20, d,Koksk5? (ksks + k1K)
> —(du?k®(ksks + kikq)? — 2d,d,koks(Ksks + K1Ka) (3Ksks + kiKs))

— 20,0, kokak2(kks + kike) [From (A.6)]
= —dyks(ksks + kikg) (duks(ksks + Kiks) — 2d,ka(2ksks + kika))
> —0yks(ksks + kika) (dy Ko (ksks — Kika) — 2d, Ko (2ksks + kika))

[From (A.5)]

= 3dyd, koks(Ksks + KiKa) (kaks + kiks)
> 0. (A.11)

TherforedAmax/ ks is always positive and increasitkg always increases the pat-
tern appearance speed.

A.4. Varying k3. By simplecalculation we obtain

Imax _ Kika (2d, kokaks — ksy/2d,d, koks(ksks +kika)) (A12)
ks (dy — dy)ka(ksks + kiks)? . '

Fromd, > dy, thedenominator is positive. So the sign of this value is identical to

20, koksks — Ksv/20y0ykoKs(KsKs + K1ka). (A.13)
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The first term of this expression is positive and the second term is negative. So
the sign of this expression is identical to

(20, koksks — ksy/20,0, Koks(kaks + k1k4>)

x (20l kokaks + Koy/2dud koka(lksks + kaka) )
= 20, Kokzks(2d, koksks — dyks(Ksks 4 Kika))
> 20, kokaks (20, koksks — d ka(kaks — kiks)) [From (A.5)]
= 2d2kZksks (Ksks + kika)

> 0. (A.14)

ThereforedAmax/ 9Kz is always positive and increasitkg always increases the pat-
tern appearance speed.

A.5. Varying ks.

drmax  —2d,Kikoksks + kiks/2d,d, Koka(ksks + Kiks)

= A.15
ke (d, — 6u) (koks + keko)? (A15)
The denominator is positived, > d,), and the first term of the numerator is

negative and the second term is positive. So the sign of this expression is identical
to

(—2d kakoksks + kaksy/20, 0, koka (keks + kika)

x <2dvk1k2k3k5 + Kiksy/20yd, koks (Kaks + k1k4))
= 2d, k?kokaks(— 20, kokaks + dyKs(ksks + kiKs))
< 2d, k2koksks(—2d, koksks + dyko(Ksks — kika)) [From (A.5)]
= —2d2k?k3ksks(ksks + kiks) < O. (A.16)

Therefore dAmax/9K4 is always negative and increasikg always decreases the
pattern appearance speed.

A.6. Varying ks.

Ihmax _ (2d,k1kokska + dy (Ksks + k1ka)?) — (2kiKa + Ksks) /20y d,k2K3(Kaks + K1Ka)
dks (dy — du) (kaks + k1ks)? '

(A.17)
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We cannot determine easily the sign of this expression. For example, ¢khen
Ko, k3, K4, ks, dy, d,) = (0.5, 1.0, 0.9, 0.4, 0.9,0.01, 0.2), 9XAmax/dks=0.0476677
> 0. However, whenky, ko, k3, kg, ks, dy, d,) = (0.3, 0.4, 0.8, 0.1, 0.6, 0.02, 0.4),
dlmax/0ks = —0.148849 < 0. Both of the parameter sets satisfy the diffusion-
driven instability conditions.
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