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Abstract

Spontaneous pattern formation in reaction–diffusion systems on a spatially homogeneous domain has been well studied.
However, in embryonic development and elsewhere, pattern formation often takes place on a spatially heterogeneous background.
We explore the effects of spatially varying parameters on pattern formation in one and two dimensions using the Gierer–Meinhardt
reaction–diffusion model. We investigate the effect of the wavelength of a pre-pattern and demonstrate a novel form of moving
pattern. We find that spatially heterogeneous parameters can both increase the range and complexity of possible patterns and
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. Introduction

The behaviour of a wide range of nonlinear dynami-
al systems is characterised by the ability to form spon-
aneous stable spatial patterns from an initial unpat-
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terned state[8]. Significant progress has been m
in understanding the mechanisms that underlie
terning, and in determining the dependence of th
nal pattern on model parameters, initial and bou
ary conditions, and domain size and growth (see
example[18,7]). One class of model that has be
studied in detail is based on the Turing instability
reaction–diffusion systems[30]. Turing demonstrate
that a system of two or more mutually interacting
fusible chemicals (termed morphogens) can und
spontaneous spatial patterning within a specific re
of parameter space (the Turing space). Such Tu
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patterns have since been produced experimentally in
chemical systems (reviewed, for example, in[9,18]and
articles in[16]).

Typically, the analysis of pattern-forming models
is carried out assuming that both the initial conditions
and model parameters are homogeneous in space. In
the case of reaction–diffusion models, this yields, in
principle, a complete characterisation of the Turing
space (see, for example[21,22]). In reality, however,
pattern-forming mechanisms often operate in spatially
heterogeneous environments. In such cases it becomes
critical to understand the effects of the imposed spatial
heterogeneity on the ability of the mechanism to gen-
erate pattern, and on the form of the resulting pattern.

One specific instance in which spatial heterogeneity
is significant is in the emergence of pattern during em-
bryonic development, or morphogenesis[13]. Specifi-
cally, development proceeds in a hierarchical fashion,
with pattern being laid down in progressively finer de-
tail as the embryo ages and grows. At each stage of
this process, the biological patterning mechanisms op-
erate within a cellular environment that already bears
the imprint of earlier patterning events. This may be
manifested in differences both in the internal state of
cells, and in the environment external to the cells (for
example, the extracellular matrix). Given that cellular
and extracellular conditions can modulate the param-
eters and initial conditions of patterning mechanisms,
it seems clear that the possibility of spatially inhomo-
geneous parameters should be considered in models of
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patterns, or in novel propagating patterns. Finally, we
extend our study to a two-dimensional model to illus-
trate the wealth and complexity of patterns that can be
generated with a spatially varying parameter and dis-
cuss possible applications in biology. Patterning in two
dimensions is of great significance during embryonic
development, since many pattern-forming events (such
as the specification of neurons in the fly neuroectoderm
[6]) take place in epithelial sheets which have an (ap-
proximately) two-dimensional structure.

2. The dependence of spatial patterns on model
parameters

As a first step towards understanding the effects of
spatial inhomogeneity in model parameters, we need
to assess how each model parameter affects the form
of the final steady state pattern. For concreteness, we
focus on the two-component activator-inhibitor system
of reaction–diffusion equations introduced by Gierer
and Meinhardt[12]. In a non-dimensional form[26],
the model equations are

ut = r

(
1 + u2

v

)
− µu + Du∇2u,

vt = ru2 − νv + Dv∇2v, (1)

whereu(x, t) andv(x, t) denote, respectively, the acti-
vator and inhibitor concentrations at spatial positionx
a rs.
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In this paper, we investigate the effect of s

ially varying parameters in a two-component reacti
iffusion system. We study the well-characteri
ctivator-inhibitor model introduced by Gierer a
einhardt[12]. In a previous paper[26], we demon

trated that spatially varying parameters in this m
an lead to patterning outside of the Turing space
hat the patterns generated can be spatially restr

e now explore further the patterning capabilities
his model system with spatially varying paramet
n particular, we determine how the variation of d
erent parameters in the model equations affects
teady state patterns formed. Using the insight ga
e determine the effects on pattern formation of v

ng the spatial wavelengths of “pre-patterns” in
odel parameters. We show that spatial variatio
odel parameters can result either in complex st
nd timet. r, µ, ν, Du andDv are positive paramete
hese equations are solved on a specified spatia
ain with given boundary conditions (we assume z

ux). When the model parameters are within the Tu
pace, stable spatially patterned steady state solu
xist foru andv, in which localised peaks of activat
oncentration are separated by a characteristic sp
12].

In general, it is difficult to determine the effect
atterning of each model parameter analytically. F
tandard linear theory we know that the activator d
ion coefficientDu must be smaller than the inhibit
iffusion coefficientDv for diffusion-driven instability
o we assume thatDu is very much smaller than theDv

nd setDu = ε2 × Dv, whereε is a small paramete
nd we seek a solution of(1) for u andv in terms of a
eries expansion inε. However it is not possible to co
truct a regular series expansion which satisfies th
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ferential equations and both boundary conditions. We
thus consider an “outer expansion” which is regular and
satisfies the equations in most of the domain together
with “inner expansions” which match with the outer so-
lution and satisfy the equations in small boundary layer
regions of the domain. In these regions the coefficients
of the series solution are given in terms of a rescaled
spatial coordinate. This matched asymptotic analysis,
which is described for a one-dimensional system in
Appendix A, shows that whend ≡ Du/Dv is O(ε2), the

width of the activator peaks is proportional to the dif-
fusion wavelength of the activatorλu ≡ √

Du/µ. The
length-scale of the inhibitor pattern (which gives us an
idea of the spacing of the activator peaks) is of order
the diffusion wavelength of the inhibitorλv ≡ √

Dv/ν.
The heights of the activator peaks are proportional to
ξ = √

Dvν/Duµ.
Fig. 1shows the results of simulations of the Gierer–

Meinhardt model equations in one spatial dimension.
Fig. 1(a) shows the steady state activator profiles in two

F
0
µ

(
l
s

ig. 1. Steady state activator profiles in simulations of the Gierer–M
.001, r = 0.03 andν = 2.0. The dotted line corresponds to the solutio
= 1.0. In (b)r = 0.03, ν = 2.0, µ = 1.0 andd = 0.001 (dotted line)/d =

dotted line)/r = 0.01 (solid line). In (d)r = 0.03, µ = 1.0, d = 0.001 and
ibrary routine: D03PCF, number of discretization points=1001, tolerance=
tate in each case].
einhardt model equations. In all simulationsDv = 0.027. In (a)d =
n whenµ = 0.25 and the solid line corresponds to the solution when
0.004 (solid line). In (c)ν = 2.0, µ = 1.0, d = 0.001 andr = 0.04
ν = 4.0 (dotted line)/ν = 1.0 (solid line) [numerical solver—NAG
10E-07, initial conditions±10% noise around the uniform steady
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simulations with different values ofµ, the other pa-
rameters being held constant (parameter values given
in legend). As expected, quadrupling the value ofµ

roughly halves the height and width of the peaks and
does not change their separation. InFig. 1(b), two dif-
ferent values ofd or equivalentlyDu were used. Qua-
druplingDu roughly doubles the width and halves the
height of the peaks. InFig. 1(c) two values ofr were
used. The steady state activator profiles are almost iden-
tical (but the height of the inhibitor profile changes
roughly in direct proportion tor). In Fig. 1(d) two val-
ues ofν were used. We see that quadruplingν approx-
imately doubles the height and halves the separation
of the activator peaks, but has no discernible effect on
their width. These simulation results all agree with the
analytical expressions we have found for the widths,
heights and separations of the peaks.

In summary, the separation of the peaks is unaffected
by the values ofµ, r andd and is proportional toλv.
The width of the activator peaks is independent of the
values ofν, r andDv and proportional toλu and the
height of the peaks is independent ofr and proportional
to ξ = √

Dvν/Duµ.
The matched asymptotic analysis suggests that a

complex pattern of peaks of varying heights, widths or
separations could be produced in a reaction–diffusion
system in which one of the parameters was controlled
by another chemical species which was itself patterned,
for example by a different reaction–diffusion mecha-
nism. The form of the resulting complex pattern would
d con-
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5.0. We modulate each of these parameters, one at a
time, by a factor (1.0 + 0.5 × cosπx), so that the pa-
rameter decreases monotonically across the domain.

Fig. 2shows the effect of variation of each parame-
ter. InFig. 2(a),d is varied and, as expected, the steady
state pattern has activator peaks which are wider and
lower at highd. There is no detectable change in the
spacing of the peaks. InFig. 2(b),ν is varied and, again
as expected, the spacing of the peaks decreases and their
height increases asν is increased, while the width of the
peaks is approximately independent ofν. When either
µ or r is varied, as inFig. 2(c) and (d), respectively, a
steady state pattern is not formed but rather a travelling
wave of peaks is obtained. New peaks emerge at large
µ (or smallr) and disappear at smallµ (or larger). The
new peaks are created just inside the boundary (see for
example the nascent peak on the right ofFig. 2(d)) and
are annihilated just inside the opposite boundary. The
patterns att = 1000 are shown in the figures. The vari-
ation in forms of the peaks is not quite as expected for a
steady state pattern. The widths are approximately in-
dependent ofr, and the width and heights of the peaks
decrease withµ, as expected. However, in addition, the
heights of the peaks decrease withr and the peak sep-
arations vary with bothµ andr. These features are not
suggested by the perturbation analysis for the steady
state solutions. A full understanding of these phenom-
ena would require more detailed analysis.

Intuitively, the reason for the travelling peaks in the
systems with gradients inµ or r seems to be that the
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. Spatially varying parameters in one
imension

.1. Monotonically varying parameters

Now that we have some insight into the effects
ach of the parameters has on the final steady
attern, we look at the patterns produced when t
arameters are varied across the domain. We con
one-dimensional form of the model system(1) and

llow a single parameter to vary across the domai
] in such a way that the parameters are everyw
ithin the Turing space. We use base parameter
es Dv = 0.027, d = 0.01, ν = 20.0, µ = 10.0, r =
evel of the activator in the troughs of the pattern, wh
s given to leading order in our perturbation expans
y r/µ, varies across the domain. This leads to d
ion of the activator across the trough from the sid
hich it is higher to the side on which it is lower (i
own a gradient inr, or up a gradient inµ). Thus peak
ould be receiving activator on their upper sides

osing activator on their lower sides and hence mov
he gradient in trough activator level. Clearly, the sa
ffect would not occur for variations inν and in the dif-

usion coefficients. We are not aware that this me
f obtaining moving peaks has been demonstrate

he literature. Kramer et al.[17], do postulate that
ynamic pattern would result in a system in whic
arameter varied from within the Turing space at
entre of the domain to outside the Turing space
ifferent manner at each end. In addition, Vorone
l. [31], show the occurrence of travelling waves i
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Fig. 2. Late time activator profiles in simulations of the Gierer–Meinhardt model equations in which a parameter varies across the domain. The
values of the base parameters areDv = 0.027, ν = 20.0, µ = 10.0, r = 5.0 andd = 0.01. These base parameter values give rise to a pattern with
many peaks, so that we can easily see how varying a parameter across the domain modulates the pattern. The mode with the largest linear growth
rate is the 18π mode. The peaks are also fairly smooth, which makes accurate numerical simulation easier: (a)d = 0.01(1.0 + 0.5 cosπx);
(b) ν = 20.0(1.0 + 0.5 cosπx); (c) µ = 10.0(1.0 + 0.5 cosπx); (d) r = 5.0(1.0 + 0.5 cosπx). (a) and (b) show steady state activator profiles,
whilst in (c) and (d) a snapshot of the moving profiles is shown [numerical solver—NAG library routine: D03PCF, number of discretization
points=1001, tolerance=10E−07, initial conditions±10% noise around the uniform steady state of the system with the background parameters
in each case].

reaction–diffusion system with a spatially varying pa-
rameter, but here again the parameter varies between a
value within the Turing space and a value outside the
Turing space, crossing a Turing–Hopf bifurcation. In
contrast, in our simulations the parameters are within
the Turing space at all points in the domain and hence
if the parameter was constant at any of these values,
the system would give rise to a stable spatial pattern.

To explore these moving peaks further, we con-
sider matched asymptotic solutions for the full
Gierer–Meinhardt model with the time derivative (see

Appendix B). We find that we can transform the bound-
ary layer equation foru (which to leading order is ¯u0/ε)
to obtain Fisher’s equation (seeAppendix B):

wt′ = w(1 − w) + wX′X′ , (2)

where t′ = µt, X′ = √
µ/DvX and w =

1 − 3ū0/2upeak = 1 − rū0/µεv∗. Thus we might
expect travelling waves within the boundary layer in
w = 1 − 3ū0/2upeakeven in the system with constant
parameters (whereupeakis the value of ¯u0 at the peaks
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of the steady state pattern). It appears, however, that
the pattern is pinned in place because the peaks are
confined to the boundary layer (and must not disappear
entirely) and the positions of the boundary layers are
fixed by the symmetry of the equations. If we consider
the system with, for example,µ = µ(x), then the
transformationw = 1 − rū0/µεv∗ yields extra terms
due to the spatial derivatives ofµ. These, however,
are not present in the leading order equations, since
the variation inµ takes place on a spatial scale of
O(1) and thus is negligible across the boundary layer.
Thus the differential equations for the leading order
boundary expansions are the same as for the case
with constant parameters. The lack of symmetry (in
the matching conditions, albeit not to leading order)
seems to allow the boundary layer to move. Intuitively
it may be explained thus: the “pressure” for the lower
u-state to invade is greater on the side of the peak
on which the outer solution inu takes smaller value
and hence (in order to preserve the required thickness
of the boundary layer) the peaks move down the
gradient inµ (the outer solution value ofu is r/µ to
leading order). This analysis is merely suggestive; to
understand fully the phenomenon of moving peaks
and the significance of Fisher’s equation foru in the
boundary layer would require further analysis.

3.2. Spatially periodic parameters

The above simulations demonstrate that two-species
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that could be described well by this type of formal-
ism, we consider pattern formation during embryonic
development. The patterning of the embryo is natu-
rally hierarchical and most patterning events are likely
to take place in a heterogeneous environment. As we
have shown, heterogeneity in parameters of a reaction–
diffusion system extends the range and type of patterns
that can be produced. There is good experimental evi-
dence that the mobility of chemical species involved in
embryonic patterning can be modulated by the concen-
tration of others. For example, retinoic acid, which is
graded along the anterior–posterior axis of the develop-
ing chick limb bud, modulates the permeability of gap
junctions between cells and hence the effective diffu-
sion coefficients of morphogens which move through
the gap junctions[2,5]. There is also evidence that ele-
ments of the extracellular matrix (ECM) modulate the
diffusion of growth factors such as activin[29], which
are prime candidates for embryonic morphogens[25].
Thus spatial inhomogeneity in the structure of the ECM
could lead to spatially varying diffusion coefficients.
Other studies have shown how the stability of mor-
phogens is modulated spatially by specific receptors
expressed on the surface of cells (see, for example[3]).

To explore the influence of prior patterning events,
we investigate now the effect of the wavelength of a pe-
riodic pre-pattern in the activator diffusion coefficient
in the Gierer–Meinhardt model system. We use param-
eter valuesν = 20.0, µ = 10.0, r = 10.0, Dv = 0.027
andd = 0.01(1.0 + 0.5 cosnπx), wheren is an inte-
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e suggest that the spatial variation in a param
ould be due to a previous patterning process, suc
eaction–diffusion system in another chemical spe
hich then controls the decay, production or di
ion rate of one of the species in our system (a
1]). To give a specific example of the type of proc

1 Although, in most cases, simulations of reaction–diffusion
ems with constant parameters result in patterns of identical p
e note the interesting work of Doelman et al.[10] in which stable
atterns of spikes alternating between two different heights
btained in a simulation of an alternative version of the Gie
einhardt model.
er, which we vary. Whenn = 0 (i.e. when the pa
ameters of the system are spatially homogeneous
attern formed has approximately 23/2 peaks, eq
paced and of equal heights (the exact pattern
ends on the initial conditions). We look at the

ect on the pattern whenn � 23, whenn is a few
imes smaller than 23 and whenn > 23. We use thi
base” pattern because it has many peaks; simila
ults hold for other base patterns.Fig. 3 shows typ

cal steady state activator profiles.Fig. 4 shows the
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ig. 3.

We find that when the wavelength of the param
ariation is much larger than the natural wavelen
f the reaction–diffusion system, the pattern forme
oughly of the natural wavelength, but the amplitu
f the peaks are modulated by an envelope with
ame wavelength as that of the parameter variatio
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Fig. 3. Plot of the final steady state activator profiles in simulations of the Gierer–Meinhardt model equations with parametersDv =
0.027, ν = 20.0, µ = 10.0, r = 10.0 and withd varying sinusoidally in space. The wavelength of the pre-pattern ind is different in each field.
(a) d = 0.01(1.0 + 0.5 cos 2πx); (b) d = 0.01(1.0 + 0.5 cos 6πx); (c) d = 0.01(1.0 + 0.5 cos 12πx); (d) d = 0.01(1.0 + 0.5 cos 25πx); (e)
d = 0.01(1.0 + 0.5 cos 40πx) [numerical solver—NAG library routine: D03PCF, number of discretization points=1001, tolerance=10E−07,
initial conditions±10% noise around the uniform steady state of the system with the background parameters in each case].
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Fig. 4. Plots of the Fourier components (Aj) of the solutions shown inFig. 3against their mode-numbers.
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the solution inFig. 3(a), mode 23 and its harmonics
are present (as in the case with constant parameters),
but also mode 23± 2 and so on, which come from the
interaction of the natural modes of the system and the
parameter variation.

When the frequency of the parameter variation is
larger, the only modes which appear in the solution
are harmonics of the mode of the parameter variation.
In Fig. 3(b), the only modes present are the harmon-
ics of the 6π mode. The mode with largest amplitude
is the 24π mode. This mode is closest to the natural
wavelength of the reaction–diffusion system with con-
stant parameters. The Fourier modes alternate in sign

and give rise to a complex periodic pattern, whereas
for the constant parameter case, a simple periodic pat-
tern of identical peaks is produced, consisting of pos-
itive amplitudes of all the harmonics of mode 23. A
similar Fourier mode behaviour is seen inFig. 3(c) in
which a pattern of alternating high and narrow, and
low and wide peaks is formed, and inFig. 3(d) where
a pattern of identical peaks results.Fig. 3(e), like (a)
has a more complex Fourier mode structure, in which
mode 40 interacts with the harmonics of mode 23 to
give rise to modes such as mode 63. This again seems
to give rise to a mode 23 pattern modulated by an
envelope.

F
(
a

ig. 5. Some examples of animals with interesting skin patterns. (a) T
diagramatic representation); (b) the tail of the Gila monster has a pa
lso shows alternating thick and thin dark stripes; (d) the 13-lined gro
he head of the lizardC. fedtschenkoihas a pattern of large and small scales
ttern of alternating thick and thin dark stripes; (c) the skin of the Lionfish
und squirrel has a mixed pattern of spots and stripes.
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Fig. 6. Plot of the final steady state activator profiles in simulations of the Gierer–Meinhardt model equations on the domain [0, 2] × [0, 2], with
parametersDv = 0.27, ν = 20.0, r = 10.0, d = 0.01 andµ constant in (a) and varying sinusoidally in space in (b) and (c). (a)µ = 10.0; (b)
µ = 10.0(1.0 + 0.5 cos 2πx cos 2πy); (c) µ = 10.0(1.0 + 0.5 cos 3/2πx cos 3/2πy). Part (i) shows a greyscale plot of the solution and part
(ii) a mesh plot [numerical solver—alternating direction implicit (ADI) method, timestep=0.01, spatial discretization step=0.02].



K.M. Page et al. / Physica D 202 (2005) 95–115 105

Fig. 7. Plot of the final steady state activator profiles in simulations of the Gierer–Meinhardt model equations on the domain [0, 2] × [0, 2], with
parametersDv = 0.27, µ = 10.0, r = 10.0, d = 0.01 andν = 20.0(1.0 + 0.5 cos 2πx cos 2πy). Part (i) shows a greyscale plot of the solution
and part (ii) a mesh plot [numerical solver—ADI method, timestep=0.01, spatial discretization step=0.02].

4. Spatially varying parameters in two
dimensions

It is clear from the simulations in the previous sec-
tion that a spatially varying parameter can enhance the
complexity of patterns formed in a reaction–diffusion
system. We now explore the types of patterns that may
be produced with spatially varying parameters on a
two-dimensional domain. Such systems could be in-
volved in the patterning of embryonic epithelia, for ex-
ample in the patterning of animal coats and fish skins,
which are often characterised by complex spatial pat-
terns. In particular, the profile ofFig. 3(c) suggests that
it may be possible to obtain patterns of alternating large
and small spots resembling the scale patterns on the
head of the lizardCyrtodactylus fedtschenkoi(seeFig.
5(a)) or alternating wide and narrow stripes resembling
those on the tail of the Gila monster (seeFig. 5(b)).

If we assume that cells differentiate where the ac-
tivator concentration exceeds a certain threshold then
the size of the differentiated region is controlled by
the width of the activator peak. We have seen that this
width is controlled by the diffusion and decay rates of
the activator. Increasing the diffusion rate reduces the
height of the peaks as it increases their width, imply-
ing that only for low thresholds of cell response will
the wide, short peaks lead to larger patches of cell dif-
ferentiation. Decreasing the parameterµ (the decay
rate of the activator) increases both the height and the

width of the peaks, so that any threshold of response
below the height of the smaller peaks should lead to
a mixed pattern of large and small patches of differ-
entiation of significantly different sizes. Thus, in an
attempt to obtain a pattern of differently sized peaks
we varyµ across the domain.Fig. 6(a) shows a sim-
ulation of the Gierer–Meinhardt model equations(1)
with constant parameters on the two-dimensional do-
main [0, 2] × [0, 2].2 The parameter values are given
in the legend. InFig. 6(b) and (c), the details of the sim-
ulation are the same except thatµ is varied sinusoidally
in space (see legend for details). For each simulation
we show (i) a greyscale plot which shows what the dif-
ferentiated cell pattern might look like and (ii) a mesh
plot which shows the form of the peaks. We see indeed
that the largest peaks form at the minima ofµ and that
smaller peaks occur between these at medium values
of µ.

We find that it is possible to obtain a regular pattern
of large and small spots (cf.Fig. 5(a)) and we postulate
that, in a reaction–diffusion system that normally gives
rise to a pattern of stripes (e.g. one with cubic auto-
catalysis) a spatially varying parameter could give rise
to a pattern of thick and thin stripes, like the pattern on
the skin of the lionfish (seeFig. 5c)).

2 All two-dimensional simulations were performed using an alter-
nating direction implicit (ADI) method[28]. Central finite differ-
ences were used for the spatial discretization.
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The pattern shown inFig. 6(c) shows clusters of
peaks, consisting of a larger peak surrounded by sev-
eral smaller ones. This is similar to the pattern of hair
follicles formed in many mammalian species. Nagor-
cka[23,24]discusses the initiation of wool follicles in
sheep and proposes a complex model, in which the for-
mation of the first follicles modulates the domain and
diffusion coefficients of a reaction–diffusion system.
Our results suggest that a two-stage reaction–diffusion
system, in which a species involved in the first pattern-
ing step modulates a parameter of the second patterning
system, could provide an alternative explanation for the
initiation of follicle clusters.

For comparison withFig. 6, Fig. 7shows a greyscale
plot of the steady state activator concentration in a sim-
ulation in whichν (the decay rate of the inhibitor) was
varied sinusoidally with the same wavelength of vari-
ation as inFig. 6(b). We see here that the width of the
activator peaks is roughly constant throughout the do-
main, although the spacing is nonuniform. As inFig.
6, the peaks are located on a diagonal array.

5. Complex pattern formation on patchy
domains

The sinusoidally varying parameters studied in the
previous sections would be relevant in a system in
which, for example, the activator was degraded by an-
other chemical whose concentration was already spa-
t ss.
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can exert an influence on the form of the pattern and
can lead, for example, to the production of stripes in a
system where spots are normally produced. This sug-
gests that the differences in fish skin patterns between
species, for example, might not involve different chem-
ical kinetics, but could arise through different parame-
ter variation on the skin of the different species. We also
show that a mixture of stripes and spots can be formed
(as on the skin of the 13-lined squirrel, for example,
seeFig. 5(d)) and that other patterns such as target pat-
terns can be produced (as in the juvenilePomacanthus
imperator, seeFig. 10(a)).

Fig. 8, shows the late time3 activator profile in
simulations of the Gierer–Meinhardt model(1) with
parameters as given in the legend on the domain
[0, 2] × [0, 2], with zero flux boundary conditions. In
(a), µ is constant and the parameters are within the
Turing space, in (b),µ takes a stepfunction form with
the same value as (a) in the upper half of the domain.
The value in the lower half of the domain is outside
the Turing space. Ifµ = 2.0 across the whole domain,
then the parameters are outside the Turing space and
the activator concentration converges everywhere to its
homogeneous steady state value (the critical value of
µ is 2.04). We see from the figure that whenµ = 2.5
everywhere, a pattern of spots is produced. The pres-
ence of a patch ofµ = 2.0, with a straight boundary,
however, causes stripes to be produced instead in the
region whereµ = 2.5. The stripes also form in the re-
gion whereµ = 2.0, although their amplitude decays
a
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nother potential source of inhomogeneities in

eaction–diffusion system is that due to the patter
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eld. The states of differentiation of a cell are often
entially discrete and cells of the same type often re
ogether with sharp boundaries between different
ypes (due to differential cell adhesion—see, for
mple[14]). Thus, we explore now the case where
eterogeneities due to different cell types take the f
f distinct patches within the domain. We assume

he boundaries between these patches are sharp,
ng in parameter discontinuities across the bounda

As discussed in[26], a discontinuity in a paramet
an lead to patterns when the parameters are now
n the Turing space. The patterns formed in this c
re spatially restricted to the region around the dis

inuity. Here, we show that the geometry of the patc
-

way from the boundary.
The same phenomenon can occur when both pa

ave parameters within the Turing space (in this
he amplitudes do not decay away from the bou
ry). Fig. 9(a) shows an example of this in which t
oundary between the patches is along a diagonal
quare. This shows that the stripes align with the p
oundary rather than the sides of the square. Whe
arameter set in one patch is further from bifurca
further within the Turing space), it initiates spots
pite the existence of the discontinuity at the bound
hus, the pattern can vary from stripes to spots ac

he domain, seeFig. 9(b). A local region inside the do

3 Convergence to steady state is very slow and the time take
imulation is large, so we wait until theL2 norm of the change inu
n one time-step,t = 0.01, is less than the tolerance, which we se
e 0.001. This happens att = 192.61.
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Fig. 8. Plot of the almost steady state activator profiles in simulations of the Gierer–Meinhardt model equations on the domain [0, 2] × [0, 2], with
parametersDv = 0.27, ν = 100.0, r = 0.001 andd = 0.0035 and zero flux boundary conditions: (a)µ = 2.5; (b)µ = 2.5 fory > 1.0, µ = 2.0
for y < 1.0 [numerical solver—ADI method, timestep=0.01, spatial discretization step=0.02].

main in which a parameter value is different from that
in the rest of the domain can lead to a target pattern of
rings, similar to that on the skin of the marine fishP.
imperator, seeFig. 10(a). The local difference could
arise naturally due to the local expression of a gene.
We show an example of such a pattern inFig. 9(c), in
whichµ takes the value 2.5 on most of the domain, but
equals 2.0 on a small square patch in the centre. If the
region is at the edge of the domain (for example next
to the tail of a fish) then it could lead to a pattern of
nested semicircles, as seen onPomacanthus semicircu-
latus, seeFig. 10(b). The form of these patterns results
from the fact that pattern formation propagates from
the boundary of the parameter discontinuity (see[26]).
Finally, Fig. 9(d) shows a spatially restricted pattern
produced when the parameters are within the Turing
space (by which we mean the Turing space for a large
zero flux domain) only on a patch in the centre of the
domain.

Even if the patterns, such as those inFig. 9, con-
verge very slowly to a steady state, if the concentration
of activator surpasses some threshold for a sustained
period in a spatial region, this may be sufficient to
trigger differentiation. In general, the changes in pat-
tern which occur at late times tend to take the form
of small movements of a few pattern elements or the
appearance or disappearance of a pattern element. If
we consider that the cells differentiate after sufficient
exposure to super-threshold activator, then these rear-
rangements are likely to have only a minor effect on the
p

6. Discussion

The patterning of an embryo is naturally hierarchi-
cal. Consequently, most patterning processes take place
in an environment that is already spatially heteroge-
neous. At a very early stage the embryo already consists
of patches of different cell types and biologically active
chemicals are distributed nonuniformly. Turing origi-
nally proposed reaction–diffusion as a mechanism for
spontaneously generating patterns from random fluc-
tuations about a homogeneous background[30]. Much
subsequent work on reaction–diffusion patterning has
concentrated on systems with constant coefficients,
both because these systems are more mathematically
tractable (but still very challenging to solve) and be-
cause of the elegant appeal of the symmetry-breaking
process.

Much work has focused on pattern selection in non-
linear systems and reaction–diffusion has often been
criticised as a model for biological pattern formation
because the selection can be very sensitive to pertur-
bations. As illustrated by the results presented here,
pattern selection can be greatly influenced by spatial
variations in the parameters and so, in modelling bio-
logical systems, it may be more relevant to study this
more complex case. Attempts to demonstrate Turing
patterns in real chemical systems have led to some
work on reaction–diffusion systems with graded pa-
rameters, since the (quasi-two-dimensional gel) reac-
tors tend to be fed with different chemicals from two
o
attern.
 pposite boundaries (see, for example[4]). Much of
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Fig. 9. Plots of the activator profiles in simulations of the Gierer–Meinhardt model equations on the domain [0, 2] × [0, 2], with parameters
Dv = 0.27, ν = 100.0, r = 0.001 andd = 0.0035 and zero flux boundary conditions: (a)µ = 2.4 forx + y > 2.0 andµ = 2.1 forx + y ≤ 2.0;
(b)µ = 3.0 fory > 1.0 andµ = 2.5 fory ≤ 1.0, t = 300; (c)µ = 2.0 for 0.9 < x < 1.1 and 0.9 < y < 1.1 andµ = 2.5 elsewhere,t = 105.50;
(d)µ = 2.5 for 0.6 < x < 1.4 and 0.6 < y < 1.4 andµ = 1.5 elsewhere [numerical solver—ADI method, timestep=0.01, spatial discretization
step=0.02].

this theoretical work relates to the bifurcation struc-
tures of the reaction–diffusion systems. More recently,
however, periodic spatial forcing has been investigated
in a chemical reactor system and it has been shown[11]
that this can lead to more regular Turing patterns with
fewer defects in two dimensions. In this context, the
more complex patterning capabilities of two coupled
reaction–diffusion systems have also been investigated
[32].

Compared to the experimental chemical reactors,
the cellular environment of the embryo can be far more
complex and heterogeneous. Cells are nonuniform in
their type and density and can produce, sequester and

degrade biochemicals in a selective manner. Further-
more, the extracellular matrix may also be heteroge-
neous and contains factors which modulate the be-
haviours of putative morphogens[29]. As discussed
above, chemicals cannot only modulate the reactions
of other chemicals but can also alter their mobility and
stability.

In [26], we have shown that spatial variation of pa-
rameters in the Gierer–Meinhardt model can lead to
the production of patterns when the parameters are ev-
erywhere outside the Turing space and that the pat-
terns produced can be spatially restricted. In this pa-
per, we have explored in more detail the ways in
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Fig. 10. Pictures of the nested ring-like patterns on skin of the marine angelfish. (a)P. imperator; (b)P. semicirculatus.

which spatially inhomogeneous parameters contribute
to the generation of complex patterns. We have looked
at the ways in which the various parameters of the
Gierer–Meinhardt model system control different as-
pects of the pattern. The Gierer–Meinhardt model is
phenomenological, and so it is not clear that all of
the parameters would correspond to simple biophysical
quantities in a particular biological application. How-
ever, since the diffusion coefficients and decay rates
that we have varied are generic parameters it is likely
that their effects on the pattern would be qualitatively
similar for other model systems. Future work could re-
peat the analysis of this paper for more realistic mod-
els and consider the generality of the results. We con-
jecture that many features of the work would simply
generalise.

Working on a one-dimensional domain, we demon-
strated that a pre-pattern in a parameter can lead to a
complex pattern of peaks of variable sizes. For certain
ratios of pre-pattern wavelength to natural wavelength
of the system with constant parameters, we found that
the pre-pattern wavelength “fixed” the wavelength of
the final pattern, in the sense that only harmonics of the
pre-pattern were found in the final pattern (and the pat-
tern was different to that obtained with constant param-
eters). The pattern formed was independent of the noise
in the initial conditions, implying that a pre-pattern in
a parameter can enhance the robustness of pattern se-
lection. Thus instead of leading to even more complex

possibilities, hierarchical patterning can, in some cases,
be more reliable.

We also found that a spatially varying parameter
can result in the generation of peaks that move as a
wave across the domain. Movement of patterns due to
the modulation of a control parameter has been ob-
served before in other patterning systems, for exam-
ple in Rayleigh–Benard convection, see for example
[15,33]. Peaks that move as waves have also been seen
before in Turing systems where the parameter which is
varying in space crosses the Turing bifurcation[17,31].
Here, however, we show that travelling waves of pat-
tern can also occur in a system with a spatially varying
parameter, with values that are always within the Tur-
ing space. Indeed the patterns concerned have steep
“spiky” profiles, characteristic of a system which is far
from bifurcation in the highly nonlinear regime. Such
behaviour could have important implications for appli-
cations in biology. On the one hand, spatio-temporal
patterns of gene expression resembling those seen in
our simulations have been observed (during the for-
mation of somites, for example see[19]). On the other
hand, if small spatial variations in a parameter can cause
the peaks of a reaction–diffusion pattern to move, this
could cast doubt on the reliability of reaction–diffusion
systems as mechanisms for the production of stable
spatial patterns. Given that the behaviour of the system
will depend on many details such as parameter val-
ues and the form of spatial variations, this issue would
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require detailed investigation in any particular applica-
tion.

In two dimensions, we found that a sinusoidal pre-
pattern in a parameter could give rise to a pattern of
large and small spots, like that on the head of the lizard
C. fedtschenkoi. These spots can be arranged as a large
spot surrounded by several smaller ones, similar to the
arrangement of mammalian hair follicles. A hierarchi-
cal reaction–diffusion system can thus provide an al-
ternative model of follicle initiation to that proposed
by Nagorcka[23,24] and detailed above. We postu-
late that if the kinetics are such that the system with
constant parameters produces a striped pattern, then a
sinusoidally varying parameter could lead to a pattern
of thick and thin stripes, as seen on the skins of various
species. (For a chemotactic model which can give rise
to thick and thin stripes see[27].)

The geometry of the parameter patches in two di-
mensions can have a significant impact on the final
pattern formed. If the system with constant parameters
gives rise to a pattern of spots, then a straight patch
boundary can, nevertheless, trigger a pattern of stripes
or a mixed pattern of stripes and spots (for a discussion
of the problem of obtaining striped patterns see[20]).
A small parameter patch can lead to a target pattern or
pattern of nested semicircles, as seen on the skins of
fish of thePomacanthusfamily.

In summary, we have shown in this paper that spa-
tially varying parameters in reaction–diffusion systems
can greatly enhance the range of patterns available to
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Taiwan and Hokkaido University, Sapporo, for partial
support.

Appendix A. Matched asymptotic analysis of
the Gierer–Meinhardt system

To determine analytically the effect on patterning
of each parameter in the Gierer–Meinhardt model (Eq.
(1)) we assume thatDu is very much smaller thanDv

and setDu = ε2 × Dv, whereε is a small parameter.
In one spatial dimension, steady state solutions of Eq.
(1) satisfy the following equations and boundary con-
ditions:

r

(
1 + u2

v

)
− µu + ε2Dvuxx = 0,

ru2 − νv + Dvvxx = 0 forx ∈ (0, 1),

ux = 0 for x = 0, 1, vx = 0 for x = 0, 1.

(A.1)

In order to obtain a solution of these equations that is
O(1) on most of the domain, we must make the further
assumption thatr is small. This is often the case for
the (biologically plausible) parameters that are used in
numerical simulations, since large values ofr tend to
put the parameters out of the Turing space. We initially
assume thatr is O(ε) and setr = εα, whereα is O(1);
we later look for a solution whenr is O(1).
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system (many of which resemble complex patt
een in biology) whilst at the same time enhancing
obustness of pattern selection.
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We seek a solution of Eq.(A.1) for u andv in terms
f a series expansion inε. However it is not possible
onstruct a regular series expansion which satisfie
ifferential equations and both boundary conditio
e thus consider an “outer expansion” which is r

lar and satisfies the equations in most of the dom
ogether with “inner expansions” which match with
uter solution and satisfy the equations in small bou
ry layer regions of the domain. In these regions
oefficients of the series solution are given in term
rescaled spatial coordinate.
Considering first the outer expansion, we have

= u0(x) + εu1(x) + ε2u2(x) + · · · ,
= v0(x) + εv1(x) + ε2v2(x) + · · · , (A.2)

hereu0(x), u1(x), . . . andv0(x), v1(x), . . . are twice
ifferentiable functions ofx. Substituting into(A.1)and
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collecting terms of O(1), we find

u0 = 0, Dv(v0)xx − νv0 = 0. (A.3)

The latter equation implies

v0 = A cosh

(
x − x0

λv

)
, (A.4)

whereA andx0 are constants. From consideration of
terms of orderε we obtain4

u1 = α

µ
, v1 = 0. (A.5)

We now consider the inner solution at an arbitrary point
x1 in the domain. We re-scale the spatial coordinate
and consider a solutionu = ũ(X) andv = ṽ(X), where
X = (x − x1)/εβ for some positive exponentβ. We find
thatβ = 1 yields a solution of the form

ũ(X) = 1

ε
(ū0(X) + εū1(X) + · · ·),

ṽ(X) = v̄0(X) + εv̄1(X) + · · · . (A.6)

Substituting this into(A.1) and looking at the leading
order terms yields

α
ū0(X)2

v̄0(X)
− µū0(X) + Dv(ū0)XX = 0, (v̄0)XX = 0.

(A.7)

In order to match with the outer solution,
l th
t

v

w

g

α

T ply
t

u

s

Substituting the inner expansion into(A.1) and collect-
ing terms of order 1/ε in the inhibitor equation yields

Dv(v̄1)XX = −αū2
0. (A.11)

Now the change invx across the boundary layer is

�vx =
∫ x+

1

x−
1

vxx dx

=
∫ ∞

−∞
1

ε2
vXXε dX + smaller terms

=
∫ ∞

−∞
(v̄1)XX dX + smaller terms

×
∫ ∞

−∞
− α

Dv

ū2
0 dX + smaller terms. (A.12)

Substituting in our expression for ¯u0 from (A.10) and
integrating gives

�vx = −6µ3/2v2∗
αD

1/2
v

. (A.13)

We can thus completely determine the leading order
outer solution for the inhibitor if we know the location
o of
v nd-
a the
fi olu-
t of
t ndi-
t f
t dary
l Al-
t ined
f
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l

e
z

imX→±∞ v̄0(X) must be finite. Together wi
he second equation of(A.7) this implies

0̄(X) = v∗, (A.8)

herev∗ is a constant.
Substituting into the first equation of(A.7), this

ives

ū2
0

v∗
− µū0 + Dv(ū0)XX = 0. (A.9)

ogether with the matching conditions, which im
hatū0(X) tends to 0 asX → ±∞, this has solution

0̄(X) = 3
µv∗
2α

sech2
(√

µ

Dv

X

2

)
. (A.10)

4 While v1 satisfies an equation similar to that forv0, it can be
hown that the solution of this equation is actuallyv1 = 0.
f the boundary layers and if we know the value
∗ at the leftmost peak (this and the left hand bou
ry condition determine the solution to the left of
rst boundary layer and we use this to match the s
ion and its derivative with the solution to the right
he boundary layer). The right hand boundary co
ion will then determinev∗ if we know the positions o
he boundary layers. Thus the location of the boun
ayers is sufficient to fully determine the solution.
ernatively, we can use an integral condition (obta
rom the differential equation forv) to determinev∗. We
llustrate this for an example solution withn boundary
ayers atx = 1/2n, 3/2n, . . . , (2n − 1)/2n.

Integrating the second equation of(1) and using th
ero flux boundary conditions, we obtain

∫ 1

0
(ru2 − νv) dx = 0. (A.14)
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Now, with a boundary layer atx = 1/2n, the outer so-
lution for v has a leading order term given by

v =




A cosh

(
x

λv

)
, x ∈

[
0,

1

2n

]

B cosh

(
1/n − x

λv

)
, x ∈

[
1

2n
,

1

n

]
,

(A.15)

where A and B are constants satisfyingv∗ =
A cosh(1/2nλv) = B cosh(1/2nλv). Thus, to leading
order,

ν

∫ 1

0
v dx = 2nv∗

√
Dvν tanh

(
1

2nλv

)
. (A.16)

Now the leading order term in the outer expansion for
u is O(ε) and hence the contribution to

∫ 1
0 ru2 dx will

be O(ε3), whereas the inner expansion foru is O(1/ε),
the width of the boundary layer is at least O(ε) and
hence the contribution from the inner expansion will
be at least O(1). Thus, using the first equation of(A.6)
and Eq.(A.10), we obtain, to leading order,

∫ 1

0
ru2 dx = n

∫ ∞

−∞
9µ2v2∗

4r
sech4

(√
µ

Dv

X

2

)
ε dX = 9nµ2v2∗

2α

√
Dv

µ

∫ ∞

−∞
sech4y dy=9nµ2v2∗

2α

√
Dv

µ

4

3
. (A.17)

Thus, substituting(A.16) and (A.17)into (A.14), we
obtain

v∗ = rξ

3µ
tanh

(
1

2nλv

)
. (A.18)

We wish to compare our matched asymptotic solu-
tions to the numerical solution. Our analysis does not
allow us to determine the location of the boundary
layers. If, however, we know the location and height
of the leftmost inhibitor peak, we can calculate its
form and the height and the form of the activator
peak.Fig. A.1 shows the results of simulation of the
Gierer–Meinhardt model equations with parameters
Dv = 0.027, ν = 1.1, µ = 1.0, ε = 0.01 andr = 0.01
(i.e.α = 1.0) on the domain [0, 1] with zero flux bound-
ary conditions. The initial values ofu andv are ran-
dom perturbations about the homogeneous steady state
values. We find that the leftmost inhibitor peak is at
x ≈ 0.327 and has heightv∗ ≈ 0.3295. We use these
values in the leading order analytical outer solution for
the inhibitor concentration (using the inner solution to
give the condition on the change in the derivative across
the boundary layer and to show that the change in the
inhibitor concentration is zero to leading order).

F leading with the
n ary lay with the
n outine
i

ig. A.1. (a) Plot of the analytical (thick line) estimate of the
umerical solution (thin line). (b) Plot of the analytical bound
umerical solution (solid line) [numerical solver—Nag library r

nitial conditions±10% noise around the uniform steady state].
order outer solution to the inhibitor concentration compared
er solution (dotted line) of the activator equation compared

: D03PCF, number of discretization points=1001, tolerance=10E−07,
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The analytical solution shown inFig. A.1(a) to
the right of the (first) boundary layer is given by
0.3295 cosh((x − 0.327)/λv) − 0.3016 sinh((x −
0.327)/λv). When we match the solution instead
with its numerical value at its turning point, we
obtain the solution 0.3306 cosh((x − 0.327)/λv) −
0.2956 sinh((x − 0.327)/λv). In Fig. A.1(a), we show
the resulting analytical solution on the domain to the
left of the second boundary layer (thick line) compared
with the numerical solution (thin line). The solution
becomes inaccurate towards the second boundary
layer. This is due to a small error in the values used for
the matching conditions. Thus we see that a small dis-
crepancy in the coefficients of the cosh and sinh parts
of the solution (caused by a small error in the matching
values ofv∗ and�vx) is enough to lead to a significant
discrepancy in the solution far from the boundary layer.

To leading order, the activator concentration is zero
outside the boundary layer and has a very high peak in
the boundary layer. InFig. A.1(b), we show that there
is excellent agreement between the analytical form of
this solution (assuming the value ofv∗ obtained from
the numerical inhibitor solution) and the numerical so-
lution (solid line) on a small region of the domain that
includes the left-hand boundary layer.

Our analysis shows that whend ≡ Du/Dv is O(ε2),
the width of the activator peaks is proportional to the
diffusion wavelength of the activatorλu ≡ √

Du/µ.
The length-scale of the inhibitor pattern (which gives
us an idea of the spacing of the activator peaks) is of
t tor
λ ers
o
i ary
l

v

|

a nt
o the
l ry
l s-
s

and hence

v∗ ∼ A ∝ rξ

µ
. (A.22)

(This also agrees with the exact solution that we ob-
tain for a single boundary layer atx = 1/2, provided
that 1/λv is O(1), which is necessary for the single
boundary layer solution to be likely to arise in prac-
tice.) From(A.6) and (A.10)we see that this implies
that the heights of the activator peaks are proportional
to ξ = √

Dvν/Duµ.
We look now for a perturbation solution whenr is

O(1). We find that the Gierer–Meinhardt model equa-
tions without the constant term+r in the activator equa-
tion (see Eq.(1)), exhibit a symmetry under the trans-
formation r → kr, v → kv, u → u. Hence we expect
v ∝ r. We also find in simulations and in the above
perturbation analysis for smallr thatv is roughly pro-
portional tor in the full Gierer–Meinhardt model sys-
tem with the added constant term. This leads us to look
for an outer expansion in whichv is O(1/ε) whenr is
O(1), sincev was O(1) whenr was O(ε). The analysis
follows as before and we find an outer solution

u = u0 + εu1 + · · · , v = 1

ε
(v0 + εv1 + · · ·),

(A.23)

where

u

( )

u

a t a
b

v

w g
c the
b

v

he order of the diffusion wavelength of the inhibi
v ≡ √

Dv/ν. If we assume that the boundary lay
ccur at locationsxi, with spacingsx = xi+1 − xi sat-

sfying x ∼ λv, then on each side of each bound
ayer we have

∗ ∼ A, (A.19)

vx| ∼ A

λv

, (A.20)

nd hence�vx ∼ v∗/λv (since the sign of the gradie
f v changes in the boundary layer, we know that

eading order terms invx on either side of the bounda
ayer will contribute to�vx). Substituting the expre
ion for�vx from (A.11), we obtain

ν1/2

D
1/2
v

v∗ ∼ µ3/2v2∗d1/2

rD
1/2
v

, (A.21)
0 = r

µ
, v0 = A cosh

x − x0

λv

,

1 = r3

µ2A
sech

(
x − x0

λv

)
, v1 = r3

µ2ν
, (A.24)

ndA and x0 are constants. The inner solution a
oundary layer pointx1 is given by

= v∗ + · · · , u = 3µv∗
2r

sech2
(

x − x1

2λu

)
+ · · · ,

(A.25)

herev∗ is a constant of O(1/ε). To satisfy matchin
onditions with the outer solutions on either side of
oundary layer,

∗ = A

ε
cosh

(
x1 − x0

λv

)
. (A.26)
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We also obtain the same condition as before on the
discontinuity in the derivative ofv,

�vx = −6µ3/2εv2∗
rD

1/2
v

. (A.27)

The leading order forms (both inner and outer) of these
solutions are exactly the same as forr = O(ε) up to
the location of the boundary layers, provided that we
can still assume that the boundary layers occur at sep-
arations satisfyingx ∼ λv. Thus the conclusions that
we came to above about the dependence of the widths,
heights and separation of the parameters should still
hold for r = O(1).

Appendix B

We consider the cased = O(ε2), r = O(1), but
the analysis follows similarly forr = O(ε). We
look at the inner expansion in a boundary layer
around the pointx = x0 : u = (1/ε)ū((x − x0)/ε), v =
(1/ε)v̄((x − x0)/ε). To leading order,
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