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Abstract

Spontaneous pattern formation in reaction—diffusion systems on a spatially homogeneous domain has been well studied.
However, in embryonic development and elsewhere, pattern formation often takes place on a spatially heterogeneous background.
We explore the effects of spatially varying parameters on pattern formation in one and two dimensions using the Gierer—Meinhardt
reaction—diffusion model. We investigate the effect of the wavelength of a pre-pattern and demonstrate a novel form of moving
pattern. We find that spatially heterogeneous parameters can both increase the range and complexity of possible patterns anc
enhance the robustness of pattern selection.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction terned statd8]. Significant progress has been made

in understanding the mechanisms that underlie pat-

The behaviour of a wide range of nonlinear dynami- terning, and in determining the dependence of the fi-
cal systems is characterised by the ability to form spon- nal pattern on model parameters, initial and bound-
taneous stable spatial patterns from an initial unpat- ary conditions, and domain size and growth (see for
example[18,7]). One class of model that has been

* Corresponding author. Tel.: +44 20 7679 3683; studied in detail is based on the Turing instability in
fax: +44 20 7387 1397. reaction—diffusion systen{80]. Turing demonstrated
E-mail addressesk.page@cs.ucl.ac.uk (K.M. Page), that a system of two or more mutually interacting dif-
&ag“gnl\“/lf:gox-ac-“k(P-K- Maini), n.monk@sheffield.ac.uk fusible chemicals (termed morphogens) can undergo
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Sheffield, Regent Court, Sheffield S1 4DP, UK. of parameter space (the Turing space). Such Turing
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patterns have since been produced experimentally in patterns, or in novel propagating patterns. Finally, we
chemical systems (reviewed, for examplg9ri8]and extend our study to a two-dimensional model to illus-
articles in[16]). trate the wealth and complexity of patterns that can be

Typically, the analysis of pattern-forming models generated with a spatially varying parameter and dis-
is carried out assuming that both the initial conditions cuss possible applications in biology. Patterning in two
and model parameters are homogeneous in space. Indimensions is of great significance during embryonic
the case of reaction—diffusion models, this yields, in development, since many pattern-forming events (such
principle, a complete characterisation of the Turing as the specification of neurons in the fly neuroectoderm
space (see, for examp]21,22). In reality, however, [6]) take place in epithelial sheets which have an (ap-
pattern-forming mechanisms often operate in spatially proximately) two-dimensional structure.
heterogeneous environments. In such cases it becomes
critical to understand the effects of the imposed spatial
heterogeneity on the ability of the mechanism to gen- 2. The dependence of spatial patterns on model
erate pattern, and on the form of the resulting pattern. parameters

One specific instance in which spatial heterogeneity
is significant is in the emergence of pattern duringem-  As a first step towards understanding the effects of
bryonic development, or morphogenedi8]. Specifi- spatial inhomogeneity in model parameters, we need
cally, development proceeds in a hierarchical fashion, to assess how each model parameter affects the form
with pattern being laid down in progressively finer de- of the final steady state pattern. For concreteness, we
tail as the embryo ages and grows. At each stage of focus on the two-component activator-inhibitor system
this process, the biological patterning mechanisms op- of reaction—diffusion equations introduced by Gierer
erate within a cellular environment that already bears and Meinhard{12]. In a non-dimensional forrf26],
the imprint of earlier patterning events. This may be the model equations are
manifested in differences both in the internal state of 2
cells, and in the environment external to the cells (for ,, — (1_|_ u ) — ju + D, V2u,
example, the extracellular matrix). Given that cellular
and extraqe!lglar con_d.mons can moQuIate the param- .2 _ 4 DV, 1)
eters and initial conditions of patterning mechanisms,
it seems clear that the possibility of spatially inhomo- whereu(x, ) andv(x, r) denote, respectively, the acti-
geneous parameters should be considered in models ofvator and inhibitor concentrations at spatial position
such mechanisms. and timet. r, 4, v, D, and D, are positive parameters.

In this paper, we investigate the effect of spa- These equations are solved on a specified spatial do-
tially varying parametersin atwo-componentreaction— main with given boundary conditions (we assume zero
diffusion system. We study the well-characterised flux). Whenthe model parameters are within the Turing
activator-inhibitor model introduced by Gierer and space, stable spatially patterned steady state solutions
Meinhardt[12]. In a previous papd6], we demon- exist foru andv, in which localised peaks of activator
strated that spatially varying parameters in this model concentration are separated by a characteristic spacing
can lead to patterning outside of the Turing space and [12].
that the patterns generated can be spatially restricted. In general, it is difficult to determine the effect on
We now explore further the patterning capabilities of patterning of each model parameter analytically. From
this model system with spatially varying parameters. standard linear theory we know that the activator diffu-
In particular, we determine how the variation of dif- sion coefficientD, must be smaller than the inhibitor
ferent parameters in the model equations affects the diffusion coefficientD, for diffusion-driven instability,
steady state patterns formed. Using the insight gained, so we assume thd, is very much smaller than the,
we determine the effects on pattern formation of vary- and setD, = €2 x D,, wheree is a small parameter,
ing the spatial wavelengths of “pre-patterns” in the and we seek a solution ¢f) for u andv in terms of a
model parameters. We show that spatial variation in series expansion in However it is not possible to con-
model parameters can result either in complex stable struct a regular series expansion which satisfies the dif-
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ferential equations and both boundary conditions. We width of the activator peaks is proportional to the dif-
thus consider an “outer expansion” which s regular and fusion wavelength of the activatay, = /D, /u. The
satisfies the equations in most of the domain together length-scale of the inhibitor pattern (which gives us an
with “inner expansions” which match with the outer so- idea of the spacing of the activator peaks) is of order
lution and satisfy the equations in small boundary layer the diffusion wavelength of the inhibitay, = /D, /v.
regions of the domain. In these regions the coefficients The heights of the activator peaks are proportional to
of the series solution are given in terms of a rescaled & = /D,v/D, ..

spatial coordinate. This matched asymptotic analysis, Fig. 1shows the results of simulations of the Gierer—
which is described for a one-dimensional system in Meinhardt model equations in one spatial dimension.
Appendix A shows thatwhed = D, /D, is O(?), the Fig. 1(a) shows the steady state activator profiles in two
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Fig. 1. Steady state activator profiles in simulations of the Gierer—Meinhardt model equations. In all simulgtier&027. In (a)d =
0.001, r = 0.03 andv = 2.0. The dotted line corresponds to the solution whes 0.25 and the solid line corresponds to the solution when
uw=10.In(b)r =0.03,v=2.0, x = 1.0 andd = 0.001 (dotted line)d = 0.004 (solid line). In (cp = 2.0, » = 1.0,d = 0.001 and- = 0.04
(dotted line)t = 0.01 (solid line). In (dy = 0.03, x = 1.0, d = 0.001 andv = 4.0 (dotted line)h = 1.0 (solid line) [numerical solver—NAG
library routine: DO3PCF, number of discretization poial01, tolerance10E-07, initial conditions10% noise around the uniform steady
state in each case].



98 K.M. Page et al. / Physica D 202 (2005) 95-115

simulations with different values qf, the other pa- 5.0. We modulate each of these parameters, one at a
rameters being held constant (parameter values giventime, by a factor (10 + 0.5 x cosnx), so that the pa-

in legend). As expected, quadrupling the valueuof = rameter decreases monotonically across the domain.
roughly halves the height and width of the peaks and  Fig. 2shows the effect of variation of each parame-
does not change their separationFig. 1(b), two dif- ter. InFig. 2a),d is varied and, as expected, the steady
ferent values ofl or equivalentlyD, were used. Qua-  state pattern has activator peaks which are wider and
drupling D,, roughly doubles the width and halves the lower at highd. There is no detectable change in the
height of the peaks. Ifig. 1(c) two values ofr were spacing of the peaks. Fig. 2(b), v is varied and, again
used. The steady state activator profiles are almostiden-as expected, the spacing of the peaks decreases and their
tical (but the height of the inhibitor profile changes heightincreases ass increased, while the width of the
roughly in direct proportion to). In Fig. 1(d) two val- peaks is approximately independentofVhen either

ues ofv were used. We see that quadruplingpprox- W orr is varied, as irFig. 2(c) and (d), respectively, a
imately doubles the height and halves the separation steady state pattern is not formed but rather a travelling
of the activator peaks, but has no discernible effect on wave of peaks is obtained. New peaks emerge at large
their width. These simulation results all agree with the u (or smallr) and disappear at small(or larger). The
analytical expressions we have found for the widths, new peaks are created just inside the boundary (see for

heights and separations of the peaks. example the nascent peak on the righfif. 2(d)) and
Insummary, the separation of the peaks is unaffected are annihilated just inside the opposite boundary. The
by the values ofx, r andd and is proportional ta.,. patterns at = 1000 are shown in the figures. The vari-

The width of the activator peaks is independent of the ation in forms of the peaks is not quite as expected for a
values ofv, r and D, and proportional td., and the steady state pattern. The widths are approximately in-
height of the peaks is independent aind proportional dependent of, and the width and heights of the peaks
to& =./Dyw/D,p. decrease with, as expected. However, in addition, the
The matched asymptotic analysis suggests that aheights of the peaks decrease withnd the peak sep-
complex pattern of peaks of varying heights, widths or arations vary with botlx andr. These features are not
separations could be produced in a reaction—diffusion suggested by the perturbation analysis for the steady
system in which one of the parameters was controlled state solutions. A full understanding of these phenom-
by another chemical species which was itself patterned, ena would require more detailed analysis.
for example by a different reaction—diffusion mecha- Intuitively, the reason for the travelling peaks in the
nism. The form of the resulting complex pattern would systems with gradients in or r seems to be that the
depend on which parameter was modulated by the con-level of the activator in the troughs of the pattern, which
trol species. is given to leading order in our perturbation expansions
by r/u, varies across the domain. This leads to diffu-
sion of the activator across the trough from the side on

3. Spatially varying parameters in one which it is higher to the side on which it is lower (i.e.

dimension down a gradientim, or up a gradientim). Thus peaks
would be receiving activator on their upper sides and

3.1. Monotonically varying parameters losing activator on their lower sides and hence move up

the gradient in trough activator level. Clearly, the same
Now that we have some insight into the effects that effect would not occur for variations inand in the dif-

each of the parameters has on the final steady statefusion coefficients. We are not aware that this method
pattern, we look at the patterns produced when theseof obtaining moving peaks has been demonstrated in
parameters are varied across the domain. We considetthe literature. Kramer et a[17], do postulate that a
a one-dimensional form of the model systéh) and dynamic pattern would result in a system in which a
allow a single parameter to vary across the domain [0, parameter varied from within the Turing space at the
1] in such a way that the parameters are everywhere centre of the domain to outside the Turing space in a
within the Turing space. We use base parameter val- different manner at each end. In addition, Voroney et
ues D, =0.027,d =0.01, v =200, x = 10.0,r = al. [31], show the occurrence of travelling waves in a
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Fig. 2. Late time activator profiles in simulations of the Gierer—Meinhardt model equations in which a parameter varies across the domain. The
values of the base parameters Bre= 0.027, v = 20.0, u = 10.0, » = 5.0 andd = 0.01. These base parameter values give rise to a pattern with

many peaks, so that we can easily see how varying a parameter across the domain modulates the pattern. The mode with the largest linear growtt
rate is the 18 mode. The peaks are also fairly smooth, which makes accurate numerical simulation eagies:q&1(10 + 0.5 cosnx);

(b) v = 20.0(1.0 + 0.5 cosmx); (c) « = 10.0(2.0 + 0.5 cosnx); (d) r = 5.0(L0 + 0.5 cosxx). (a) and (b) show steady state activator profiles,

whilst in (c) and (d) a snapshot of the moving profiles is shown [numerical solver—NAG library routine: DO3PCF, number of discretization
points=1001, tolerance 10E-07, initial conditionst10% noise around the uniform steady state of the system with the background parameters

in each case].

reaction—diffusion system with a spatially varying pa- Appendix B. We find that we can transform the bound-

rameter, but here again the parameter varies between aary layer equation fan (which to leading order igg/¢)

value within the Turing space and a value outside the to obtain Fisher’s equation (sé@pendix B):

Turing space, crossing a Turing—Hopf bifurcation. In

contrast, in our simulations the parameters are within wy = w(l — w) + wy x’, (2

the Turing space at all points in the domain and hence

if the parameter was constant at any of these values,where ¢ = ut, X' = /u/Dy X and w=

the system would give rise to a stable spatial pattern. 1 — 3ug/2upeak= 1 — rug/pevs. Thus we might
To explore these moving peaks further, we con- expect travelling waves within the boundary layer in

sider matched asymptotic solutions for the full w = 1— 3ug/2upeakeven in the system with constant

Gierer—-Meinhardt model with the time derivative (see parameters (Whengeakis the value of:g at the peaks
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of the steady state pattern). It appears, however, thatthat could be described well by this type of formal-
the pattern is pinned in place because the peaks areism, we consider pattern formation during embryonic
confined to the boundary layer (and must not disappear development. The patterning of the embryo is natu-
entirely) and the positions of the boundary layers are rally hierarchical and most patterning events are likely
fixed by the symmetry of the equations. If we consider to take place in a heterogeneous environment. As we
the system with, for exampley = u(x), then the have shown, heterogeneity in parameters of a reaction—
transformationw = 1 — rug/uev, yields extra terms  diffusion system extends the range and type of patterns
due to the spatial derivatives @f. These, however, that can be produced. There is good experimental evi-
are not present in the leading order equations, since dence that the mobility of chemical species involved in
the variation iny takes place on a spatial scale of embryonic patterning can be modulated by the concen-
0O(1) and thus is negligible across the boundary layer. tration of others. For example, retinoic acid, which is
Thus the differential equations for the leading order graded alongthe anterior—posterior axis of the develop-
boundary expansions are the same as for the casdang chick limb bud, modulates the permeability of gap
with constant parameters. The lack of symmetry (in junctions between cells and hence the effective diffu-
the matching conditions, albeit not to leading order) sion coefficients of morphogens which move through
seems to allow the boundary layer to move. Intuitively the gap junctionf2,5]. There is also evidence that ele-

it may be explained thus: the “pressure” for the lower ments of the extracellular matrix (ECM) modulate the
u-state to invade is greater on the side of the peak diffusion of growth factors such as actiid9], which

on which the outer solution i takes smaller value  are prime candidates for embryonic morphog@4s.

and hence (in order to preserve the required thickness Thus spatial inhomogeneity in the structure of the ECM
of the boundary layer) the peaks move down the could lead to spatially varying diffusion coefficients.
gradient inu (the outer solution value af is r/u to Other studies have shown how the stability of mor-
leading order). This analysis is merely suggestive; to phogens is modulated spatially by specific receptors
understand fully the phenomenon of moving peaks expressed on the surface of cells (see, for exafBp)e

and the significance of Fisher’s equation fom the To explore the influence of prior patterning events,

boundary layer would require further analysis. we investigate now the effect of the wavelength of a pe-
riodic pre-pattern in the activator diffusion coefficient

3.2. Spatially periodic parameters in the Gierer—Meinhardt model system. We use param-

etervalues = 20.0, « = 10.0, r = 10.0, D, = 0.027
andd = 0.01(10 + 0.5 cosnmx), wheren is an inte-
0ger, which we vary. Whem = 0 (i.e. when the pa-
rameters of the system are spatially homogeneous) the
pattern formed has approximately 23/2 peaks, equally
spaced and of equal heights (the exact pattern de-
pends on the initial conditions). We look at the ef-

The above simulations demonstrate that two-species
reaction—diffusion systems with spatially varying pa-
rameters can lead to complex steady state patterns an
travelling waves of peaks. The stable patterns consist of
peaks of variable width, height and separation, unlike
the straightforward periodic patterns that are familiarin
reaction—diffusion systems with constant parameters. fect on the pattern when < 23, whenn is a few

We suggest that the _spat|a| var|§t|on In & parameter times smaller than 23 and when> 23. We use this

could be due to a previous patterning process, such as 8pase” b it h ks- simil

reaction—diffusion system in another chemical species ase’ pattern because it has many peaxs; similar re-
" sults hold for other base patterri§g. 3 shows typ-

which then controls the decay, production or diffu- . . o
. ] . ical steady state activator profileBig. 4 shows the
sion rate of one of the species in our system (as in . X . .
. o Fourier components of the steady state profiles given in
[1]). To give a specific example of the type of process Fig. 3.
We find that when the wavelength of the parameter
1 Although, in most cases, simulations of reaction—diffusion sys- yagriation is much larger than the natural wavelength
tems with constant parameters result in patterns of identical peaks, of the reaction—diffusion system, the pattern formed is
we note the interesting work of Doelman et[dl0] in which stable hiv of th t | | t,h but th litud
patterns of spikes alternating between two different heights were roughly of the natural waveliength, but the amp I_ uaes
obtained in a simulation of an alternative version of the Gierer— Of the peaks are modulated by an envelope _WVFh the
Meinhardt model. same wavelength as that of the parameter variation. In
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Fig. 3. Plot of the final steady state activator profiles in simulations of the Gierer—Meinhardt model equations with parBgeters
0.027, v = 20.0, » = 10.0, r = 10.0 and withd varying sinusoidally in space. The wavelength of the pre-pattedisrdifferent in each field.
(@)d = 0.01(10+ 0.5 cos Zrx); (b) d = 0.01(1L0+ 0.5 cos 6rx); (c) d = 0.01(L0+ 0.5 cos 1Zrx); (d) d = 0.01(10 + 0.5 cos 2xx); (e)

d = 0.01(10+ 0.5 cos 46rx) [numerical solver—NAG library routine: DO3PCF, number of discretization peih@1, tolerance 10E-07,
initial conditions+10% noise around the uniform steady state of the system with the background parameters in each case].
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Fig. 4. Plots of the Fourier components$;{ of the solutions shown ifig. 3against their mode-numbers.
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the solution inFig. 3a), mode 23 and its harmonics

103

and give rise to a complex periodic pattern, whereas

are present (as in the case with constant parameters)for the constant parameter case, a simple periodic pat-

but also mode 23- 2 and so on, which come from the

tern of identical peaks is produced, consisting of pos-

interaction of the natural modes of the system and the itive amplitudes of all the harmonics of mode 23. A

parameter variation.
When the frequency of the parameter variation is
larger, the only modes which appear in the solution

are harmonics of the mode of the parameter variation.

In Fig. 3(b), the only modes present are the harmon-
ics of the 6r mode. The mode with largest amplitude
is the 24r mode. This mode is closest to the natural
wavelength of the reaction—diffusion system with con-

similar Fourier mode behaviour is seenfig. 3(c) in
which a pattern of alternating high and narrow, and
low and wide peaks is formed, andkig. 3(d) where
a pattern of identical peaks resulEg. 3e), like (a)
has a more complex Fourier mode structure, in which
mode 40 interacts with the harmonics of mode 23 to
give rise to modes such as mode 63. This again seems
to give rise to a mode 23 pattern modulated by an

stant parameters. The Fourier modes alternate in signenvelope.

Fig. 5. Some examples of animals with interesting skin patterns. (a) The head of th€liZaddschenkdias a pattern of large and small scales

(diagramatic representation); (b) the tail of the Gila monster has a pattern of alternating thick and thin dark stripes; (c) the skin of the Lionfish

also shows alternating thick and thin dark stripes; (d) the 13-lined ground squirrel has a mixed pattern of spots and stripes.
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@ °° X o 20

Fig. 6. Plot of the final steady state activator profiles in simulations of the Gierer—Meinhardt model equations on the d@naifo[®], with
parameterd, = 0.27, v = 20.0, r = 10.0, d = 0.01 andu constant in (a) and varying sinusoidally in space in (b) and (c)u (&) 10.0; (b)

© =10.0(1.0+ 0.5 cos Zrx cos 2ry); (c) u = 10.0(L0+ 0.5 cos J2rx cos F2ry). Part (i) shows a greyscale plot of the solution and part
(ii) a mesh plot [numerical solver—alternating direction implicit (ADI) method, timest&p1, spatial discretization ste.02].
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0.0 X == 50

Fig. 7. Plot of the final steady state activator profiles in simulations of the Gierer—Meinhardt model equations on the d@naifo[®], with
parameter®, = 0.27, u = 10.0, r = 10.0, d = 0.01 andv = 20.0(1.0 + 0.5 cos 2Zrx cos 2ry). Part (i) shows a greyscale plot of the solution
and part (ii) a mesh plot [numerical solver—ADI method, timest@®1, spatial discretization stef.02].

4. Spatially varying parameters in two width of the peaks, so that any threshold of response
dimensions below the height of the smaller peaks should lead to
a mixed pattern of large and small patches of differ-
It is clear from the simulations in the previous sec- entiation of significantly different sizes. Thus, in an
tion that a spatially varying parameter can enhance the attempt to obtain a pattern of differently sized peaks
complexity of patterns formed in a reaction—diffusion we vary u across the domairkig. 6(@) shows a sim-
system. We now explore the types of patterns that may ulation of the Gierer—Meinhardt model equatiqii3
be produced with spatially varying parameters on a with constant parameters on the two-dimensional do-
two-dimensional domain. Such systems could be in- main [0, 2] x [0, 2].2 The parameter values are given
volved in the patterning of embryonic epithelia, for ex- inthe legend. Iiirig. 6(b) and (c), the details of the sim-
ample in the patterning of animal coats and fish skins, ulation are the same except thait varied sinusoidally
which are often characterised by complex spatial pat- in space (see legend for details). For each simulation
terns. In particular, the profile &fig. 3(c) suggests that  we show (i) a greyscale plot which shows what the dif-
it may be possible to obtain patterns of alternating large ferentiated cell pattern might look like and (ii) a mesh
and small spots resembling the scale patterns on theplot which shows the form of the peaks. We see indeed

head of the lizar€Cyrtodactylus fedtschenk(seeFig. that the largest peaks form at the minimaucénd that
5(a)) or alternating wide and narrow stripes resembling smaller peaks occur between these at medium values
those on the tail of the Gila monster (deig. 5(b)). of w.

If we assume that cells differentiate where the ac-  We find that it is possible to obtain a regular pattern
tivator concentration exceeds a certain threshold then of large and small spots (dfig. 5@)) and we postulate
the size of the differentiated region is controlled by that, in a reaction—diffusion system that normally gives
the width of the activator peak. We have seen that this rise to a pattern of stripes (e.g. one with cubic auto-
width is controlled by the diffusion and decay rates of catalysis) a spatially varying parameter could give rise
the activator. Increasing the diffusion rate reduces the to a pattern of thick and thin stripes, like the pattern on
height of the peaks as it increases their width, imply- the skin of the lionfish (seEig. 5¢)).
ing that only for low thresholds of cell response will
the wide, short peaks lead to larger patches of cell dif- * 2 All two-dimensional simulations were performed using an alter-

ferentiation. Decreasling the pafametel(th? decay nating direction implicit (ADI) method28]. Central finite differ-
rate of the activator) increases both the height and the ences were used for the spatial discretization.
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The pattern shown irfrig. 6(c) shows clusters of can exert an influence on the form of the pattern and
peaks, consisting of a larger peak surrounded by sev-can lead, for example, to the production of stripes in a
eral smaller ones. This is similar to the pattern of hair system where spots are normally produced. This sug-
follicles formed in many mammalian species. Nagor- gests that the differences in fish skin patterns between
cka[23,24]discusses the initiation of wool follicles in  species, for example, might not involve different chem-
sheep and proposes a complex model, in which the for- ical kinetics, but could arise through different parame-
mation of the first follicles modulates the domain and ter variation on the skin of the different species. We also
diffusion coefficients of a reaction—diffusion system. show that a mixture of stripes and spots can be formed
Our results suggest that a two-stage reaction—diffusion (as on the skin of the 13-lined squirrel, for example,
system, in which a species involved in the first pattern- seeFig. 5d)) and that other patterns such as target pat-
ing step modulates a parameter of the second patterningterns can be produced (as in the juveitenacanthus
system, could provide an alternative explanation for the imperator, seeFig. 10a)).
initiation of follicle clusters. Fig. 8 shows the late tinfeactivator profile in

For comparison witlrig. 6, Fig. 7shows agreyscale  simulations of the Gierer—Meinhardt modgl) with
plot of the steady state activator concentration in a sim- parameters as given in the legend on the domain
ulation in whichv (the decay rate of the inhibitor) was [0, 2] x [0, 2], with zero flux boundary conditions. In
varied sinusoidally with the same wavelength of vari- (a), 1 is constant and the parameters are within the
ation as inFig. 6b). We see here that the width of the Turing space, in (b)y takes a stepfunction form with
activator peaks is roughly constant throughout the do- the same value as (a) in the upper half of the domain.
main, although the spacing is nonuniform. AsHigy. The value in the lower half of the domain is outside
6, the peaks are located on a diagonal array. the Turing space. Ift = 2.0 across the whole domain,

then the parameters are outside the Turing space and

the activator concentration converges everywhere to its
5. Complex pattern formation on patchy homogeneous steady state value (the critical value of
domains wu is 2.04). We see from the figure that when= 2.5

everywhere, a pattern of spots is produced. The pres-

The sinusoidally varying parameters studied in the ence of a patch oft = 2.0, with a straight boundary,
previous sections would be relevant in a system in however, causes stripes to be produced instead in the
which, for example, the activator was degraded by an- region whereu = 2.5. The stripes also form in the re-
other chemical whose concentration was already spa-gion wherey = 2.0, although their amplitude decays
tially varying due to a previous patterning process. away from the boundary.

Another potential source of inhomogeneities in the The same phenomenon can occur when both patches
reaction—diffusion system is that due to the pattern of have parameters within the Turing space (in this case
differentiation of cells already presentin the embryonic the amplitudes do not decay away from the bound-
field. The states of differentiation of a cell are often es- ary). Fig. 9(a) shows an example of this in which the
sentially discrete and cells of the same type often reside boundary between the patches is along a diagonal of the
together with sharp boundaries between different cell square. This shows that the stripes align with the patch
types (due to differential cell adhesion—see, for ex- boundary rather than the sides of the square. When the
ample[14]). Thus, we explore now the case where the parameter set in one patch is further from bifurcation
heterogeneities due to different cell types take the form (further within the Turing space), it initiates spots de-
of distinct patches within the domain. We assume that spite the existence of the discontinuity at the boundary.
the boundaries between these patches are sharp, resultfhus, the pattern can vary from stripes to spots across
ing in parameter discontinuities across the boundaries. the domain, seEig. 9b). A local region inside the do-

As discussed ifi26], a discontinuity in a parameter
can lead to patterns when the parameters are nowhere——— _ _

. . . . Convergence to steady state is very slow and the time taken for
in the Tgrlng spa_ce. The patterr_15 formed in thIS_ Case simulation is large, so we wait until thle; norm of the change in

are spatially restricted to the region around the discon- i, gne time-step, = 0.01, is less than the tolerance, which we set to
tinuity. Here, we show that the geometry of the patches be 0.001. This happens =& 19261.
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2.0

0.0 (b) X - 2.0

Fig. 8. Plotof the almost steady state activator profiles in simulations of the Gierer—Meinhardt model equations on the d@ha[f [@], with
parameter®, = 0.27, v = 1000, r = 0.001 and/ = 0.0035 and zero flux boundary conditions: (a}= 2.5; (b)u = 2.5fory > 1.0, u = 2.0
for y < 1.0 [numerical solver—ADI method, timestef0.01, spatial discretization ste.02].

main in which a parameter value is different from that 6. Discussion
in the rest of the domain can lead to a target pattern of
rings, similar to that on the skin of the marine fiBh The patterning of an embryo is naturally hierarchi-
imperator, seeFig. 1(0(a). The local difference could cal. Consequently, most patterning processes take place
arise naturally due to the local expression of a gene. in an environment that is already spatially heteroge-
We show an example of such a patterrig. 9(c), in neous. Atavery early stage the embryo already consists
which i takes the value 2.5 on most of the domain, but of patches of different cell types and biologically active
equals 2.0 on a small square patch in the centre. If the chemicals are distributed nonuniformly. Turing origi-
region is at the edge of the domain (for example next nally proposed reaction—diffusion as a mechanism for
to the tail of a fish) then it could lead to a pattern of spontaneously generating patterns from random fluc-
nested semicircles, as seerRomacanthus semicircu-  tuations about a homogeneous backgrdi@®i. Much
latus seeFig. 10b). The form of these patterns results subsequent work on reaction—diffusion patterning has
from the fact that pattern formation propagates from concentrated on systems with constant coefficients,
the boundary of the parameter discontinuity (&63). both because these systems are more mathematically
Finally, Fig. 9d) shows a spatially restricted pattern tractable (but still very challenging to solve) and be-
produced when the parameters are within the Turing cause of the elegant appeal of the symmetry-breaking
space (by which we mean the Turing space for a large process.
zero flux domain) only on a patch in the centre of the Much work has focused on pattern selection in non-
domain. linear systems and reaction—diffusion has often been
Even if the patterns, such as thoseFig. 9, con- criticised as a model for biological pattern formation
verge very slowly to a steady state, if the concentration because the selection can be very sensitive to pertur-
of activator surpasses some threshold for a sustainedbations. As illustrated by the results presented here,
period in a spatial region, this may be sufficient to pattern selection can be greatly influenced by spatial
trigger differentiation. In general, the changes in pat- variations in the parameters and so, in modelling bio-
tern which occur at late times tend to take the form logical systems, it may be more relevant to study this
of small movements of a few pattern elements or the more complex case. Attempts to demonstrate Turing
appearance or disappearance of a pattern element. Ifpatterns in real chemical systems have led to some
we consider that the cells differentiate after sufficient work on reaction—diffusion systems with graded pa-
exposure to super-threshold activator, then these rear-rameters, since the (quasi-two-dimensional gel) reac-
rangements are likely to have only a minor effectonthe tors tend to be fed with different chemicals from two
pattern. opposite boundaries (see, for exampl®). Much of
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Fig. 9. Plots of the activator profiles in simulations of the Gierer—Meinhardt model equations on the dor@ir [0, 2], with parameters
D, = 0.27, v = 1000, r = 0.001 and/ = 0.0035 and zero flux boundary conditions: (@} 2.4 forx + y > 2.0andu = 2.1forx + y < 2.0;
(b)u = 3.0fory > 1.0andu = 2.5fory < 1.0, r = 300; (c)u = 2.0for0.9 < x < 1.1and 09 < y < 1.1 andu = 2.5 elsewhere, = 10550;
(dyuw =25for0.6 < x <1.4and06 < y < 1.4andu = 1.5 elsewhere [numerical solver—ADI method, timest®p01, spatial discretization
step=0.02].

this theoretical work relates to the bifurcation struc- degrade biochemicals in a selective manner. Further-
tures of the reaction—diffusion systems. More recently, more, the extracellular matrix may also be heteroge-
however, periodic spatial forcing has been investigated neous and contains factors which modulate the be-
in a chemical reactor system and it has been sHadh haviours of putative morphogetjg9]. As discussed
that this can lead to more regular Turing patterns with above, chemicals cannot only modulate the reactions
fewer defects in two dimensions. In this context, the of other chemicals but can also alter their mobility and
more complex patterning capabilities of two coupled stability.
reaction—diffusion systems have also been investigated In [26], we have shown that spatial variation of pa-
[32]. rameters in the Gierer—-Meinhardt model can lead to
Compared to the experimental chemical reactors, the production of patterns when the parameters are ev-
the cellular environment of the embryo can be far more erywhere outside the Turing space and that the pat-
complex and heterogeneous. Cells are nonuniform in terns produced can be spatially restricted. In this pa-
their type and density and can produce, sequester andper, we have explored in more detail the ways in
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Fig. 10. Pictures of the nested ring-like patterns on skin of the marine angelfihirtgerator (b) P. semicirculatus

which spatially inhomogeneous parameters contribute possibilities, hierarchical patterning can, in some cases,
to the generation of complex patterns. We have looked be more reliable.
at the ways in which the various parameters of the = We also found that a spatially varying parameter
Gierer—Meinhardt model system control different as- can result in the generation of peaks that move as a
pects of the pattern. The Gierer-Meinhardt model is wave across the domain. Movement of patterns due to
phenomenological, and so it is not clear that all of the modulation of a control parameter has been ob-
the parameters would correspond to simple biophysical served before in other patterning systems, for exam-
quantities in a particular biological application. How- ple in Rayleigh—Benard convection, see for example
ever, since the diffusion coefficients and decay rates [15,33] Peaks that move as waves have also been seen
that we have varied are generic parameters it is likely before in Turing systems where the parameter which is
that their effects on the pattern would be qualitatively varying in space crosses the Turing bifurcafibn,31]
similar for other model systems. Future work could re- Here, however, we show that travelling waves of pat-
peat the analysis of this paper for more realistic mod- tern can also occur in a system with a spatially varying
els and consider the generality of the results. We con- parameter, with values that are always within the Tur-
jecture that many features of the work would simply ing space. Indeed the patterns concerned have steep
generalise. “spiky” profiles, characteristic of a system which is far
Working on a one-dimensional domain, we demon- from bifurcation in the highly nonlinear regime. Such
strated that a pre-pattern in a parameter can lead to abehaviour could have important implications for appli-
complex pattern of peaks of variable sizes. For certain cations in biology. On the one hand, spatio-temporal
ratios of pre-pattern wavelength to natural wavelength patterns of gene expression resembling those seen in
of the system with constant parameters, we found that our simulations have been observed (during the for-
the pre-pattern wavelength “fixed” the wavelength of mation of somites, for example sg9]). On the other
the final pattern, in the sense that only harmonics of the hand, if small spatial variationsin a parameter can cause
pre-pattern were found in the final pattern (and the pat- the peaks of a reaction—diffusion pattern to move, this
tern was different to that obtained with constant param- could cast doubt on the reliability of reaction—diffusion
eters). The pattern formed was independent of the noisesystems as mechanisms for the production of stable
in the initial conditions, implying that a pre-pattern in  spatial patterns. Given that the behaviour of the system
a parameter can enhance the robustness of pattern sewill depend on many details such as parameter val-
lection. Thus instead of leading to even more complex ues and the form of spatial variations, this issue would
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require detailed investigation in any particular applica- Taiwan and Hokkaido University, Sapporo, for partial
tion. support.

In two dimensions, we found that a sinusoidal pre-
pattern in a parameter could give rise to a pattern of
large and small spots, like that on the head of the lizard Appendix A. Matched asymptotic analysis of
C. fedtschenkoiThese spots can be arranged as a large the Gierer—Meinhardt system
spot surrounded by several smaller ones, similar to the
arrangement of mammalian hair follicles. A hierarchi- To determine analytically the effect on patterning
cal reaction—diffusion system can thus provide an al- of each parameter in the Gierer—Meinhardt model (Eq.
ternative model of follicle initiation to that proposed (1)) we assume thab, is very much smaller tham,
by Nagorcka[23,24] and detailed above. We postu- and setD, = €2 x D,, wheree is a small parameter.
late that if the kinetics are such that the system with In one spatial dimension, steady state solutions of Eq.
constant parameters produces a striped pattern, then 1) satisfy the following equations and boundary con-
sinusoidally varying parameter could lead to a pattern ditions:
of thick and thin stripes, as seen on the skins of various 2
species. (For a chemotactic model which can give rise , (1 + "_> — it + €2 Dyityy = 0,
to thick and thin stripes sd27].) v

The geometry of the parameter patches in two di- _ 2 _
mensions can have a significant impact on the final ru” = vvk Dove = Oforr € 0. 1),
pattern formed. If the system with constant parameters ux =0 forx=0,1,
gives rise to a pattern of spots, then a straight patch
boundary can, nevertheless, trigger a pattern of stripes
or a mixed pattern of stripes and spots (for a discussion In order to obtain a solution of these equations that is
of the problem of obtaining striped patterns §2@]). O(1) on most of the domain, we must make the further
A small parameter patch can lead to a target pattern or assumption that is small. This is often the case for
pattern of nested semicircles, as seen on the skins ofthe (biologically plausible) parameters that are used in

v, =0 forx=0,1
(A1)

fish of thePomacanthugamily.
In summary, we have shown in this paper that spa-
tially varying parameters in reaction—diffusion systems

numerical simulations, since large valuesr @énd to
put the parameters out of the Turing space. We initially
assume thatis O() and set = ex, whereq is O(1);

can greatly enhance the range of patterns available towe later look for a solution whenis O(1).

a system (many of which resemble complex patterns

We seek a solution of E¢A.1) for uandv in terms

seen in biology) whilst at the same time enhancing the of a series expansion in However it is not possible to

robustness of pattern selection.
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ety Leverhulme Trust Senior Research Fellowship and whereug(x), u1(x), ... anduvg(x), v1(x), ... are twice

thanks the National Centre for Theoretical Sciences,

differentiable functions of. Substituting intgA.1) and



K.M. Page et al. / Physica D 202 (2005) 95-115

collecting terms of O(1), we find

ug =0, Dy(vo)xx — vvg = 0. (A.3)

The latter equation implies

vo= A cosh(x —_ xo> , (A4)
Ay

whereA andxg are constants. From consideration of
terms of ordee we obtain®

o
up = —,

"
We now consider the inner solution at an arbitrary point
x1 in the domain. We re-scale the spatial coordinate
and consider a solutian= i(X) andv = v(X), where
X = (x — x1)/€P for some positive exponefit We find
thatg = 1 yields a solution of the form

v = 0. (A.5)

H(X) = Z(@o(X) + () + ),
9(X) = vo(X) + €vr(X) + - --. (A.6)

Substituting this intdA.1) and looking at the leading
order terms yields

uo(X 2 _ _ _
oM oX) + Do)k =0, (Bo)xx = 0.
vo(X)
(A7)
In order to match with the outer solution,

limx_ +00 vo(X) must be finite. Together with

the second equation @A.7) this implies
vo(X) = vy, (A.8)

wherew, is a constant.
Substituting into the first equation ¢A.7), this
gives

2
otv— — pug + Dy(ug)xx = 0. (A.9)
%

Together with the matching conditions, which imply
thatug(X) tends to 0 asX — o0, this has solution

(5:2)

4 While vy satisfies an equation similar to that fay, it can be
shown that the solution of this equation is actualy= 0.

UV
sechf
20

io(X) = 3 (A.10)

111

Substituting the inner expansion in(#®.1) and collect-
ing terms of order Ze¢ in the inhibitor equation yields

Dy(v1)xx = —aith, (A.11)

Now the change im, across the boundary layer is

+

X1
Avy = /
X

1

Uy Ox

>~ 1
/ —UXX€ dX + smaller terms
oo €

o0
= / (v1)xx dX + smaller terms
—00

o
X / —1175 dX + smallerterms (A.12)
—o Dy

Substituting in our expression fap from (A.10) and
integrating gives

61202

Avy = ————5.
* ozD,%/2

(A.13)

We can thus completely determine the leading order
outer solution for the inhibitor if we know the location
of the boundary layers and if we know the value of
v, at the leftmost peak (this and the left hand bound-
ary condition determine the solution to the left of the
first boundary layer and we use this to match the solu-
tion and its derivative with the solution to the right of
the boundary layer). The right hand boundary condi-
tion will then determine,. if we know the positions of
the boundary layers. Thus the location of the boundary
layers is sufficient to fully determine the solution. Al-
ternatively, we can use an integral condition (obtained
from the differential equation far) to determine,.. We
illustrate this for an example solution withboundary
layers atv = 1/2n,3/2n, ..., (2n — 1)/2n.

Integrating the second equation(@) and using the
zero flux boundary conditions, we obtain

1
f (ru® — vv) dx = 0. (A.14)
0
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Now, with a boundary layer at= 1/2n, the outer so-  Thus, substitutindA.16) and (A.17)into (A.14), we

lution for v has a leading order term given by obtain
~5(z)
v, = — tanh . A.18
A cosh(i) , xe [O, %} T3 21y ( )
Ao (A.15) We wish to compare our matched asymptotic solu-
Bcosh(l/n - X) [i }} tions to the numerical solution. Our analysis does not
v ’ 2n’ n|’ allow us to determine the location of the boundary
layers. If, however, we know the location and height
where A and B are constants satisfying, = of the leftmost inhibitor peak, we can calculate its
A cosh(¥2nx,) = Bcosh(¥2n1,). Thus, to leading form and the height and the form of the activator
order, peak.Fig. A.1 shows the results of simulation of the
Gierer—Meinhardt model equations with parameters
1 1 D, =0.027,v=11, 4 =10,¢ =0.0land- = 0.01
v/ vdx = 2nv*,/vatanh<2nA > (A.16) (i.e.a = 1.0) onthe domain [0, 1] with zero flux bound-
0 v

ary conditions. The initial values af andv are ran-

dom perturbations about the homogeneous steady state
Now the leading order term in the outer expansion for \ajyes. We find that the leftmost inhibitor peak is at

u is O(¢) and hence the contribution g@lruzdx will x ~ 0.327 and has height, ~ 0.3295. We use these

be O¢3), whereas the inner expansion fois O(1/¢), values in the leading order analytical outer solution for
the width of the boundary layer is at leastepéand the inhibitor concentration (using the inner solution to
hence the contribution from the inner expansion will give the condition on the change in the derivative across
be at least O(1). Thus, using the first equatio(f0b) the boundary layer and to show that the change in the
and Eq.(A.10), we obtain, to leading order, inhibitor concentration is zero to leading order).

1 ®© g 2,2 X 9 2,2 D 00 9 2,2 D. 4
/ ruzdx=n/ il secﬁ‘( /i—)edxz il —”/ sectydy=—"t—"= [Z02 (A17)
0 oo G D, 2 2u w J_oo 2o w3
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40 t
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25t
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(a) x—= (b) & >

Fig. A.1. (a) Plot of the analytical (thick line) estimate of the leading order outer solution to the inhibitor concentration compared with the
numerical solution (thin line). (b) Plot of the analytical boundary layer solution (dotted line) of the activator equation compared with the
numerical solution (solid line) [numerical solver—Nag library routine: DO3PCF, number of discretization-pbd@$, tolerance 10E-07,

initial conditions+10% noise around the uniform steady state].
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The analytical solution shown ifig. A.1(a) to and hence
the right of the (first) boundary layer is given by

0.3295 cosh(f — 0.327)/4,) — 0.3016 sinh(¢ — b~ Ao (A.22)
0.327)/1,). When we match the solution instead K

with its numerical value at its turning point, we (This also agrees with the exact solution that we ob-
obtain the solution (306 cosh(f — 0.327)/4,) — tain for a single boundary layer at= 1/2, provided

0.2956 sinh(¢ — 0.327)/2,). In Fig. A.1(@), we show  that 1/5,, is O(1), which is necessary for the single
the resulting analytical solution on _the _domaln to the boundary layer solution to be likely to arise in prac-
left of the second boundary layer (thick line) compared tice.) From(A.6) and (A.10)we see that this implies

with the numerical solution (thin line). The solution  that the heights of the activator peaks are proportional
becomes inaccurate towards the second boundaryio s — /D, v/D, 1.

layer. This is due to a small error in the values used for  \ye |00k now for a perturbation solution wheris

the matching conditions. Thus we see that a small dis- O(1). We find that the Gierer-Meinhardt model equa-
crepancy in the coefficients of the cosh and sinh parts tjons without the constant tera- in the activator equa-
of the solution (caused by a small error in the matching tjgn (see Eq(1)), exhibit a symmetry under the trans-
values ofv, andAw,) is enough to lead to a significant  formationr — kr, v — kv, u — u. Hence we expect
discrepancy in the solution far from the boundary layer. , o . We also find in simulations and in the above
To leading order, the activator concentration is zero perturbation analysis for smallthatu is roughly pro-
outside the boundary layer and has a very high peak in portional tor in the full Gierer—Meinhardt model sys-
the boundary layer. Ifrig. A.1(b), we show that there  tem with the added constant term. This leads us to look
is excellent agreement between the analytical form of for an outer expansion in whichis O(1/€) whenr is

this solution (assuming the value of obtained from (1), sincev was O(1) wherr was O¢). The analysis
the numerical inhibitor solution) and the numerical So- fg|i0ws as before and we find an outer solution

lution (solid line) on a small region of the domain that
includes the left-hand boundary layer.

Our analysis shows that when= D,, /D, is O(€?),
the width of the activator peaks is proportional to the (A.23)
diffusion wavelength of the activator, = /D, /.

The length-scale of the inhibitor pattern (which gives where
us an idea of the spacing of the activator peaks) is of

1
u=uo+eur+---, v=g(vo+ev1+-~-),

the order of the diffusion wavelength of the inhibitor ug = L, vop=A cosh(x — xo) ,

Ay = /Dy /v. If we assume that the boundary layers A

occur at locations;, with spacingsc = x;;1 — x; sat- r3 X — X0 r3

isfying x ~ ,, then on each side of each boundary “*= 774 sech( ; ) , 1=y (A.24)

layer we have
and A and xg are constants. The inner solution at a

v ~ A, (A.19) boundary layer point; is given by
A
[vx| ~ —, (A.20) v, X —x1
Ao =Ve -, = sech e
V=t R » ( 2 ) +

and hence\v, ~ v, /A, (since the sign of the gradient
of v changes in the boundary layer, we know that the
leading order terms in, on either side of the boundary  \yherev, is a constant of O(%k). To satisfy matching
layer will contribute toAv,). Substituting the expres-  conditions with the outer solutions on either side of the

(A.25)

sion for Av, from (A.11), we obtain boundary layer,
1/2 3/2,241/2
v W evs A X1 — X0
Vs~ : (A.21) vy = — cosh(—) . A.26
Dll)/2 i }"Dll,/2 * € v ( )
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We also obtain the same condition as before on the

discontinuity in the derivative of,

61 2ev?

Avy = ————
! ng/z

(A.27)

The leading order forms (both inner and outer) of these

solutions are exactly the same as foe O(¢) up to

the location of the boundary layers, provided that we
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parative study of dye spreading and ionic coupling in cultured
cells, Exp. Cell Res. 196 (1991) 158-163.

[3] K.M. Cadigan, Regulating morphogen gradients in the
drosophila wing, Sem. Cell Dev. Biol. 13 (2002) 83—-90.

[4] V. Castets, E. Dulos, J. Boissonade, P. De Kepper, Experimental
evidence of a sustained standing Turing-type nonequilibrium
chemical pattern, Phys. Rev. Lett. 64 (1990) 2953—2956.

[5] C.N.D. Coelho, R.A. Kosher, A gradient of gap junctional com-
munication along the anterior—posterior axis of the developing
chick limb bud, Dev. Biol. 48 (1991) 529-535.

can still assume that the boundary layers occur at sep- [6] J.R. Collier, Spatial and propagating patterns in embryology,

arations satisfying: ~ A,. Thus the conclusions that

we came to above about the dependence of the widths,
heights and separation of the parameters should still

hold forr = O(1).

Appendix B

We consider the casd = O(¢?), r = O(1), but
the analysis follows similarly forr = O(¢). We
look at the inner expansion in a boundary layer
around the point = xg : u = (1/€)u((x — x0)/€), v =
(1/€)v((x — x0)/€). To leading order,

0= Dy(vo)xx, (B.1)
u?
(uo)r = rg—g — wu(uo) + Dy(uo)xx- (B.2)

Together with the boundary (matching) conditions for
v, the first equation implies that= v,, wherev, is a
constant of O(1¢). Thus

_ u3 _ _
(uo)r = P~ w(uo) + Dy(uo)xx-

*

(B.3)

Now, if we letw = 1 — rug/pevy, ' = ut and X’ =

/Dy X, then

wy = w(l—w)+ wyxy, (B.4)

which is Fisher’s equation.
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