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Modelling rain forest diversity: The role of competition
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Abstract

Rain forests exhibit enormous species diversity, but the mechanisms for establishing and maintaining such diversity are
unknown. Models involving both exploitative and pre-emptive competition have been proposed. We examine two of these
models mathematically and show that neither can exhibit species diversity. The inclusion of random fruiting events, together
with seedling population decay, can result in both models exhibiting long-term coexistence of many species. However, the
parameter values required to simulate such behaviour are more realistic for the pre-emptive competition model than for the
exploitative competition model. Our analysis has general implications for all tropical rain forests in that it suggests that a
competition–colonisation type trade-off is not a sufficient condition for species coexistence.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

There has been much debate about the degree to
hich the composition of species-rich plant commu-
ities is influenced more by chance and history than
egulated by competition(Hubbell, 1998, 2001). Re-
ruitment limitation (defined as the failure of a plant
pecies to colonise a suitable vacant site) is potentially
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one of the most important processes permitting co
tence of large numbers of ecologically similar spe
in a single community(Levins and Culver, 1971; Hur
and Pacala, 1995). However, there are still compa
tively few experimental or observational studies in
ural terrestrial ecosystems that have demonstrate
importance (the majority of published studies have
amined marine or rocky shore community structur
The problem of finding empirical evidence for recr
ment limitation is particularly acute in forests wh
generation times are typically many decades and
munity dynamics are therefore difficult to assess
a short timescale. Most studies of recruitment in fo
ecosystems have been at too small a spatial and te
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ral scale to permit the role of recruitment limitation to
be evaluated(Clark et al., 1999). Much of the support
for the recruitment limitation hypothesis comes from
theoretical, especially mathematical modelling, stud-
ies. One model, developed byTilman (1994)has been
widely invoked as demonstrating a putative mechanism
for the maintenance of high species richness and has
been cited in support of the importance of recruitment
limitation in tropical rain forests(Hubbell et al., 1999;
Svenning, 1999). Indeed,Tilman (1994)suggests that
his model provides an alternative explanation to that
of the neutral theory proposed byHubbell and Foster
(1986)andHubbell (2001)for species richness in trop-
ical forests.

We reviewTilman’s (1994)model, its formulation
and results below. An analysis of the theoretical under-
pinning of this model shows that it is not appropriate
for the simulation of tropical rain forest tree species dy-
namics. We present an adaptation of Tilman’s model for
rain forest dynamics in which we make it impossible
for an individual tree to invade a space that is already
occupied by another individual and we justify why we
believe that this more accurately simulates observed
processes of gap colonisation. We modify this model
to permit a gap in the forest to be colonised by the
fastest growing species present in the seedling bank at
that time. Finally, we incorporate mast-fruiting events,
characteristic of rain forests in Southeast Asia, into our
model, and describe the consequences of a progressive
decay in species colonisation rates (simulating the de-
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(colonisation) in each site. Similar models have also
been applied to marine populations with sessile adult
dynamics coupled to motile juvenile dynamics which
contribute to a larval pool able to colonise empty sites
in the environment (for example,Roughgarden and
Iwasa, 1986). The additional complexity of the juvenile
stage is not considered here. The important aspects of
Tilman’s model are captured by the two-species model
which we summarise below. For single and multiple
species dynamics, we refer the reader to the original
text (Tilman, 1994).

2.1. Competition between two species

Tilman models interspecific competition by first
considering a two-species model in which the compe-
tition is for habitat sites. He defines the superior com-
petitor to be the one that always displaces the inferior
competitor when they both occur in a site, and the infe-
rior competitor can neither invade into nor displace the
superior competitor from a site. In this case, he uses
the following equations to model the dynamics:

dp1

dt
= c1p1(1 − p1) − m1p1, (1)

dp2

dt
= c2p2(1 − p1 − p2) − m2p2 − c1p1p2, (2)

wherep1 denotes the proportion of the superior com-
petitor. Note that the equation for the superior com-
p he
i th it
a
h
t x-
i tions
(

2
t

a-
t ree
s rea-
s dis-
p ain
f here,
f ption
ay in populations of species in the seedling bank
ime between fruiting events).

. Tilman’s model of spatially structured
ompetition

Tilman’s (1994)model is based on a well-know
etapopulation dynamics equation(Levins, 1969
evins and Culver, 1971), and is frequently used f
odelling ecosystems. Considering a single se

pecies living in a habitat composed of distinct s
here a site can be occupied by at most one adul
eath of an adult opens up a gap for colonists.
ynamics of site occupancy depends on the mo

ty rate and the colonisation rate of the species.
ynamics of the entire habitat are the sum of the i
idual processes of death (mortality) and replacem
etitor (1) is as if it lived as a species on its own. T
nferior competitor can only colonise sites where bo
nd species 1 are absent (the (1− p1 − p2) term in(2)),
owever, species 1 can displace species 2 (the−c1p1p2

erm in (2)). Tilman shows that globally stable coe
stence is possible under certain parameter condi
Tilman, 1994).

.2. The applicability of Tilman’s model to
ropical rain forest communities

We believe the use of Tilman’s model for sp
ially structured competition to explain rain forest t
pecies diversity is inappropriate for a number of
ons. Firstly, his assumptions that individuals can
lace each other is not realistic for most climax r

orest species, however, relevant this may be elsew
or example, in grasslands. We address this assum
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in Section3. Secondly, Tilman’s model is an equilib-
rium model. It has been accepted that apparently stable
populations are not at equilibrium over some timescales
(Hutchinson, 1961). One hypothesis for ecosystem di-
versity is that it is maintained by recovery from distur-
bances(Connell, 1978). It follows under this hypothe-
sis, that an equilibrium model is not valid. However, in
order to assess whether a model based on this simplifi-
cation produces the correct type of dynamics, we adapt
Tilman’s model in Section3.1. But go on to develop a
non-equilibrium or dynamic equilibrium model (sensu
Huston, 1979), where we search for a balance between
proliferation and death of species between disturbance
events (Section5).

3. A new model for competition in rain forests

Tree regeneration in tropical rain forests is typically
light limited and most tropical rain forest trees require
light gaps in order to grow to maturity(Hartshorn,
1978). Recent analyses of patterns of regeneration in
natural tropical rain forest light gaps(Whitmore and
Brown, 1996; Delissio et al., 2002)have found that,
contrary to widely accepted generalisations, the dom-
inance hierarchy in light gaps is a function of initial
seedling size rather than competitive ability for light.
Competition for light in gaps is highly asymmetric.
The tallest individual at the time of gap creation will
benefit from increased levels of irradiance, regardless
o se-
q t to
o bil-
i e-
s ed
f d
B pe-
t ith
s led.
T is
t gap
i by
a

in
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M able
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et al., 1996)and may, over time, replace them in a
successional sequence(Kochummen, 1996; Whitmore,
1998). In these circumstances, it may be legitimate to
propose that there has been competitive displacement
and thatTilman’s (1994)model provides an adequate
description. Our objective, however, is not to model this
type of secondary succession, but to evaluate mecha-
nisms that will permit coexistence of species within the
climax guild that are similar in their ecology.

In order to increase the applicability of Tilman’s
two-species model to rain forest regeneration dynam-
ics, we have adapted it in two important ways. Firstly,
we have removed the−c1p1p2 term in(2) that permits
a species to invade the space occupied by an inferior
competitor and displace it. Secondly, we have intro-
duced a component to our model that selects for the
species, present at the time of gap formation, that has
the highest growth rate. We refer to this model as our
“exploitative competition model”.

3.1. Two-species model

3.1.1. Model and determination of steady states
The two competing tree species model lends itself to

a complete mathematical study and will help in gaining
a deeper understanding of this type of interaction when
we incorporate more species.

The two-species system is:

dp1

1

w es
o
p aps).
c l
e o-
m ng
( h
f species. Those in its shade will not. As a con
uence, initial differences in size are often sufficien
vercome any innate differences in competitive a

ty. When the outcome of competition for limiting r
ources is determined by initial conditions, it is term
ounder control (Keddy and Shipley, 1989). Rees an
ergelson (1997)have shown that asymmetric com

ition for light increases the likelihood that plants w
imilar regeneration niches will be founder control
he implication of this for rain forest tree dynamics

hat once an individual has established in a light
t is unrealistic to assume that it can be displaced
nother individual that is a superior competitor.

It is well known that where big gaps are made
tropical rain forest, they are often colonised by

eer tree species (sensuSwaine and Whitmore, 1988).
any shade-tolerant climax tree species are cap
f survival and growth beneath pioneer trees(Howlett
dt
= c1p1g − m1p1, (3)

dp2

dt
= c2p2g(1 − p1) − m2p2, (4)

dg

dt
= −c1p1g − c2p2g(1 − p1) + m1p1 + m2p2,

(5)

= p1 + p2 + g, (6)

herep1(t) andp2(t) are the proportional abundanc
f species 1 and 2, respectively, at timet, andg(t) is the
roportional abundance of available free space (g
i is the colonisation rate andmi is the mortality (loca
xtinction) rate of speciesi. We assume, for the m
ent, that themi andci are positive constants. Addi

3)–(5), we have thatp1 + p2 + g = constant, whic
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we take to be 1 (sincep1, p2 andg are proportions),
leading to Eq.(6).

Species 1 is defined to be the most competitive
species, that is, the one whose seedlings will grow the
fastest to reach the light (in a treefall gap). To derive Eq.
(3), propagules are assumed to be dispersed randomly
among all sites. The rate of propagule production by
the occupied sites of species 1,c1p1, is multiplied by
the proportion of sites that are unoccupied,g, to give
the rate of production of newly colonised sites (Law
of Mass Action). The mortality rate,m1, is multiplied
by the proportion of sites occupied by species 1,p1, to
give the rate at which the sites become vacant. A site
is vacated when the individual occupying it dies.

The introduction of a second species does not affect
the dynamics of species 1, since the new species is an
inferior competitor. We assume that the superior com-
petitor always out-competes the inferior competitor if
both are present when a gap is formed. We capture
this behaviour phenomenologically by assuming that
the colonising power of species 2 in the presence of
species 1 isc2p2(1 − p1). Multiplying this by the pro-
portion of vacant sitesg then gives us the first term on
the right-hand side of(4).

Eq. (5) decouples from the system and using(6)
we are left with a system of two first-order nonlinear
ordinary differential equations:

g:

ts)
the

Table 1
Steady states of(7) and (8)and eigenvalues of the linearised system
(λ̂1 andλ̂2 are given inAppendix A)

State p0
1 p0

2 λ1 λ2

(a) 0 0 c1(1 − γ1) c2(1 − γ2)
(b) 0 1− γ2 c1(γ2 − γ1) c2(γ2 − 1)
(c) 1− γ1 0 c1(γ1 − 1) c2(γ2

1 − γ2)

(d) 1− γ2

γ1

γ2

γ1
− γ1 λ̂1 λ̂2

species. The state (a) corresponds to both species dy-
ing out and no trees being present; (b) corresponds to
species 1 being totally dominated by the less compet-
itive species 2, only trees from species 2 are present
and there is no coexistence. Similarly in (c), the more
competitive species 1 dominates species 2 causing it to
die out completely. Finally in (d), both species coexist
and both have a non-zero abundance at the steady state.
In a rain forest, many species coexist and it is a steady
state of type (d) that we are trying to reproduce. The
stability and feasibility of these steady states will be
investigated below.

3.1.2. Linear stability analysis, stability and
feasibility of steady states

We now carry out linear analysis of the steady states
in Table 1in the standard way (see, for example,Jordan
and Smith, 1988).

The Jacobian matrix,J2, of the system is given by: (
2 − m1

c1

)
−c1p1

1 − p2) c2

(
(1 − p1)(1 − p1 − 2p2) − m2

c2

)

 , (9)

evaluated at the steady state (p0
1, p

0
2). The eigenvalues

for each steady state are calculated fromd(λ) = |J −
λI| = 0 and shown inTable 1.

The pi represent proportional abundances of rain
forest tree species. Therefore, to be a feasible state, both
p andp must be non-negative. For example, steady

e

ity
ith
dp1

dt
= c1p1(1 − p1 − p2) − m1p1, (7)

dp2

dt
= c2p2(1 − p1 − p2)(1 − p1) − m2p2. (8)

The steady states of the system are found by settin

dp1

dt
= 0 = dp2

dt
.

The four possible steady states are given inTable 1. For
ease of notation, we defineγi = mi

ci
for i = 1, 2.

The different steady states (or equilibrium poin
correspond to different proportional abundances of

J2 =  c1 1 − 2p1 − p

−c2p2(2 − 2p
1 2
state (a) is feasible for all values ofγ1 andγ2. For steady
state (b), to be feasible, we require 1− γ2 > 0, that is
γ2 < 1, and similarly for steady state (c), we requir
γ1 < 1. For steady state (d), we need 1− γ2

γ1
> 0 and

γ2
γ1

− γ1 > 0. Combining the two inequalities gives 0<

γ2
1 < γ2 < γ1 < 1.

Steady states may be classified by their stabil
eigenvalues. If there exists at least one eigenvalue w
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real part greater than zero, then there are solutions that
are growing exponentially and hence the steady state is
linearly unstable. In order for a steady state to be lin-
early stable, both eigenvalues must have negative real
parts.

The results for feasibility and stability are sum-
marised inFig. 1. From this figure, we see that linear
theory predicts that species coexistence cannot occur in
this model, i.e. the coexistence steady state is unstable
for all feasible parameter values.

The above analysis determines the local behaviour
near equilibria. To investigate the global behaviour, we
considered the phase plane of the system. A detailed
numerical study of the phase plane for the full nonlin-
ear model verifies the prediction that species coexis-
tence cannot occur in this model. Within the parameter
regime where coexistence in feasible but unstable, we

observe a separatrix in the phase plane dividing the tra-
jectories into the basins of attraction of the two stable
single species steady states.

We conclude that the two-species model cannot ex-
hibit the type of behaviour observed in the rain forest.
We now use the insights obtained from this model to in-
vestigate the extension to then-species model(7)–(8).

3.2. n-Species competition model

We now investigate ann-species competition model
to determine whether multiple species (≥3) coexis-
tence can be stable.

3.2.1. Model and determination of steady states
Extending the model derived in Section3.1, the

system of nonlinear ordinary differential equations be-

F regions
u
i

ig. 1. Stability and feasibility regions. There are six different

nstable, (b) and (c) are feasible and stable (sinceγ2 < γ1 andγ2 > γ2

1), an
s unstable. The other regions are similarly defined.
in the (γ1, γ2) parameter space. In region (1), 0< γ1, γ2 < 1, so (a) is

d (d) is feasible but, Re(λ̂i) > 0 in this region, thus the steady state
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comes:

dpi

dt
= cipig


1 −

i−1∑
j=1

pj


− mipi, (10)

dg

dt
= −

n∑
i=1


cipig


1 −

i−1∑
j=1

pj




+

n∑
i=1

mipi,

(11)

1 = g +
n∑

i=1

pi, (12)

for i = 1, . . . , n.
It is interesting to note that a very similar model has

been developed independently, in theoretical immunol-
ogy, to investigate the mechanisms that maintain size
and diversity of pools of T memory cells. These are
cells that enable the immune system to respond more
rapidly and with a stronger effect to re-exposure to anti-
gens or pathogens(Yates and Callard, 2001; Callard et
al., 2003).

The steady states are calculated in the same way as
before by setting the right-hand side of Eq.(10)to zero
after eliminatingg. However, for our purposes, we are
interested only in the steady state where all the species
have a non-zero abundance, that is all species coexist,
because the aim of our model is to predict long-term co-
existence of rain forest tree species. In this case, the pro-
portional abundances of the species are calculated to be:

w

3

w
b

The elements ofJn are calculated inAppendix B. We
find that the system of Eq.(13) for n > 1 tends to a
steady state with at most one species persisting, that
is only one of the species is non-zero and all the other
species die out (seeAppendix B). The species that dom-
inates will be determined by the initial conditions of the
system. Hence, we have proved that our model does
not mimic the long-term coexistence and diversity ob-
served in the tropical rain forests. We need therefore
to consider an alternative mechanism for simulating
this species richness. A possible new approach is the
inclusion of fruiting events and non-constant colonisa-
tion rates. We explore this later, but first we consider a
pre-emptive competition model.

4. Colonisation model

4.1. Description of the model

The idea that communities are assembled according
to rules based on the ecological niches of the compo-
nent species has recently been challenged by the pro-
posal that changes in the abundance of populations and
the composition of communities are the consequence
of ecological drift rather than competitive interactions
(Hubbell, 1998). In order to examine the effect of there
being no difference between species in their competi-

tive ability, we have removed the
(

1 −∑i−1
j=1 pj

)
term

from our original model(10). Species differ only in
t ac-
t alled
t

del
t

1

A

p0
1 = 1 − γ2

γ1
,

p0
i = γi

γ1
− γi+1

γ1
, for i = 2, . . . , n − 1,

p0
n = γn

γ1
− γ1,

hereγi = mi

ci
.

.2.2. Stability analysis
To find the general form of the Jacobian matrix,Jn,

e rewrite the system of Eqs.(10)–(12), replacingmi

ci

y γi. We obtain the system:

dpi

dt
= cipi

(
1 −

n∑
k=1

pk

)(
1 −

i−1∑
k=1

pk

)
− γicipi.

(13)
heir ability to colonise gaps. The competitive inter
ions between species are pre-emptive. We have c
his our “colonisation model”.

The system of equations for our colonisation mo
hen becomes:

dpi

dt
= cipig − mipi, (14)

dg

dt
= −

n∑
i=1

cipig +
n∑

i=1

mipi, (15)

= g +
n∑

i=1

pi. (16)

gain,g decouples and we obtain:

dpi

dt
= cipi


1 −

n∑
j=1

pj


− mipi. (17)
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Note that if we assumeci = c = constant, for alli and
mi = m = constant, for alli and setP =∑pi, then
summing Eq.(17)overi, we see that:

dP

dt
= cP(1 − P) − mP, (18)

which is equivalent to Tilman’s model for one species
and has a stable steady state atP = 1 − m

c
. The model

for T memory cells in the immune system also consid-
ers this scenario(Yates and Callard, 2001; Callard et
al., 2003).

The analysis of stability and feasibility for(17) is
much simpler than for the competition model. We spare
the reader all of the details and simply summarise the
results. There are two cases:

(1) The γi are all different: In this case, ifγi > 1 for
all i, then the trivial steady state, in which all the
species are zero, is the only ecologically meaning-
ful steady state, and it is globally stable. If, how-
ever,γi < 1 for a subset of thei values, then there is
a further set of steady states in which every species
is zero, except forpi = 1 − γi. In this case, the triv-
ial steady state is no longer stable, and the non-zero

steady state that is linearly stable is the one with
the smallestγi.

(2) A number of the γi are the same: Without loss of
generality, assume thatγ1 = γ2 = · · · = γk = γ,
and all the otherγi are different. Again, if all the
γi andγ are greater than 1, then the trivial steady
state is the only meaningful one and it is globally
stable. Ifγ < 1, but all otherγi are greater than 1,
then the trivial steady state loses stability. There is
now a surface of steady states given by the set:

S = {pj : p1 + p2 + · · · + pk = 1 − γ,

pi > 0 for i = 1, 2, . . . , k;

pi = 0 for i = k + 1, . . . , n}.
S is neutrally stable. Thus, if we make a perturba-
tion from an equilibrium point inS to another point
in S, the system will stay at the new point (which is
an equilibrium point also). However, if the pertur-
bation moves the equilibrium point off the surface
S, then the dynamics of the system attracts the solu-
tion back to an equilibrium point on the surfaceS.
If γ < 1 but one otherγi < 1 for i > k, then there

F egions ked
b en in ws: (0, 0),
( 1 − γ).
ig. 2. Stability and feasibility regions. There are six different r
y the solid lines in the figure. Feasible steady states are giv
p∗

1, 0) = (1 − γ1, 0), (0, p∗
2) = (0, 1 − γ2), and (p∗

1, p
∗
2) = (1 − γ,
. Region (1) is the lineγ1 = γ2. The remaining regions are areas mar
each region with their stability. The steady states are as follo
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is another steady state in which all the species are
zero except forpi = 1 − γi. This new steady state
is linearly stable ifγi < γ, otherwise it is unstable.

The results for the stability of the steady states for
the specific case of the two-species colonisation model
are summarised inFig. 2. This can be compared to the
feasibility and stability regions inFig. 1.

Numerical simulations of the full nonlinear system
support these results (Section5.4 andFigs. 4–8). We
conclude that this model could only possibly give
coexistence if some of theγi are equal. However, math-
ematically speaking, this is the case in which the system
is structurally unstable, because any small change in
theγi totally changes the behaviour of the system. Such
models are of limited validity in an ecological context.

We conclude that our colonisation model, like our
(exploitative) competition model, does not adequately
simulate the processes that maintain high species di-
versity.

5. Fruiting events

5.1. Motivation for model

We have demonstrated that the models described in
Sections3 and 4cannot support the stable coexistence
of species assuming constant values of the prolifera-

tion rates,ci. However, this assumption is unrealistic.
Since very few tropical tree species fruit continuously
(Lambert and Marshall, 1991)and seedling popula-
tions will slowly decay (for an example, seeFig. 3),
the proliferation rate for any species is likely to be a
function of the time since the last fruiting event. In
the New World tropics, the phenology of many trees
is highly diverse(Newstrom et al., 1994). This im-
plies that variations between species in propagule abun-
dance and consequently in recruitment may be asyn-
chronous and this will contribute to species coexistence
(Chesson and Warner, 1981). Diverse phenology is not
an appropriate assumption for Southeast Asian tropi-
cal rain forests which are dominated by the Diptero-
carpaceae(Whitmore, 1984). An example of the pat-
terns of mast (or gregarious) fruiting(Burgess, 1972)
at supra-annual intervals can be seen inCurran et al.
(1999, Fig. 1A). The timings of the fruiting events is
observed to be approximately periodic with a random
component(Yasuda et al., 1999), triggered by the El
Niño Southern Oscillation (ENSO)(Sakai et al., 1999).
ENSO is not strictly periodic (periodogram analysis; D.
Bebber, personal communication) although there is a
strong ENSO every 4–7 years(Webster and Palmer,
1997; McPhaden, 1999a,b). In these years, seed and
seedling survival are relatively high and mixed species
carpets of seedlings are formed often at densities of
over one million per hectare. This unique feature of
Southeast Asian tropical rain forest makes it problem-

F ng eve 7 to 2003.
M et al., mple:
H orensis ven
s panel s the seedling
d decay
ig. 3. Seedling bank density decaying over time since a fruiti
ast-fruiting events were recorded in 1987, 1991 and 1998(Curran
opea nervosa (h.nerv),Parashorea malaanonan (p.mal),Shorea joh
ample plots of differing sizes and light climates. The left-hand
ensity on a logarithmic scale. This highlights the exponential
nt. Data collected in Danum Valley, Sabah, Malaysia from 198
1999). Four species of Dipterocarpaceae are shown in this exa
(s.joh), andS. leprosula (s.lep), with average densities across se

hows the density on a linear scale, the right-hand panel shows
of seedling density.
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atic to invoke explanations of coexistence for diptero-
carps, which depend on asynchronous recruitment (see,
for example, the models proposed byKubo and Iwasa
(1996)).

Levins (1979)has previously shown that in a sys-
tem where global coexistence is not stable and only
the trivial steady state is stable, incorporating some en-
vironmental variance may lead to global stability of
a (coexistence) state. The inclusion of environmental
variance is shown to have a similar effect to the inclu-
sion of another resource dimension to the niche space,
thus providing opportunities for more species to coex-
ist.

Numerical experiments have also been used to as-
sess the effects of non-equilibrium conditions on com-
peting species. Periodic population reductions have
been used as an example of temporal heterogeneity
(Huston, 1979). The length of the period of these re-
ductions is adjusted to find a dynamic equilibrium be-
tween competitors.Doyle (1981)found that in order to
reproduce Puerto Rican montane rain forest dynamics
correctly, the disturbance effects of hurricanes needed
to be included in his model. Doyle specified the ex-
pected reduction in species populations occurring in a
given year.

The effects of a random frequency of disturbance
events have not been investigated. Our fruiting events
(population inputs) are randomly spaced in time. We
aim to combine the above elements: randomness, ape-
riodic disturbance events and variability (with time de-
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tence in the forest understorey and those that enable fast
growth in gaps. There is ample experimental evidence
that this type of trade-off exists(Bazzaz and Pickett,
1980; Press et al., 1996). These more complex mod-
els are analytically intractable, and we therefore resort
to extensive numerical simulation to investigate their
behaviour within the parameter space.

5.2. Description of model

5.2.1. Colonisation rates
The number of seedlings, of any particular species,

decays with time over the course of a fruiting cycle.
Data collected indicates that this decay is exponential
(Brown et al., 1999andFig. 3) and thus we take the
colonisation rates to be of the following form:

ci = αi e−βit, (19)

whereβi is the decay rate of the seedling population
of speciesi per year. The new meaning ofci is that it
is theabsolute colonisation power of speciesi, that is
the ability of a seedling of speciesi to establish itself
in a site given that the species has been recruited to a
site.αi is the initial value of the colonisation power for
speciesi at the start of every fruiting cycle.

5.2.2. Model equations for the exploitative
competition hypothesis with fruiting events

Our new model forn species then becomes:

1

endent parameters).
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= −βici(t) + αiδ(t − I), (23)
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for i = 2, . . . , n, whereδ(t − I) is a Dirac delta func-
tion, such that:

δ(t − I) =
{

0, if t �= I,
∞, if t = I.

(25)

A property of the Dirac delta function is whenδ(t − I)
is integrated the term is equal to 1 whent = I. I is an
indicator function:

I = I(t ∈ U1, U2, U3, . . .), (26)

whereUk are a sequence of random variables such that
U1 is distributed uniformly in [3, 11] andUk+1 = Uk +
u, whereu is also distributed uniformly in [3, 11].

On eliminatingg, Eqs.(20)–(24)become:

dp1

dt
= c1(t)p1
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− m1p1, (27)
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− mipi,

(28)

dci

dt
= −βici(t) + αiδ(t − I), (29)

for i = 2, . . . , n. The inclusion ofc(t) into the model
equations is equivalent to addingαi individuals into
e e
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for i = 1, . . . , n, whereI is given as above for the ex-
ploitative competition model. Or, eliminatingg,

dpi

dt
= ci(t)pi


1 −

n∑
j=1

pj


− mipi, (34)

dci

dt
= −βici(t) + αiδ(t − I). (35)

5.3. Problems with determination of parameter
values

Unfortunately, there are very few experimental
datasets available to indicate the appropriate values
for our colonisation parameters (ci, αi, and βi) and
to a lesser extent, the mortality rates (mi). In deriv-
ing parameter values for his model, Tilman (personal
communication) first explored his model (Eqs.(1) and
(2)) theoretically to determine the plausibility of a
colonisation–competition mechanism to explain coex-
istence. From this he determined the necessary rela-
tionships among parameters for coexistence. He then
set the colonisation ability of the dominant species and
explored the general phenomenon, using data on com-
petitive abilities and seed production rates to estimate
the parameters. His parameter values led to a predicted
successional dynamics and coexistence that seemed to
m his
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ent in Eq.(29)). These represent the fruiting even

.2.3. Model equations for the colonisation
ypothesis with fruiting events

Extending the pre-emptive competition model (E
14)–(16)), we include fruiting events in the form
xponential colonisation rates. The model forn species
ecomes:
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attempted to find the appropriate range of parameters,
based on the experimental values that are available
(Whitmore and Brown, 1996; Brown et al., 1999). By
comparing the magnitude of proliferation (ci, αi, βi)
and the decay (mi) parameters, we were able to deter-
mine the likely range of each parameter based on the
experimental data available (more details of this cal-
culation are given inAppendix D). We then explored
this space numerically to determine the effects of each
of the parameters, and more particularly, whether any
set of parameters could give long-term coexistence for
large numbers of species in the presence of random
fruiting events. The results are presented in Section
5.4, for 2, 6 and 180 species.

5.4. Numerical experiments

5.4.1. Competition model
Our system, Eqs.(27)–(29), is solved over the length

of a fruiting interval. The fruiting interval is a random

amount of time after which the seedling bank is replen-
ished and theci (i = 1, . . . , n) are reset to their initial
values, taking the current values of (p1, . . . , pn) as the
new initial conditions in order to solve the system over
the next interval.

The time between fruiting intervals is chosen uni-
formly on the interval [3, 11]. This is equivalent to
events occurring on a periodic frequency with a ran-
dom time component. This range of values agrees with
experimental data(Burgess, 1972), however, there is
not enough data available to determine the distribu-
tion of masting events hence a uniform distribution is
taken. Further experiments using a normal distribution
yielded similar results.

The system of nonlinear equations is solved using
theMatlab (MathWorks and Inc., 2002)ode45 (an
explicit, one-step Runge–Kutta medium order (4–5)
ODE solver) from theodetoolbox (Shampine and
Reichelt, 1997). The system of equations for the non-
fruiting events model is solved usingMatlabode15s

F loitative es
a el, the n each
c ompet e number of
s n the h
ig. 4. Dynamics of competition between species, for our exp
re given inTable E.1(mi and ¯ci, Appendix E). In the bottom pan
ase, we observe that the superior competitor excludes less c
pecies included in the simulation. Note the logarithmic scale o
competition model(10)–(12)without fruiting events. Parameter valu
superior competitor (increasing line) rapidly reaches fixation. I
itive species, while the timescale to fixation increases with th
orizontal (time) axis.
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(an implicit multi-step numerical ODE solver of vary-
ing order (1–5)).ode15s is used as an ODE solver for
stiff problems, i.e. when variables are changing values
on very different timescales(Byrne and Hindmarsh,
1987; Trefethen, 1996). This is required for the non-
fruiting events simulations.

Fig. 4shows the effect of constant colonisation and
no fruiting events (for 2, 6 and 180 species). This sim-
ulates Eqs.(10)–(12), with constant average values for
theci, given byc̄i in the tables of parameter values (see
Appendix E), over the length of a fruiting interval. The
calculation of the ¯ci is discussed inAppendix F. The
reader should note that the equilibrial abundance of the
most dominant species (i) is not 1, but 1− γi, but be-
cause of the scale and parameter values used, it is not
possible to distinguish the difference.

Fig. 5 shows numerical solutions of the exploita-
tive competition model with fruiting events, simulating

Eqs.(20)–(24)with the parameter values given inTable
E.1(Appendix E) and the assumption that colonisation
rates decrease with time.

The simulation for the two-species model appears
to exhibit coexistence. Let us now consider the two-
species case separately.Fig. 6 shows three parame-
ter regimes with different outcomes: coexistence; su-
perior competitor dominates; and inferior competitor
dominates. The corresponding phase plane for each
regime is also given. InFig. 6B, trajectories move
towards both stable fixed points alternately, however,
the random perturbations introduced into the system
are sufficient to halt competitive exclusion. Compar-
ing Fig. 6B to numerical investigations of the phase
plane, the trajectories ‘bounce’ from either side of the
separatrix.

While it has been possible to obtain long-term coex-
istence (in particular, in the two-species case), we are
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species persist after 1000 years, while in the 180-species c

he 6- and 180-species cases, after 104 years only 1 species persis
competition model(20)–(24)with fruiting events. Parameter values
superior competitor (increasing line) rapidly reaches fixation.
find a parameter regime where both species coexist. In the 6

th realistic parameter values, 1 species rapidly dominates the
te the logarithmic scale on the horizontal (time) axis.
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Fig. 6. Dynamics of competition between two species, for the exploitative competition model(20)–(24)with fruiting events. Initial conditions:
(p1, p2) = (0.475, 0.475) andm = 0.0255. (A and B)α1 = 500, α2 = 9, β1 = 1.6, β2 = 0.05, coexistence. (C and D)α1 = 550, α2 = 9, β1 =
1.2, β2 = 0.05, species 1 fixation. (E and F)α1 = 350, α2 = 35, β1 = 2, β2 = 0.05, species 2 fixation. Panels A, C and E show dynamics of
p1 andp2 as a function of time. Panels B, D and F show the phase plane trajectories (solid lines) with the nullclines of the constant system of
equations (dotted lines).

forced to use very unrealistic parameter values (espe-
cially for the colonisation decay rates,βi), compared to
experimentally collected data(Whitmore and Brown,
1996). Extensive numerical investigation of the param-
eter space has not yielded a parameter set that gives
long-term coexistence and the correct amount of free
space for 180 species. If we use realistic parameter
values, one species quickly excludes the rest and co-
existence is not observed numerically (Fig. 5, bottom
panel).

Climax rain forest trees are ecologically very simi-
lar and we would expect them to have broadly similar
mortality and colonisation rates (parametersci, αi, βi

andmi in our models). However, our model required
a wide range of parameter values to simulate coexis-
tence. The range is too great to be a likely description
of rain forest species.

5.4.2. Colonisation model
Fig. 7 shows the effect of constant colonisation

and the absence of fruiting events on our colonisation
model. Theci used are average values over an aver-
age fruiting interval, given by ¯ci as shown inTable
E.2 (Appendix E). Once again this does not simulate
the correct dynamics and so we include fruiting events
and exponentially decaying colonisation powers. The
results are shown inFig. 8. Our system, Eqs.(34) and
(35), is solved over the length of a fruiting interval. The
system of nonlinear equations is solved usingMatlab
ode45. Fig. 8 shows the results with the parameter
values given inTable E.2.

Let us now consider the two-species case separately
as we did for the exploitative competition model inFig.
6. Fig. 9shows three parameter regimes with different
outcomes: coexistence; superior competitor dominates;
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Fig. 7. Dynamics of competition between species, for our colonisation model(17) without fruiting events. The parameter values are given in
Table E.2(mi and ¯ci, Appendix E). In the bottom panel, the superior competitor (increasing line) reaches fixation. In each case, we see that
the superior competitor excludes less competitive species, while the timescale to fixation increases with the number of species included in the
simulation, and these timescales are longer than the corresponding timescales to extinction inFig. 4. Note the logarithmic scale on the horizontal
(time) axis.

and inferior competitor dominates. The corresponding
phase plane for each regime is also given. InFig. 9B,
trajectories move towards both stable fixed points alter-
nately, however, the random perturbations introduced
into the system are sufficient to halt competitive exclu-
sion.

It is clear from the comparison ofFig. 5with Fig. 8
that there is a balance between proliferation and death
of each species: a dynamic equilibrium (sensuHuston,
1979) for species within our colonisation model but not
within our competition model. In addition to this, the
parameter values required for coexistence in the simu-
lations for our colonisation model are much more real-
istic than for our competition model simulations, and
are compatible with experimental data(Whitmore and
Brown, 1996). We are able to use very similar parame-
ter values for each species, such as might be expected
for climax rain forest tree species, and can simulate
coexistence over large timescales.

5.5. Comparison between two-species exploitative
and pre-emptive competition models with fruiting
events

The numerical results shown above inFigs. 5 and
8 only include single parameter sets. Next, we investi-
gate the parameter space (γ1, γ2), which is shown with
regions of stability and feasibility for the exploitative
competition model without fruiting events inFig. 1.
Now that the colonisation rates are a function of time,
ci(t) = αi exp(−βit), there are four parameters asso-
ciated with the colonisation rates for two species in
addition to the mortality rate,m. We fix theβi andm to
reduce the parameter space we need to investigate, this
also may allow us a better comparison withFig. 1which
is in (γ1, γ2) space. The results of one set of parameters
are shown inFig. 10. We see which species dominates
after 1000 years of the simulation, or whether coexis-
tence is maintained. The relative proportions of each
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Fig. 8. Dynamics of competition between species, for our colonisation model(30)–(33). The parameter values are given inTable E.2(mi, αi

andβi, Appendix E). In all cases (2, 6 and 180 species), there is a balance between proliferation and death which enables all species to persist
over 1000 years, while using realistic parameter values. After 104 years, 5 species persist in the 6-species model and 26 species persist in the
180-species model. However, after 105 years, 2 species persist in the 6-species case, with 6 species persisting in the 180-species case. Note the
logarithmic scale on the horizontal (time) axis.

species in each area of the parameter space are shown
(black= 1, white= 0), along with regions in the pa-
rameter space that lead to coexistence. Unfortunately,
the parameter region for unstable coexistence (Fig. 1,
region 1) in the exploitative competition model does
not neatly correspond to that observed when fruiting
events are incorporated into the model. Additionally,
the area of coexistence in the parameter space in the
pre-emptive model does not lie along the line of neutral
stability of the coexistence in the deterministic model.
This could be due to the fact that the average value of
the colonisation rates,ci, are not exactly the correct
value to use in the comparison with the deterministic
models. But what is apparent is that the region of co-
existence is greater for pre-emptive over exploitative
competition.

Obviously, we have only presented results from
a limited region of the entire parameter space
(α1, α2, β1, β2, m1, m2), but these results are indicative

of the general results. That is coexistence is possible for
a wider range of parameters in the pre-emptive model
as compared to the exploitative competition model.

5.6. Timescale for decay

ComparingFig. 4 with Fig. 7, we observe that the
timescale for decay in the exploitative competition
model is much less than that for the pre-emptive compe-
tition model. In order to quantify the length of the phase
of species decline within both of the above models (Eqs.
(13) and (17)), we approximate the decay as being ex-
ponential and calculate thehalf-life timescale from the
eigenvalues for each system. Details of the calculation
are given inAppendix C. We calculate the approximate
time taken for all non-dominant species to decay to 1%
of their initial proportion and (in the case of 6 and 180
species) the time for 50% of all species to decay to
1% of their initial values. Comparison between numer-
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Fig. 9. Dynamics of competition between two species, for the pre-emptive competition model(30)–(33)with fruiting events. Initial conditions:
(p1, p2) = (0.475, 0.475) andm = 0.0255. (A and B)α1 = 120, α2 = 25, β1 = 1.2, β2 = 0.5. (C and D)α1 = 550, α2 = 9, β1 = 1.2, β2 =
1.0. (E and F)α1 = 350, α2 = 35, β1 = 2, β2 = 0.05. Panels A, C and E show dynamics ofp1 andp2 as a function of time. Panels B, D and F
show the phase plane trajectories (solid lines) with the nullclines of the constant system of equations (dotted lines). The nullclines are given by
p1 = 0, p2 = 0, 1− p1 − p2 = γ1 and 1− p1 − p2 = γ2.

ical simulations and our calculated timescales are in
close agreement. For our competition model with two
species, our calculated time to decay is 210 years and
for six species it is 250 years. For 180 species dynam-
ics, the model predicts 350 years for 50% of the species
to decay, and 400 years for one to dominate. These val-
ues correspond well to values observed inFig. 4. The
calculated timescale for dominance for our colonisa-
tion model is 400 years for 2 species, 1.1 × 104 years
for 6 species and 3.7 × 105 years for 180 species. How-
ever, the timescale for half of the species to decay is
1000 years for 6 species and 2200 years for 180 species
(Fig. 7). Simulated timescales from our numerical ex-
periments are close to these values, however, they are
not exact due to the assumption that all species decay
exponentially. There are more complex nonlinear com-

petitive interactions between the species which may
affect the timescale for dominance. This strengthens
the case that the pre-emptive model is a more realis-
tic description of competition. This form of competi-
tive interaction slows down the rate of extinction, when
coupled with temporal variability (fruiting events) they
are sufficient to allow long-term persistence of species
in an unstable equilibrium.

5.6.1. Variability of random results
The results presented in the graphs with fruiting

events (Figs. 5 and 8) are subject to some variation due
to the fact that the interval between events is randomly
determined at each step. In the case of the exploitative
competition model, different competitors come to dom-
inate on different occasions largely due to chance. In
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Fig. 10. Summary of dynamics of competition between species with fruiting events, for the exploitative competition model(20)–(24)and the
colonisation model(30)–(33). (A) Proportion of superior competitor after 1000 years in exploitative competition model. (B) Proportion of
inferior competitor after 1000 years in exploitative competition model. (C) Coexistence or otherwise for exploitative competition model (black
for coexistence, white for single species fixation). (D) Proportion of superior competitor after 1000 years in pre-emptive competition model. (E)
Proportion of inferior competitor after 1000 years in pre-emptive competition model. (F) Coexistence or otherwise for exploitative coexistence
model (black for coexistence, white for single species fixation). Parameter values:mi = 0.0255, β1 = 2, β2 = 1. Theαi are calculated using
the expression for the average colonisation rates in Eq.(F.1), that is,αi = 1−exp(−tfβi)

tfβici
with theci being calculated fromci = m

γi
. tf is the average

value of the length of time between fruiting events, heretf = 7. Initial conditions for all simulations: (p1, p2) = (0.475, 0.475). The dotted lines
in panel C indicate the boundaries of the parameter space for unstable coexistence in the model without fruiting events—see region 1Fig. 1.
The dotted lines in panel F correspond to the line of neutrally stable coexistence in the pre-emptive competition model—see region 1 inFig. 2.
The colourbar indicates the values represented by the shading in this figure.

Fig. 11, we present the results of 100 simulations of our
exploitative competition (A) and colonisation (B) mod-
els for six species with the mean and standard deviation
for each species after 100, 200, 500 and 1000 years.
The model for six species is used for simulations in
this section, and those following, as an example which
captures all the dynamics of the model. It is clear that
our colonisation model has much lower variability than
our exploitative competition model, providing another
reason to reassess the role of exploitative competition
in tropical rain forests.

5.6.2. Periodic fruiting events
In order to assess the effect of the different compo-

nents of our model, we conducted some more numeri-
cal experiments. Firstly, we considered the colonisation
rates of the species. If we remove fruiting events from

the model and compare constant and decaying coloni-
sation rates for our competition and colonisation mod-
els, then we find that with only decaying colonisation
rates, all the species die out. This is because the contri-
bution from mortality overcomes the contribution from
colonisation.

We have incorporated fruiting events into our mod-
els as an example of a disturbance event. The frequency
of the events is periodic with a random time component
determined by a random number generator in our sim-
ulations. We carried out further numerical experiments
in order to determine whether temporal heterogene-
ity is a sufficient factor to reproduce long-term coex-
istence, or if randomness is required as well. When
we considered strictly periodic disturbance events, we
found that while the length of time to competitive exclu-
sion is greater than in a model with no fruiting events,
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Fig. 11. Mean and standard deviation of proportional abundance for the six-species competition model(20)–(24)(A) and colonisation model
(30)–(33)(B) for 100 simulations. The mean of each species is denoted by the following symbols: (1)�; (2)�; (3)�; (4)�; (5)�; (6)�; and
the standard deviation by the solid vertical lines. Note that the standard deviation for each species for the colonisation model in panel B is very
small and although displayed, is obscured by the symbols denoting the mean values. The parameter values are given inTables E.1 and E.2(mi,
αi andβi, Appendix E).

Fig. 12. Numerical experiments with periodic fruiting events for our competition model(20)–(24). The parameter values are given inTable E.1
(mi, αi andβi, Appendix E).
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competitive exclusion is not prevented (compareFig.
4 with Fig. 12 andFig. 7 with Fig. 13). Our simula-
tions also demonstrate that if a fixed period between
fruiting events is taken, one species always goes on
to dominate the others (there is no variability between
simulations). The particular species that dominates in
each case depends on the period of the fruiting event in-
terval. We would expect this to be the case as different
species benefit from a particular period. We conclude
that randomness in addition to temporal heterogeneity
is required for long-term species coexistence. Some ex-
ample results are shown inFig. 12(competition model)
andFig. 13(colonisation model).

It is interesting to note that as the length of the in-
terval between events increases, progressively lower
ranked species in the competitive hierarchy dominate,
until a threshold is reached (tf ≈ 10 for the colonisa-
tion model andtf ≈ 60 for the competition model) and
then species 1 dominates again. In each case once the
interval between events is long enough, species 1 will
dominate because the simulation proceeds as if there
are no fruiting events. This is consistent with the results

observed inFig. 4in the absence of fruiting events. Sub-
sequent resetting of conditions does not alter the dom-
inance of species 1. Obviously, if the interval between
fruiting events is greater than the average lifespan of
an individual then even species 1 will become extinct.

6. Discussion and conclusions

Two new models for the dynamics of rain forest tree
species have been proposed in this paper. The first in-
corporates a more realistic description of the process of
competition between tropical rain forest tree seedlings
than is embodied byTilman’s (1994)model. The de-
terministic model incorporates competition in the form
of both exploitative and pre-emptive competition. In
general, neither form of competition in the determin-
istic model leads to multiple species coexistence. One
species ultimately excludes all others from colonising
gaps.

However, linear stability analysis shows that there
is bistability within certain parameter regimes. This

F our co
(

ig. 13. Numerical experiments with periodic fruiting events for
mi, αi andβi, Appendix E).
lonisation model(30)–(33). The parameter values are given inTable E.2
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means that there are two stable steady states with each
species excluding the other in each one. The species
that dominates the landscape is partially determined
by the initial conditions of the system. If we imag-
ine the spatial structure of the landscape as a patch-
work, with different patches tending towards different
species dominating in each patch, then we could envis-
age that immigration between patches (due to disper-
sal) might stop any species from going extinct in each
patch. This mechanism has been invoked inBell’s neu-
tral theory (2000)and in other patch models(Yu and
Wilson, 2001). In practice this may lead to landscape
level coexistence even if patch level coexistence is not
maintained. In order to investigate such a possibility,
dispersal rates would need to be measured and anal-
ysed. However, spatial segregation of species on the
landscape has been criticised as to whether it can be
defined as coexistence(Murrell and Law, 2003).

We conclude from the results for the two models
described above that an additional factor needs to be
incorporated in order to simulate the observed lev-
els of species coexistence. We have included mast-
fruiting events, which are characteristic of Southeast
Asian rain forests, occurring with a random frequency
of between 3 and 11 years, triggered by the ENSO
(Sakai et al., 1999; Yasuda et al., 1999). The seedling
bank of each species decays over time between fruiting
events so we changed the colonisation rates (constant
until this point) to decay over time at a different rate
for each species. The consequence of this is to allow
e -
v hest
r f the
s ort-
l

a
m cies
h ur-
i of
t ping
n ork,
w heir
m syn-
c sys-
t pra-
a ents
i nter
a at a

sufficient number of adults survive the unfavourable
conditions.

Mast-fruiting events have been introduced in both
models (with exploitative and pre-emptive competi-
tion). Numerical simulation is used to generate the re-
sults, as mathematical analysis is difficult on such a
complex system. Numerically, we observe that both
models can exhibit coexisting species over some
timescales. This effect is strongest in the stochastic
model with pre-emptive competition (large numbers
of species persist after 105 years inFig. 8). In order
to achieve coexistence, in particular in the two-species
case, we are forced to use unrealistic parameter values
in the model with exploitative competition. Due to the
ecological similarities between many climax rain for-
est tree species, on biological grounds we prefer the
colonisation model. Additionally, a more thorough in-
vestigation of the parameter space (Fig. 10) leads us to
the conclusion that coexistence is also possible over a
wider range of circumstances (parameter sets) in the
stochastic model with pre-emptive competition over
the model with exploitative competition.

The random time component in the frequency of
the mast-fruiting events is essential for stability. Pe-
riodic fruiting events were shown to result in sin-
gle species dominance. The periodicity prevents some
species from making use of theirgolden period. We
believe that the random mast-fruiting events are an ex-
ample of a time-varying nonlinearity that is often in-
voked as promoting species coexistence(Levins, 1979;
H se
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2 rna-
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ach species to have agolden period during the inter
al between mast-fruiting events when it has the hig
elative colonisation rate. This is a consequence o
trict trade-off between species producing many sh
ived seedlings or few long-lived seedlings.

Kubo and Iwasa (1996)have previously proposed
odel which allows for species coexistence if spe
ave a different peak in their regeneration ability d

ng the growing season. The phenological niche
he species also varies, those with non-overlap
iches are able to persist in their model framew
hile those with broad overlapping niches do not. T
odel is applicable in environments where annual

hronous recruitment takes place. However, in our
em, this is not a valid assumption. The random su
nnual intervals between subsequent fruiting ev

n our system allows for each species to encou
favourable episode, subject to the condition th
uston, 1979; Doyle, 1981). Other models, in respon
oTilman’s (1994)model invoke spatial structure in t
orm of variable density patches which enable spe
oexistence on the landscape scale(Yu and Wilson
001). We have demonstrated that a simpler alte

ive formulation, using endogenous temporal varia
ty also allows coexistence.

Until now, many studies in the literature have
her been empirically based and developed many
egarding community processes, or purely theore
onstructs (for example, the heteromyopia propo
y Murrell and Law (2003)). We used mathematic
odelling as a tool to understand the maintenanc

pecies diversity in the tropical rain forest. The aim
his study is not to develop more theory, but to incor
ate knowledge gained empirically into the model
ramework. We were fortunate to have data on juve
opulations dynamics over 16 years to paramet
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our models. There are already many simulation mod-
els designed to incorporate all possible factors and in-
teractions, for example, the FORMIX3 model byHuth
and Ditzer (2000)and TROLL model byChave (1999).
Conversely, the models proposed here are unique such
that they express the most parsimonious representation
of the relevant biological phenomena. The modelling
framework allowed us to add or remove components
and allowed us to disentangle the effects of specific
features of the model.

The models presented in this paper incorporate sev-
eral simplifying assumptions. This is an important gen-
eral criticism made by experimentalists of modellers
(Peters, 1991). It is important to assess whether relax-
ing some of the assumptions will yield more realistic
results in terms of species coexistence and the mainte-
nance of diversity in tropical rain forests. The model
framework used so far has only taken into account adult
trees. The colonisation rates used in our models assume
an instantaneous change from juvenile to adult, while
the success of an individual in a gap is likely to be a
function of the presence of juveniles of other species,
rather than the adults. The dynamics of seedling and
sapling populations are no doubt important(Whitmore
and Brown, 1996)in the forest structure and a stage-
structured model would investigate these. In future, we
hope to examine the impact on species coexistence via
the mechanism of juvenile dynamics and adult dynam-
ics operating over different temporal scales. The model
framework we have developed allows for additional
d

en-
e t it
s
( is-
t men

of one species by another is unlikely. It also suggests
that time-varying nonlinearities are important in such
systems.
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Appendix A. Eigenvalues for coexistence steady
state for model Eqs. (7) and (8)

The eigenvalues of the Jacobian matrixJ2 in (9)can
be calculated using Maple(Waterloo Maple Software
2001)to yield:
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Appendix B. Finding the stability of the
coexistence steady state for the n-species
competition model

Initially, we need to calculate the Jacobian for the
multiple species system. From Eq.(13), we find that:

∂

∂pi

(
dpi

dt

)
= ci

(
1 −

n∑
k=1

pk

)(
1 −

i−1∑
k=1

pk

)

− cipi

(
1 −

i−1∑
k=1

pk

)
− ciγi, (B.1)

∂

∂pj

(
dpi

dt

)
= −cipi

(
2 −

i−1∑
k=1

pk −
n∑

k=1

pk

)
,

for j < i, (B.2)

∂

∂pj

(
dpi

dt

)
= −cipi

(
1 −

i−1∑
k=1

pk

)
, for j > i.

(B.3)

Considering first the casei = 1, setting dp1
dt

= 0 in
(13), we obtain eitherp1 = 0 or 1−∑n

i=1 pi = γ1.
Substituting this into Eq.(13) for i ≥ 2, we see that
1 −∑i−1

k=1 pk = γi

γ1
, and substituting this in turn into

Eqs.(B.1)–(B.3), the entries of the Jacobian become:( ) ( )

n

·
2
γ2

γ1

3
γ3

γ1

·

Jn =




a1 a1 a1 · · · a1

α2 a2 a2 · · · a2

α3 α3 a3 · · · a3

...
...

...
...

αn αn · · · an




. (B.7)

To derive results on the stability properties of the steady
states we use the following result and corollary.

Result 1. There exists at least one eigenvalue of the
stability matrix,Jn, in the right half of the complex
plane.

Corollary 2. The system of Eq. (13) for n > 1 has at
most one possible stable steady state. This is the steady
state in which only one of the species is non-zero and
all the other species die out.

Proof 1 (Proof of Result 1). TheLU decomposition
of Jn is:

|Jn| = LU =




1 0 0 · · · 0
α2

a1
1 0 · · · 0

α3

a1
0 1 · · · 0

...
...

...
... · · ·

αn



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dt
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γi

γ1
, for j ≥ i. (B.5)

From(B.4) and (B.5), we find that the general Jacobia
matrix,Jn, takes the form:
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...
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(The LU decomposition of a matrix is its equivalent
expression as a product of a lower triangular matrix, a
matrix with zeros above the diagonal,L, and an upper
triangular matrix, a matrix with zeros below the diag-
onal,U.) From theLU decomposition ofJn it is clear
that:

|Jn| = a1(a2 − α2)(a3 − α3) · · · (an − αn) < 0.

(B.8)

Sincepi ≥ 0 and 0< γ2
1 < γn < · · · < γ2 < γ1 < 1,

we have thata1 < 0, andai − αi ≥ 0 for all i. We know
thatJn = (−1)n

∏n
i=1 λi. Combining this with(B.8),

we see that there is always at least one eigenvalue with
Re(λi) > 0 for all values ofn. �

Proof 2 (Proof of Corollary 2). FromResult 1, we
know that the steady state with alln species having
a non-zero abundance is unstable. Hence, the system
reduces to that of (n − 1) species. Similarly this re-
duces by one dimension, until we are left with a two-
species system. In Section3.1, we have shown that
the only stable steady state is for one species dom-
inating and the other decaying to zero. In the one-
species case, the only possible stable steady state is
for p1 = 1 − m1

c1
> 0. The steady state (p1, 0, . . . , 0)

for n species is stable since all its eigenvalues (which
can be easily shown to beλ1 = 2c1γ1(γ1 − 1), λi =
ci(γ2

1 − γi), i = 2, . . . , n) are less than zero since 0<
γ
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is taken to be:

t1% = ln(100/y0)

mini∈[1,n] |λi| , (C.2)

and the timescale for 50% of species to decay is:

t50%
1% = ln(100/y0)

mediani∈[1,n] |λi| . (C.3)

The eigenvalues,λi used in these calculations are those
for the trivial steady state:

(0, . . . , 0, pj, 0, . . . , 0), for j ∈ [1, n].

Appendix D. Balance of proliferation and death
of species

We decided to determine, as a guide, the ratio of
αi:βi demanding that the proportions of each species
should return to their initial proportions after an average
fruiting interval, tf . In this way, we are searching for
a balance of proliferation and death of each species.
Assuming thatpi andg are constant (as there are only
small changes in proportions), we then find for the two-
species model:∫ tf

0
p1 dt = p1gα1

∫ tf

0
e−β1t dt − p1m1

∫ tf

0
dt. (D.1)

Forp1 �= 0, we obtain:

α (1 + m )t

a

F

T d the
c . For
e side
o d for
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E
t side
e

2
1 < γi < γ1 < 1 for all i. �

ppendix C. Calculating the timescale for
ecay

If we assume that a population’s decay is expon
ial, then we can calculate the time for the popula
o be reduced to half its initial value: itshalf-life. In
he same way, we can calculate the time taken fo
opulation to reduce to 1% of its initial value:

1% = ln(100/y0)

λ
, (C.1)

herey0 is the initial value of the population andλ is
he associated eigenvalue. In our models, we have
pecies interacting and their timescale for domina
1

β1
= 1 f

g
, (D.2)

nd similarly for species 2:

α2

β2
= (1 + m2)tf

g(1 − p1)
. (D.3)

or theith species, the ratio ofαi to βi is given by:

αi

βi

= (1 + mi)tf

g(1 −∑i−1
j=1 pj)

. (D.4)

hese expressions are used as a starting point to fin
orrect order of magnitude of the parameter values
xample, for two species, we can see the left-hand
f (D.2)equals 312 (from the parameter values use

he two-species exploitative competition model,Table
.1) and the right-hand side equals 239; and for(D.3),

he left-hand side equals 180 and the right-hand
quals 455.
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Appendix E.
Parameter values for numerical simulations

Table E.1
Parameter values and initial conditions for the numerical simulations shown inFigs. 4 and 5

Panel Species αi (seedlings tree−1 year−1) βi (year−1) c̄i (seedlings tree−1 year−1) mi (year−1) Initial
conditions

Top p1 500 1.6 44.6422 0.0255 0.475
p2 9 0.05 7.5937 0.0255 0.475

Middle p1 385 1.3930 39.4808 0.0255 0.1603
p2 325 1.1113 41.7611 0.0255 0.1603
p3 275 0.89 44.0543 0.0255 0.1603
p4 150 0.5785 36.3959 0.0255 0.1603
p5 90 0.3749 31.8088 0.0255 0.1603
p6 60 0.179 34.2069 0.0255 0.1603

Bottom p1 145 1.2 17.2580 0.0255 0.0053

pi (i = 2, 180) 145− 75

179
(i − 1) 1.2 − 0.4

179
(i − 1)

αi

βitf
(1 − e−βitf ) 0.0255 0.0053

Table E.2
Parameter values and initial conditions for the numerical simulations shown inFigs. 7 and 8

Panel Species αi (seedlings tree−1 year−1) βi (year−1) c̄i (seedlings tree−1 year−1) mi (year−1) Initial
conditions

Top p1 130 1.2 15.4727 0.0255 0.475
p2 25 0.5 6.9272 0.0255 0.475

Middle p1 145 1.2239 16.9216 0.0255 0.1617
p2 135 1.1647 16.5538 0.0255 0.1617
p3 90 0.9144 14.0374 0.0255 0.1617
p4 83 0.8796 13.4516 0.0255 0.1617
p5 73 0.8179 12.7088 0.0255 0.1617
p4 70 0.8047 12.3825 0.0255 0.1617

Bottom p1 145 1.2 17.2580 0.0255 0.0053

pi (i = 2, 180) 145− 75

179
(i − 1) 1.2 − 0.4

179
(i − 1)

αi

βitf
(1 − e−βitf ) 0.0255 0.0053

Appendix F. Determination of average values of
the colonisation rates

In order to compare the models without and with
fruiting events included, we introduce the definition of
c̄i, that is the average ofci over the fruiting interval,
i.e.

c̄i = 1

tf

∫ tf

0
αi e−βit dt. (F.1)
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