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1. BIOL~CICALMOTIVATIONANDTHEIMPORTANCE 
OFPATTERNFORMATION 

The generation of biological pattern and form are key issues in the early 
development of an embryo. Embryonic cells divide, migrate, and differentiate 
to form the various organs in the body. Many of these structures have a 
regular pattern, such as feather and scale patterns, while others have distinctive 
quasi-regular patterns such as the stripes on alligators and the spots on leopards. 
These markings are usually formed early in development. For example, in 
the case of the stripes on a zebra the pattern is probably laid down by the 
fourth week; this compares with a 365day gestation period. Modeling of 
biological pattern and form is discussed in detail in the book by Murray [ 11. 
The specific model discussed here was proposed in [ 21 and various biological 
applications are presented in [ 3 1. 

Pigment patterns are generated by cells which make melanin; these cells 
lie in the skin layers made up of the epidermis and the dermis. Cell migration 
and cell differentiation are two basic processes involved in the generation of 
pigmentation patterns of the vertebrate integument. Several models have been 
proposed for skin patterning. For example, reaction-diffusion models [ 4-7, 
1 ] hypothesize the existence of chemicals (morphogens) which react and diffuse 
and, under appropriate conditions, generate spatially heterogeneous patterns. 
Cells are then assumed to be preprogrammed to differentiate according to the 
level of the chemical they experience. Much of the justification for such models 
is still circumstantial. The Oster-Murray mechanochemical theory (for a re- 
view see [ 8, I] ) of biological pattern formation can also generate patterns 
similar to those created by reaction-diffusion models and their solutions ex- 
hibit similar developmental geometric constraints first described in the context 
of skin patterns by Murray [ 61. The concept of developmental constraints 
are discussed in detail in [ 21. In the model we discuss here the patterns are 
in cell density and the development of the patterns involves movement of 
actual biological cells which we believe to be the precursors of melanophores. 

The model proposed by Oster and Murray [ 21 takes account of cell motility 
and chemotaxis, the chemical processes by which ceils migrate up a chemical 
gradient. In their model the cells both respond to and produce the chemoat- 
tractant. This model was recently proposed for the stripe and shadow patterns 
on the alligator (Alligator mississipiensis) [ 9, IO]. Experimental results un- 
equivocably show that scale is crucial in determining the number of stripes 
on alligators, and that higher densities of melanin-forming cells are found in 
the dark stripe regions of the alligator. 

In Section 2 we briefly describe the chemotaxis model, while in Section 3 
we describe in detail the numerical methods involved in using ENTWIFE to 
analyze the differential equation system. In Section 4 we present a selection 
of spatially patterned solutions and discuss the complex bifurcation picture 
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that was found. We also describe the effect on the patterns of domain growth 
since in many developmental situations spatial organization of pattern takes 
place on a time scale commensurate with significant growth of the em- 
bryo [lo]. 

2. CELL-CHEMOTAXISMODELEQUATIONS 

Chemotaxis is a major factor in many developmental situations and this 
is the key aggregation force in our model. The model, discussed in detail in 
[ 2, 31, involves two dependent variables, the cell density, n( r, t), and the 
chemoattractant concentration, c( r, t), where r and t are the spatial coordinate 
and time, respectively. The model consists of a pair of coupled nonlinear 
partial differential equations which describes the motion of the cells and the 
production, diffusion, and degradation of the chemoattractant. 

The equation for cell density is 

an 
- = D,,V’n - &.(nVc) + rn(N- n), at 

diffision chemotaxis cell growth 
(2.1) 

where we have assumed that cell division may be described by a simple logistic 
growth where rN is the linear mitotic growth rate. The chemotaxis term reflects 
the fact that cells move up a concentration gradient in c; the chemotaxis 
parameter is IX We also assume that the cells diffuse with diffusion coefficient 
D,. The parameters r, N, cy, and D, are all positive constants. 

The cells are assumed to secrete their own chemoattractant in a Michaelis- 
Menten fashion. The chemoattractant diffuses with diffusion coefficient D, 
and degrades according to first-order kinetics. The equation for the chemotactic 
concentration c then takes the form 

YC, (2.2) 

diffusion production degradation 

where S, & y, and D, are all positive constants. 
We are interested in pattern formation on finite two-dimensional domains- 

the model for the skin of developing vertebrates-so we consider these equa- 
tions on a finite domain D with zero flux boundary conditions, namely 

n.Vc(r) = n-On(r) = 0 for rEdD, (2.3) 
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where n is the unit outward normal to the boundary aD. The mathemattcal 
problem consists of Eqs. (2.1) and (2.2)) with boundary conditions (2.3 ). 

To solve the equations numerically we cast the system in nondimensional 
terms by writing 

Y 1 1 l/2 r*= - r 
D,s ’ 

p 2 
s ’ 

n* = n f4 -“lc- 
p’ -s’ 

as (ye = - rP 
YD~ ’ 

r* = - (2.4) 
Y 

where s is a scale factor. We could of course absorb s into a new scaling for 
t and r but we retain it here since we can think of s = 1 as the unit domain 
and carry out the computation on a fixed domain size and increase s to 
simulate larger domains, a procedure used in the simulation of reaction- 
diffusion systems [ 4-61. With (2.4) the nondimensional equations become. 
on omitting the asterisks for notational simplicity, 

an 
- = DV2n - aV-(SC) + sm(N- n) 
at 

(2.5a) 

%-v2c+s npc 
at [ 1 1+n 

n-Vc(r) = n-Vn(r) = 0, rEdD, (2.k) 

where aD is now the boundary of the scaled domain. To be specific we consider 
the domain D to be rectangular with width Lx and length L,; we use Cartesian 
coordinates (x, y) . 

The system (2.5) has two uniform steady states, n = 0, c = 0 and n = N, 
c = N/( 1 + N), and a linear analysis about these uniform states shows that 
the trivial steady state is always unstable but that the nontrivial spatially ho- 
mogeneous solution can be driven unstable in certain parameter regimes by 
spatially heterogeneous perturbations and evolve to inhomogeneous spatial 
patterns in n and c. The form of the pattern is determined primarily by the 
nondimensional parameter set (D, (Y, r, N) and the size and shape of the 
domain. The linearized system has solutions of the form cos(m7rx/L,) 
X cos( Z*y/L,) for integers m and 1. A pattern of lateral stripes, for example, 
is given by the (0, I) mode where the higher the value of 1 the more stripes 
we have on the domain. In order to select a mode (m, I) on a rectangular 
domain we require (see Appendix for details) 
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-=1r4E2+L rNs2 2 2 

D i I Lf L$ 

Na ’ 
rN+D-(l +N)2 =&DN. 1 

(2.6a) 

Thus, our linear analysis predicts that the uniform steady state will evolve to 
a spatially nonuniform steady state in the appropriate parameter space, the 
form of the final pattern depending on the parameters. We now proceed to 
analyze the full nonlinear system for possible steady states. 

3. NUMERICAL DETAILS 

3.1. Finite-Element Equations 

The equations (2.5a) and (2.5b) are discretized in the finite-element ap- 
proximation using a standard Galerkin formulation with the second-order 
terms integrated by parts. This leads to the following form: 

s Vfn-[DV, - anVc]dV- 
s 

fn[ DVn - anVc] * dS 
D dD 

srn(N - n) - $]dV = 0 (3.1) 

s 
Vf,.VcdV- 

D 
~D~Vc.dS-s,+(&-c)-$]dV=O. (3.2) 

In these equations, D is the spatial region being discretized, aD is the boundary 
of D, dS is the vector area with direction out of the domain, fn is a test 
function for the variable n, and f, is a test function for the variable c. 

The integration by parts gives a boundary integral for each equation over 
dD. The integrand consists of a normal flux and the boundary integral con- 
tributes only when this flux is nonzero. For the present boundary conditions 
(2.5~) all boundary integrals are zero. 

In our finite-element approximation of this weak formulation of the full 
system we expand the cell density and chemoattractant in quadratic functions 
based on nine-noded quadrilateral elements. A Galerkin formulation is 
adopted in which the test functionsf, andf, are chosen from the same set of 
quadratic basis functions. The resulting integrals of products of quadratic 
functions are evaluated numerically by Gauss quadrature. The nonlinear al- 
gebraic equations for the unknown nodal values of the cell density and che- 
moattractant are linearized using a Newton-Raphson procedure, and the so- 
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lution of the linear set of equations at each iteration is obtained using a direct. 
frontal solver. 

3.2. Bifurcation Algorithms 

We write the set of nonlinear algebraic equations which result from the 
finite-element discretization of (2.5 ) as 

M$+ f(x,h,p)=O (x E Xl, (3.3) 

where f is a smooth nonlinear function, M is a linear operator on R” where 
n is the number of degrees of freedom in the discretization, X is a bifurcation 
parameter, and p is a vector of control parameters. We distinguish the bifur- 
cation parameter X from the control parameters p because we seek the change 
of behavior as this particular parameter is varied. 

In the present problem we are concerned only with steady-state solutions 
of (3.3), that is, solutions x which satisfy 

f(x, A, PI = 0, (3.4) 

and we wish to locate the critical values of h at which bifurcations in the 
solutions occur. Here, the bifurcation parameter is the chemotactic coefficient 
CY in (2.5) and the control parameters are r, D, N, and the scale parameter 
S. Our first objective will be to locate these bifurcations for fixed values of 
the control parameters. Having located a singular point we then obtain the 
variation of the solution with the critical bifurcation parameter CY with the 
control parameters fixed. We may also fix (Y and vary the control parameters. 
In this way a path of bifurcation points is traced out, and this path may itself 
have a singular point that we wish to locate. 

To understand how we are able to obtain information on possible bifur- 
cations and instabilities from the steady-state equations, we consider the linear 
stability of a steady solution ~0 of Eq. (3.4) with respect to a small perturbation 
xl. The behavior of the perturbation xl is governed to lowest order by the 
linear equation 

M 2 + f,(xrj, A, p)x, = 0. (3.5) 

Now let d be a generalized eigenvector of fx( ~0, A, p) with eigenvalue c such 
that 

f,5? = aM%. (3.6) 
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Then if the perturbation x1 is along X it behaves as 

xl(t) = t exp[-at]X, (3.7) 

where t is the component of xl along % at t = 0. The steady solution r~, is 
linearly stable if all the generalized eigenvalues u have Re( a) > 0; all small 
perturbations will decay until the steady state is restored. We note that since 
f, is real the eigenvalues in (3.6) are either real or else occur in complex 
conjugate pairs. 

As the bifurcation parameter X varies, the linear stability of the steady 
solution x,, changes when one or more of the eigenvalues in ( 3.6) crosses the 
imaginary axis. Thus there is a critical value of X for which u = 0 and f, is 
singular; this critical value is called a singular or bifurcation point of Eq. 
(3.4). We know from the Implicit Function Theorem that the uniqueness of 
the steady solution ~0 cannot be guaranteed when the Jacobian f, becomes 
singular and this usually (but not necessarily) marks the appearance of multiple 
steady-state solutions. 

We note that if a generalized eigenvalue becomes purely imaginary, that 
is, u = &io, then Eq. (3.4) has a Hopf bifurcation which gives rise to periodic 
solutions of angular frequency w at a critical value of X, although the Jacobian 
f, is not actually singular at that point. We do not address the existence of 
Hopf bifurcations in the present paper. 

3.2.1. Stability of Solution Branches. From the above discussion it might 
appear that the stability of solution branches can be deduced only from a 
computation of the full eigenvalue spectrum of f,. Fortunately, limited in- 
formation on stability can be inferred from the Jacobian determinant: since 
this is the product of the eigenvalues then its sign must equal ( - 1 )q, where 
q is the number of negative, unstable eigenvalues. Thus, a negative sign in- 
dicates that the branch is unstable since there is at least one negative eigenvalue, 
but a positive sign does not imply stability since there might be an even 
number of unstable eigenvalues. 

The sign of the Jacobian determinant is also useful for detecting bifurcation 
points along a solution branch while varying the bifurcation parameter X, 
since the sign will in general change when a singular point is passed. 

3.2.2. Extended Systems. The general procedure we adopt for locating 
bifurcation points of Eq. (3.4) is to solve the equation simultaneously with 
conditions satisfied at the bifurcation. One condition which must always hold, 
by definition, is that the Jacobian matrix is singular so that it has at least one 
zero eigenvalue. Additional conditions may hold depending on the type of 
bifurcation which is to be located and these conditions can be derived from 
singularity theory [ 111. The resulting extended system of equations are solved 
by Newton’s method to give both the solution at the bifurcation point and 
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the value of the bifurcation parameter. This approach is described in detail 
in [12]. 

The different types of singular points with which we are concerned in the 
present problem are: 

primary bifurcations from a trivial solution (that is, one which does not 
depend on the bifurcation parameter); 

simple turning points on nonlinear solution branches. 

In addition, we detected the presence of secondary bifurcations from the non- 
linear branches that originate at the primary bifurcations from the trivial 
solution, but we did not attempt to locate their positions exactly or to step 
onto the secondary bifurcating branches. 

In the present problem the spatial patterns correspond to nonlinear branches 
that bifurcate from the uniform trivial solution. We define a trivial solution 
of Eq. (3.4) to be a solution which is independent of X and denote it ~0. We 
locate bifurcations from ~0 by computing the eigenvectors [ of the Jacobian 
matrix fX( xr,, A, p) which have a simple zero eigenvalue; that is, we solve 

uxo, A, PIE = 0 

I(,$) - 1 = 0, (3.8) 

where the last equation defines a normalization for the right eigenvector [. 
The branch of solutions bifurcating away from the singular point (~0, A, 

p) may be approximated by 

x = x0 + c&J + * * - ) (3.9) 

x = x0 + 1/2t% + * - -, (3.10) 

where 6 is defined by a complex expression given by [ 13 1. 
The above expressions reflect the fact that the primary bifurcations are 

pitchfork in shape. They will be either sub- or supercritical according to 
whether 6 is negative or positive. In order to compute the solution on any 
nonlinear branch which bifurcates from the trivial solution we use Eqs. ( 3.9) 
and (3.10) to construct an initial guess at the new value of A; Newton’s method 
will then converge quadratically to the solution on the branch for sufficiently 
small (A - A,). The branch is then followed for varying X by standard con- 
tinuation techniques (see Section 3.2.3 ). 

To locate limit points (also called turning points or one-sided bifurcation 
points) we use the extended system proposed by [ 141; 
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f(x, A, P) = 0 

fx(x, A, P)E = 0 

l(5) - 1 = 0, (3.11) 

where the last equation in (3.11) is a normalization condition, as in (3.8 ). 
3.2.3. Continuation. Euler-Newton continuation is an effective means of 

following a particular solution branch. In its simplest form the solution ~0 
obtained at X = X0 and its derivative &/ah are used to predict the solution 
x1 at a new value X1, from 

(a) (b) (cd 

l 

increasing cell den&y 

I%. 1. The parameters (D, r, N) and the size and shape of the domain were fixed, and a was 
used as the bifurcation parameter. (a) D = 0.25, r = 1.52, N = 1, s = 1. Bifurcation to (0, 2) 
mode at (I = 12.01. (b) D = 0.25, r = 24.35, N = 1, s = 1. Bifurcation to (1, 0) mode at 01 
= 118.54. In this case mode (0, 4) is also a solution. To separate these degenerate modes we 
solved the system on a 1 X 4.1 domain. (c) D = 0.25, r = 1.52, N = 1, s = I. Bifurcation to ( 1, 
4) mode at a = 27.06. (In all the above cases we only show the steady-state cell density. The 
chemoattractant concentration is qualitatively similar.) 
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a 

0.8- 

im 

FIG. 2. (a) Bifurcation diagram for fixed parameter values r = 1.52, N = 1. s = 1. D = 0.25 
and varying a on a I X 4 domain. This diagram only shows the upper branches of primary 
bifurcations; secondary bifurcations from these branches were observed but not studied in detail. 
The letters A to L on the state diagram denote the patterns indicated. Note that modes (0, 4) 
and ( I, 0) are degenerate. Note also that the points of intersection of branches are not bifurcation 
points but merely where the branches overlap. (b) A different choice of measure shows the nature 
of the bifurcation of mode (0, 1) more clearly. The letters P to U denote the patterns indicated. 
[l/n/l = & (N - nl dxd.v/s, dxdy, D = domain: n(0, 0) means the value of n at the point 
(0. 01.1 
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FIG. 2-Continued 

XI = XIJ + 2 (A, - A,). (3.12) 

The Newton-Raphson iterations converge rapidly at each value of Aj, for a 
suitable step size ( Aj - Xj-r ), but this procedure ultimately fails at a limit 
point in the solution curve, where the Jacobian matrix is singular. 

In practice, we used a better method which introduces a pseudo-arclength 
parameter, s (not to be confused with the scale parameter in Section 2)) to 
parametrize the solution [ 15 1. For continuation in X = X(s) we solve the 
extended system 

fk A, PI = 0, N(x, A, s) = 0, (3.13) 

where 

N = [ 1 $ (s,,) 7‘ [x(s) - x(so)] + 2 (so) [X(s) - A(so)I - (s - so). (3.14) 

With Euler-Newton continuation in s rather than A, it is possible to follow 
the solution around a limit point, since the Jacobian matrix of system ( 3.13)- 
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b 

FIG. 2-Continued 

( 3.14) is nonsingular. The presence of a symmetry-breaking bifurcation point 
or limit point is determined by monitoring the Jacobian determinant, which 
changes sign as the singular point is passed. 

4. SPATIALPATTERNS 

In this section we present a selection of results from the application of 
ENTWINE to the steady-state problem for (2.5) on a 1 X 4 rectangular domain, 
by way of illustration of certain bifurcation tracking features of ENTWIFE. 

( 1) Varying one parameter, while keeping all others fixed. In this case we 
fix the parameter set (II, r, N) and the size and shape of the domain. We use 



BIOLOGICAL PATTERN GENERATOR 367 

the coefficient of chemotaxis, (Y, as the bifurcation parameter. ENTWIFE 
locates values of (Y at which bifurcation from the uniform steady state occurs 
and calculates the nonuniform steady state at these points. Figure 1 illustrates 
a selection of results from such calculations and Fig. 2 shows a bifurcation 
diagram obtained in this way. 

(2) Varying a parameter along a bifurcation branch. Figures 2 and 3 show 
the change in the steady-state pattern as CY varies along a bifurcation branch. 

(3) Varying two parameters. Figure 4 illustrates part of the bifurcation 
diagram in which a branch is calculated by varying one parameter. It is then 
possible to step off this branch by varying another parameter. 

(4) Varying scale and geometry. Figure 5 shows the effects on the steady- 
state pattern of changes in scale and geometry. 

5. DISCUSSION 

In this paper we have illustrated the application of the finite-element package 
ENTWIFE to the study of the steady-state bifurcation behavior of a cell- 
chemotactic model for biological pattern generation. This simple model ex- 
hibits a surprisingly complex and diverse range of patterns. In this paper we 
have presented a selection of steady-state spatial patterns. The paper by Maini 

(i) (iv) 

l 

increasing cell density 

FIG. 3. Steady-state cell density as (Y increases along the branch bifurcating at mode ( 1, 2) in 
Fig. 2. (i) (Y = 23.75; (ii) a = 27.59; (iii) 01 = 32.71; (iv) OL = 42.95; (v) (Y = 63.43. 
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FIG. 4. Bifurcation branches in two-dimensional parameter space. A, bifurcation branch in the 
U- (In 11 plane; B, bifurcation branch in the L,- IIn 11 plane obtained by stepping off A at point C. 

et al. [ 31 contains a wider range of patterns, together with a more complete 
discussion of the biological significance of these calculations. 

The numerical package ENTWIFE was used to calculate points in parameter 
space where bifurcation occurs from the uniform steady state. The calculations 
in the Appendix show that it is possible to obtain some of these results simply 

(ii) LAA 
1 I 

2 4 6 

(iii) w 
L I I 1 

2 4 6 6 

Y + 

FIG. 5. (a) Schematic diagram of the cross section in the y direction of cell density patterns as 
L, increases. (i) L,. = 4; (ii) L,. = 7.6: (iii) L,. = 8. (b) Effect of changing domain width. (i) I,, 
= 1.84; (ii) I, = 1.74. 
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from a linear analysis. However, ENTWIFE can calculate the structure of the 
steady state and its nonlinear behavior as parameters change along the bifur- 
cation branch. It also enabled us to study the effects on the pattern of changes 
in scale and geometry. The analysis of the effects of changes in such geometrical 
parameters is very important in biology. 

Here we have illustrated only some of the features of ENTWIFE. Further 
capabilities and a description of applications in the field of fluid mechanics 
are given in [16]. 

In the simulations presented, the stability of the patterns was not investi- 
gated. Thus some of the patterns may be unstable. However, in view of the 
fact that observed developmental patterns may be in response to transient 
underlying patterns, unstable patterns are still relevant. A detailed eigenvalue 
analysis along every solution branch would be necessary to prove stability of 
each pattern and to discount possible Hopf bifurcations to time-periodic pat- 
tern. Such a detailed study is possible with the techniques available in ENT- 
WIFE but is outside the scope of the present work. 

APPENDIX 

Equations (2.5) exhibit two uniform steady states for (n, c) given by (0, 
0) and (N, N/( 1 + N) . Here we carry out linear stability analysis for the 
nonzero steady state (N, N/( 1 + N)). (By inspection the steady state (0, 0) 
is always unstable.) 

We linearize (2.5) in the usual way by substituting n = N + u, c = N/( 1 
+ N) + u, where ( u 1, ] D ] are small, and retaining only linear terms. This 
gives the linear system, which governs behavior near the steady state, as 

au - = DV2u - CYNV~V - rNsu at 

du = v3) + s 
at (1 +uN)2 - ’ 1 (Alb) 

n-Vu(x) = n+Vv(x) = 0, XEaD. (Alc) 

We look for solutions to (A 1) of the form 

exp[ik. x + At], 
where X = X(k) determines the temporal growth rate of the periodic spatial 
disturbance with wave vector k. The condition for nontrivial solutions for Q, 
and u. to exist is given by 
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x*+[(D+ l)k’+rN+s]X 

+[Dk4+{rNs+Ds- (L’Na) }k2 + rNs2] = 0 (A2 ) 
(1 + N)* 

and the wave with wavenumber ] k 1 must satisfy the boundary conditions 
(Ale). Equation (A2) is the dispersion relation and determines the linear 
stability of the uniform steady state to disturbances of wave vector k. If X( k2) 
< 0 then the disturbance of wave vector k will decay with time. If X( k*) > 0 
for some k2 then the disturbance with these wavenumbers will grow and the 
system will evolve to a nonuniform spatially structured solution. 

On a rectangular domain with zero flux boundary conditions the eigen- 
functions of the linear system are cos( m~x/L,)cos(hy/L,,), where m and 1 
are integers. Thus the appropriate wave vector k has the form (k,, k,), where 
k, = (m?r/ Lx), kY = (1~1 L,), and the values of k* which produce a pattern 
are those where X( k*) > 0, where 

k.k=k*zK* (A3) 

At the onset of instability to disturbance with wave vector k,, X( kz) = 0; 
that is, kc satisfies 

SNCY 
(1 +N)* I 

k2 + rNs* = 0. (A4) 

If we wish to isolate only one unstable wave vector, we require (A4) to 
have only one solution for k*. Forcing (A4) to have equal roots results in the 
condition 

sNa ’ 
rNs + Ds - ( 1 + N)2 

I 
- 4DrNs’ = 0. (A5) 

From (A4) and (A5 ) we can deduce that the modulus of the critical wave 
vector is given by 

(Ah) 

By choosing D, s, r, and N appropriately, we can find a k2 from (A3 ) which 
also satisfies (A6), and then solve (A5 ) for (Y (we take the larger root for cr, 
so that kz is positive). This determines the point in (N, D, r, S, cy) parameter 
space where mode (A6 ) is isolated. 
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