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Abstract. This paper analyses front propagation of the equation

vτ =
h
D(v)vx

i
x

+ f(v) τ ≥ 0, x ∈ R,

where f is a monostable (i.e. Fisher-type) nonlinear reaction term and D(v)
changes its sign once, from positive to negative values, in the interval v ∈ [0, 1]
where the process is studied. This model equation accounts for simultaneous
diffusive and aggregative behaviors of a population dynamic depending on the
population density v at time τ and position x. The existence of infinitely
many traveling wave solutions is proven. These fronts are parameterized by
their wave speed and monotonically connect the stationary states v ≡ 0 and
v ≡ 1. In the degenerate case, i.e. when D(0) = 0 and/or D(1) = 0, sharp pro-
files appear, corresponding to the minimum wave speed. They also have new
behaviors, in addition to those already observed in diffusive models, since they
can be right compactly supported, left compactly supported, or both. The dy-
namics can exhibit, respectively, the phenomena of finite speed of propagation,
finite speed of saturation, or both.
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1. Introduction. This paper investigates a special class of dynamics of the equa-
tion

vτ =
[
D(v)vx

]
x

+ f(v) τ ≥ 0, x ∈ R, (1)

which has been proposed to model several biological phenomena (see e.g. [12]).
Perhaps the most well known version is the so called mono-stable (or Fisher) model,
where f(v) satisfies

f(v) > 0 in (0, 1) , f(0) = f(1) = 0. (2)

In this case, v ≡ 0 and v ≡ 1 are solutions of (1) and it is of great interest to
investigate the form of solutions v(τ, x) connecting these two stationary states.
This analysis is mainly driven by searching for traveling wave solutions (t.w.s.) of
(1) lying between 0 and 1. Indeed t.w.s. play a relevant role in describing the
asymptotic behavior of general classes of solutions of (1) (see e.g. [7] for some
recent results).

We recall that a t.w.s. is a solution v(τ, x) having a constant profile, that is
such that v(τ, x) = u(x − cτ) = u(t) for some function u(t), the wave shape, and
constant c, the wave speed. Notice in particular that a t.w.s. connecting 1 to 0
always satisfies the boundary value problem

(D(u)u′)′ + cu′ + f(u) = 0 (3)

u(−∞) = 1, u(+∞) = 0. (4)
The case when (1) models a reaction-diffusion process, that is when

D(u) > 0 for all u ∈ (0, 1) (5)

with possibly D(0) = 0 or D(0) = D(1) = 0, has been extensively studied. Under
different regularity conditions, it has been shown that equation (1) is able to support
a continuum of wave profiles connecting 0 to 1, parameterized by their speeds. A
relatively full account of the results obtained and the techniques used can be found
in the papers [3, 9, 14, 15] and in the monographs [4, 5].

Equation (1) can provide a model also for aggregating processes, occurring when
D(u) < 0 in some interval in (0, 1). Indeed it describes the behavior of a population
which reacts against the threat of extinction by clustering into groups (see [13] and
references contained there). In this context the term f(u) accounts for the net rate
of growth.

These models originate from suitable approximations of discrete processes where
attraction among individuals is combined with an underlying random walk behavior
(see e.g. [18]). In the case of zero reproduction rate, the approximated dynamic
precisely behaves as follows

vt = −(
vk(v)vx

)
x

+ µvxx

where µ > 0, k(v) is a continuous function and the term µvxx accounts for the
underlying random walk process. Notice that, in this case, D(v) = µ− vk(v). With
a low population density, the probability of conspecifics present in the vicinity can
be ignored. Therefore µvxx prevails and this explains why D(u) > 0 for u near 0.

The aim of this paper is to study the influence of aggregating phenomena. There-
fore, throughout this paper we assume that

D(u) > 0 in (0, β) , D(u) < 0 in (β, 1). (6)

for some given β ∈ (0, 1).
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We remark that the dynamics and the form of front propagation for equation (1)
under condition (6), is still an open problem. We start to develop this theory in
the present paper and we refer to [16] for a similar investigation in the special case
when D(u) < 0 for all u ∈ (0, 1).

In the interval (β, 1) where D(u) < 0, the standard initial-boundary value prob-
lems associated with (1) are not well-posed (see [1] and [2]). Recall that according
to Hadamard [6] a problem is said to be well-posed if a unique solution exists which
depends continuously on the initial data.

The study of ill-posed problems, both with numerical (see [11]) and analytical
methods, has been the object of increasing interest mainly motivated by their ap-
plications as possible models for describing a number of biological phenomena. In
these frameworks, in [13] Padrón has recently investigated ill-posed initial-boundary
problems associated with (1), by a Sobolev perturbation method obtaining the exis-
tence and uniqueness of a global solution. This technique, already employed for the
backward heat equation, consists of introducing in (1) the additional regularizing
term (λvt − λf(v))xx with λ > 0, where f(v) is of a bi-stable type, accounting for
the reduction of reproductive opportunities at low population densities. Numerical
simulations, carried out for small values of the parameter λ, suggest that the so-
lutions stabilize asymptotically in time towards discontinuous steady states v∞(x)
which typically assume only the values 0 and 1.

The possible ill-posedness of our non-regularized model (1) is due to the very
nature of aggregating processes. Indeed, they are characterized by movement of
individuals up the population gradient, so that the gradient becomes steeper and
steeper, causing the unevenness of the solution. In other words, the aggregation
process can cause the appearance of clumps, with sharp borders. So, one expects
that the existence of a classical solution could fail in this context. On the other
hand, this simple model provides analytical insights into the aggregation processes.
Moreover, notice that discrete models underlying equation (1) are well-posed and
numerical computations (see [18]) reveal a good agreement between the information
obtained in the discrete setting and the predictions derived from equation (1).

This paper gives a fairly complete investigation of front propagation for equation
(1) under condition (6) which helps in better understanding aggregating processes.
Front solutions, in fact, provide a class of regular solutions of (1) (regularity possibly
failing at most at the equilibria v = 0 and v = 1 ). We also remark that minimum
speed profiles, in particular sharp profiles of type (III) (see definition below), seem
in good agreement with steady states obtained in [13].

An interesting situation occurs when D(0) = 0. Due to the consequent lack
of regularity at u = 0, in the diffusive case (5), the appearance of weak t.w.s.
corresponding to the minimum wave speed was shown in [14, 15]. In this case, the
dynamics (1) is usually said to exhibit the important phenomenon of finite speed
of propagation. The investigation was then generalized in [9] to a wider class of
dynamics and to a doubly-degenerate diffusivity, i.e. satisfying D(0) = D(1) = 0.
The relevance of the latter case to the theory of biological pattern formation was
discussed in [17].

The main aim of this paper is to show that, when D(0) = D(1) = 0, diffusion-
aggregation models are able to support three different types of weak t.w.s., including
the one observed in the case of diffusion. All of them appear with minimum wave
speed, and can justify both right and left finite speed of propagation; further, in one
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case, they exhibit the compact support property. The following definition describes
their behavior.

Definition 1. Consider equation (1) under conditions (2) and (6). A function
u = u(t) is said to be a sharp-type t.w.s. of (1) connecting the stationary states 0
and 1, if one of the following three cases occurs:

• D(0) = 0 and there exists t∗1 ∈ R such that u(t) is a solution of (3) in (−∞, t∗1)

u(−∞) = 1, u(t∗1
−) = 0, u′(t∗1

−) 6= 0 and lim
t→t∗1

−
D(u(t))u′(t) = 0. (7)

In this case u is said to be sharp of type (I).
• D(1) = 0 and there exists t∗0 ∈ R such that u(t) is a solution of (3) in (t∗0, +∞)

u(t∗0
+) = 1, u′(t∗0

+) 6= 0, u(+∞) = 0 and lim
t→t∗0

+
D(u(t))u′(t) = 0. (8)

In this case u is said to be sharp of type (II)
• D(0) = D(1) = 0 and there exist t∗0, t

∗
1 ∈ R such that u(t) is a solution of (3)

in (t∗0, t
∗
1)

u(t∗0
+) = 1, u′(t∗0

+) 6= 0, u(t∗1
−) = 0, u′(t∗1

−) 6= 0 and
lim

t→t∗0
+
D(u(t))u′(t) = lim

t→t∗1
−

D(u(t))u′(t) = 0. (9)

In this case u is said to be sharp of type (III)

We underline that in the previous definition the values u′(t∗+0 ), u′(t∗−1 ) may be
infinite. Classical t.w.s. will be denoted front-type solutions. The following figures
show the various profiles of t.w.s.

sharp of type (I) t.w.s. sharp of type (II) t.w.s.

sharp of type (III) t.w.s. front-type t.w.s.
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In Remark 2 we will see that, whenever the t.w.s. u is sharp of type (I), with a
wave speed c, and Ḋ(0) 6= 0, u reaches the equilibrium 0 with the slope −c/Ḋ(0).
In this case the limit involving D(u(t))u′(t) is trivially satisfied hence the dynamics
corresponds to the same weak behavior observed in [14] for diffusive processes.
Similarly, when the t.w.s. is sharp of type (II) with wave speed c and Ḋ(1) 6= 0,
it leaves the equilibrium 1 with the slope −c/Ḋ(1). Instead, when Ḋ(0) = 0 or
Ḋ(1) = 0, the sharp t.w.s. have infinite slope at the corresponding equilibrium
and the validity of the limit in Definition 1 is not trivial anymore and becomes an
effective requirement which characterizes sharp t.w.s.

Concerning diffusive processes, many authors pointed out (see e.g. part IV of
the proof of Theorem 1) the equivalence between the existence of t.w.s. for (1) and
for the constant diffusion equation

vτ = vxx + D(v)f(v), τ ≥ 0, x ∈ R. (10)

This explains the introduction of the following function

g(u) := D(u)f(u), u ∈ [0, 1] (11)

when treating this subject. When D satisfies conditions (6), the above equivalence
implies the existence of a system of t.w.s. for equation (1). In fact, for u ∈ [0, β]
the function g(u) represents a mono-stable reaction term, hence (10) has infinitely
many t.w.s., connecting 0 to β, with the minimum wave speed c∗0β > 0. On the
other hand, in the interval [β, 1], equation (10) is equivalent to

wτ = wxx + D̃(w)f̃(w), τ ≥ 0, x ∈ R
where D̃(u) := −D(1− u) and f̃(u) := f(1− u) for u ∈ [β, 1]. Therefore, a second
mono-stable reaction process is involved, in [β, 1], giving rise to other infinitely
many t.w.s. from β to 1 whose wave speeds are greater than or equal to a certain
threshold c∗β1 > 0.

The existence and properties of front propagation between 0 and 1 in diffusion-
aggregation processes highly depends on this system of waves. The following theo-
rem, which is our main result, investigates this dependence. While sharp waves of
type (I) are also encountered in diffusive processes, we remark that sharp profiles
of types (II) and (III) are typical of aggregation-diffusion processes and, as far as
we know, have not been previously discussed in this framework. Instead, profiles
of types (II) and (III) occur in reaction-diffusion-convection processes and their
appearance in that context is due to the convective effects, as shown in [10].

Before stating the main theorem, we need to recall the definition of Dini-derivatives.
Given an arbitrary function h(u) and a point u0 in its domain, we recall that the
upper right Dini-derivative in u0 is given by

D+h(u0) = lim sup
u→u0

h(u)− h(u0)
u− u0

.

When replacing lim sup with lim inf one can define the lower right Dini-derivative
D−h(u0) and similar definitions hold for the upper and lower left Dini-derivatives
D+h(u0) and D−h(u0). Of course they all reduce to h′(u0), when it exists.

Theorem 1. Let f ∈ C[0, 1] and D ∈ C1[0, 1] be given functions respectively satis-
fying (2) and (6). Assume

D+g(0) < +∞ (12)

D−g(1) < +∞ (13)
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with g defined as in (11). Then, there exists a value c∗ > 0, satisfying

2
√

max{D+g(0), D−g(1)} ≤ c∗ ≤ 2

√
max

{
sup

0<s≤β

g(s)
s

, sup
β≤s<1

g(s)
s− 1

}
(14)

such that equation (1) has
i) no t.w.s. satisfying (4) for c < c∗;
ii) a unique (up to space shifts) t.w.s. for c = c∗. It is:

- sharp of type (I) if and only if D(0) = 0 and c∗0β > c∗β1,
- sharp of type (II) if and only if D(1) = 0 and c∗0β < c∗β1,
- sharp of type (III) if and only if D(0) = D(1) = 0 and c∗0β = c∗β1,
- of front-type and satisfying (4) in the remaining cases;

iii) a unique (up to space shifts) t.w.s. satisfying (4) for c > c∗ which always has a
front-type profile.

Notice that condition (12) is satisfied both when D(0) = 0 and when f ′(0+)
exists and is finite, because D+g(0) = 0 and D+g(0) = D(0)f ′(0+), respectively.
Similarly, (13) is satisfied whenever D(1) = 0 or f ′(1−) exists and is finite.

As an illustrative example, we consider the following model proposed by Turchin
(see [18] and also [16]), in order to describe the aggregative movements of Aphis
varians

ut =
[(µ

2
− 2k0u(1− u

w

)
ux

]
x
, t ≥ 0, x ∈ R (15)

where u = u(t, x) denotes the population density and µ, k0, w are positive real
constants; (15) can be considered as the first consistent model which takes into
account the mutual attraction and repulsion behaviors of individuals. Indeed, when
µ < k0w and wµ < 4k0(w − 1), the function D(u) = µ

2 − 2k0u(1 − u
w ) satisfies

condition (6) with β = w
2

[
1−

√
1− µ

k0w

]
.

When a nonlinear rate of growth f(u) with a logistic-type behavior (i.e. satis-
fying (2)), is included, the process belongs to the class investigated in Theorem 1.
Therefore, it is able to support infinitely many t.w.s. parameterized by their wave
speeds c ≥ c∗ > 0; moreover, since D(0) = µ

2 > 0, these waves are all of front-type.
Finally, in the special case when f(u) = u(1− u), according to (14), the minimum
speed c∗ satisfies c∗ ≥ 2k0(1− 1

w )− µ
2 > 0.

The proof of Theorem 1 is developed in several parts and is contained in Section
3. Section 2 is devoted to diffusive processes, i.e. to the case when D satisfies
(5). It shows the main techniques employed throughout the paper and gives some
preliminary results.

For the investigation of t.w.s. in reaction-diffusion processes, a dynamical sys-
tems approach has often been successfully employed. To begin, the first order
singular system {

u′ = w

D(u)w′ = −cw − Ḋ(u)w2 − f(u)
(16)

associated with (3) is written down. Notice, however, that when D satisfies (6) and
D(0) = 0, (16) has two singularities: u = 0 and u = β. Therefore, the classical
change of variables τ = τ(t) defined by dτ

dt = 1
D(u(t)) (see e.g. [12], page 290) may

not be valid on all the strip {(u,w) : 0 < u < 1, w ∈ R}. It is mainly for this reason
that it seems quite difficult to follow a similar approach, when condition (6) holds.
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In this paper we reduce the existence of t.w.s. to the study of the first order
singular equation which was already proposed in [3] and [4]. In particular, let u(t)
denote a wave profile of (1) and assume u′(t) < 0 for t in some interval (a, b); the
latter inequality is always true, as we shall see in Proposition 1. For u ∈ (u(b), u(a)),
it is possible to express u′ = u′(u) so we can define

z(u) := D(u)u′(u), u(b) < u < u(a). (17)

It is easy to see that z(u) satisfies the first order equation

ż = −c− g(u)
z

(18)

and we remark that (18) is singular, when considered on all the interval (0, 1). In
contrast to [3, 4], here (18) will be studied with comparison-type methods.

2. Mono-stable reaction-diffusion processes. This section deals with the case
when D is strictly positive in (0, 1), including the cases D(0) = 0 and D(1) = 0.
When assuming D(0) = 0 but Ḋ(0) 6= 0, it was proved in [9] that the problem of
existence of t.w.s. of (1) from 0 to 1 is equivalent to the solvability condition of the
following boundary value problem





ż = −c− g(u)
z , u ∈ (0, 1)

z(u) < 0,
z(0+) = 0, z(1−) = 0

(19)

associated with (18). As it is known (see e.g. [14]), in this case the weak t.w.s. cor-
responding to the threshold speed is sharp of type (I). In order to simplify notation,
throughout we put

t̄ :=
{

+∞ if u(t) is a front-type t.w.s.
t∗1 if u is a sharp t.w.s. of type (I) (20)

Theorem 3 (below) again investigates this equivalence, but in the more general
situation D(0) = Ḋ(0) = 0 and D(1) = Ḋ(1) = 0.

We start with Theorem 2 concerning the solvability of problem (19). The result
appeared in [8] for D(u) > 0 in [0, 1], and then in [9] for D(0) = 0 but Ḋ(0) 6= 0.
We present it here again for the sake of completeness, as it is a preliminary result
for studying mono-stable diffusion-aggregation processes.

Theorem 2. Let f ∈ C[0, 1], D ∈ C1[0, 1], respectively satisfying (2) and (5) and
assume that (12) holds. Then there exists c∗ > 0 satisfying

2
√

D+g(0) ≤ c∗ ≤ 2

√
sup

s∈(0,1]

g(s)
s

(21)

such that (19) is solvable if and only if c ≥ c∗. Moreover, for every c ≥ c∗, the
solution is unique.

Proof. A similar result was already proved in [9, Theorem 9] when D(0) = 0.
According to (12), when D(0) > 0, the value N := sups∈(0,1]

g(s)
s defined in step

I of the quoted result satisfies N < +∞. Consequently, one can reason as in
[9] and prove, in all cases, the unique solvability of (19) for every c ≥ c∗, with
c∗ > 0 satisfying the upper bound in (21). Thus it remains to show only the lower
bound of (21) when D(0) > 0. This follows from [8, Theorem 4.1] and the proof is
complete.
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The following result is needed in order to prove the equivalence stated in Theorem
3.

Proposition 1. Let u(t) be a sharp t.w.s. of type (I), or a front-type t.w.s. sat-
isfying (4), of equation (1). Then u′(t) < 0 whenever 0 < u(t) < 1 and the wave
speed c is positive.

Proof. Let u(t) be a t.w.s. with speed c which is sharp of type (I), or of front-type
satisfying (4). Integrating (3) in some interval [t, t1] ⊂ (−∞, t̄) with t̄ defined as in
(20), one obtains

D(u(t1))u′(t1)−D(u(t))u′(t) = −c(u(t1)− u(t))−
∫ t1

t

f(u(s)) ds.

Since f is positive and u(−∞) = 1, the limit lim
t→−∞

D(u(t))u′(t) exists, hence it must

be zero. When u(t) is of front-type, one can similarly show that lim
t→+∞

D(u(t))u′(t) =

0. Consequently, from integrating equation (3) over (−∞, t̄) it follows that

−c +
∫ t̄

−∞
f(u(s)) ds = 0

implying c > 0. Moreover, according to (2) and (5), from (3) it follows that if there
exists t1 ∈ R such that 0 < u(t1) < 1 and u′(t1) = 0, then t1 is a proper local
maximum point of u(t). Therefore, since u(−∞) = 1, there must be another point
−∞ < t0 < t1 satisfying u(t0) = u′(t0) = 0. Integrating (3) in [t0, t̄], with t̄ defined
as in (20), it follows that ∫ t̄

t0

f(u(s)) ds = 0

which contradicts the positivity of f . Hence u′(t) < 0 whenever 0 < u(t) < 1 and
the proof is complete.

Theorem 3. Let f ∈ C[0, 1], D ∈ C1[0, 1], respectively satisfying (2) and (5). The
existence of a t.w.s. u(t) of equation (1), with wave speed c, satisfying (4) or (7),
is equivalent to the solvability of problem (19), with the same c.

Proof. Let u(t) be a t.w.s. of (1) satisfying (4) or (7). According to Proposition 1,
z(u) can be defined as in (17), for 0 < u < 1. Moreover, in the proof of Proposition
1 it is shown that lim

t→−∞
D(u(t))u′(t) = 0; the same is true also as t → +∞ and u(t)

is of front-type. Hence the necessary condition holds.
It remains to prove sufficiency. Let z(u) be a solution of (19) for some c > 0 and

denote by u(t) the unique solution of

u′(t) =
z(u)
D(u)

, u(0) =
1
2

defined on its maximal existence interval (a, b). Notice that u is monotone decreas-
ing, and u(a+) = 1, u(b−) = 0. Further, u(t) satisfies (3) for a < t < b, hence it is
a t.w.s. of (1). Now we show that the boundary conditions (4) or (7) are satisfied.
Indeed, since

lim
t→a+

u′(t) = lim
u→1−

z(u)
D(u)

and lim
t→b−

u′(t) = lim
u→0+

z(u)
D(u)

, (22)

if D(0) ·D(1) 6= 0, then u(t) satisfies (4) also if a > −∞ and/or b < +∞. Consider
now the case D(1) = 0. Reasoning as in the proof of [9, Lemma 15], it is possible to
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show that ż(1) = 0. We remark that ż(1) = 0 holds also when Ḋ(1) = 0. This case
was not considered in the quoted paper. When Ḋ(1) 6= 0, this immediately implies

lim
t→a+

u′(t) = lim
u→1−

z(u)
D(u)

= lim
u→1−

z(u)
u− 1

u− 1
D(u)

= 0.

Now, let D(1) = Ḋ(1) = 0. Since ż(1) = 0, there must be a sequence {un} such
that un → 1− and ż(un) → 0 as n → +∞. According to (19), this implies

z(un)
D(un)

→ 0 as n → +∞. (23)

Given ε > 0, let ζε(u) := −εD(u). It follows that

ζ̇ε(u) → 0, and − c− D(u)f(u)
ζε(u)

→ −c as u → 1−; (24)

hence there exists δ > 0 such that

ζ̇ε(u) > −c− D(u)f(u)
ζε(u)

, for 1− δ < u < 1.

According to (23), it is not restrictive to assume z(1−δ) > ζε(1−δ). We claim that
z(u) > ζε(u) for all 1 − δ < u < 1. Indeed, by contradiction, assume the existence
of 1 − δ < ū < 1 such that z(ū) = ζε(ū). By (24) we have ż(ū) < ζ̇ε(ū); moreover,
z(u) < ζε(u) in an interval, implies ż(u) < ζ̇ε(u) in the same interval again from
(24). This leads to the contradictory conclusion z(1−) < 0. Therefore, z(u) > ζε(u)
on all [1− δ, 1), hence

lim inf
t→a+

u′(t) = lim inf
u→1−

z(u)
D(u)

≥ lim
u→1−

ζε(u)
D(u)

= −ε.

Since u′(t) < 0 for every t ∈ (a, b), the arbitrariness of ε implies u′(a+) = 0.
Therefore, u(t) can always be continued on all (−∞, b) and u(−∞) = 1.

Assume now D(0) = 0. Reasoning as in [9, Lemma 5], it is possible to show that
ż(0) exists and ż(0) = 0 or ż(0) = −c. Obviously b = +∞ implies u(+∞) = 0
and u(t) is a front-type t.w.s. Thus the interesting case occurs when b is finite. If
Ḋ(0) 6= 0 and ż(0) = 0, then (22) yields u′(b−) = 0; therefore u(t) can be continued
on all (−∞,+∞) and it is of front-type. Instead, when ż(0) = −c < 0, by (22) it

follows that u′(b−) =
−c

Ḋ(0)
. In every case u(t) satisfies (7) with t∗1 = b, hence it is

a sharp t.w.s.

Assume now D(0) = 0 and ż(0) = −c. In this case we have lim
t→b−

u′(t) = lim
u→0+

z(u)
D(u)

=

−∞, so b < +∞ and u satisfies (7), that is u is sharp of type (I).
The final case to be considered is D(0) = Ḋ(0) = ż(0) = 0. Since ż(0) = 0, it

is possible to find a sequence {un} such that un → 0+ and ż(un) → 0 as n → ∞.
According to (19), this implies

D(un)f(un)
z(un)

→ −c, as n → +∞. (25)

Given an arbitrary ε > 0, consider again ζε(u) with u ∈ (0, 1). Notice that it is
possible to find δ ∈ (0, 1) satisfying

ζ̇ε(u) > −c− D(u)f(u)
ζε(u)

for u ∈ (0, δ).
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According to (25), assuming δ sufficiently small, z(δ) > ζε(δ) holds. Consequently,
it is easy to prove that z(u) > ζε(u) on all (0, δ), which implies

lim inf
u→0+

z(u)
D(u)

≥ lim
u→0+

ζε(u)
D(u)

= −ε.

For the arbitrariness of ε > 0, u′(b) = 0 follows and the t.w.s. is of front-type.

Remark 1. According to Theorem 2 and Proposition 1, it is possible to prove that
(1) admits a unique (up to space shifts) t.w.s. of wave speed c satisfying (4) or (7)
if and only if c ≥ c∗ with c∗ defined as in (21). Its profile is sharp if and only if
D(0) = 0 and ż(0) = −c. Notice that ż(0) = −c may occur at most when c = c∗,
as proved in [9, Corollary 11]. Indeed ż(0) = −c∗, when D(0) = 0, as shown in [9,
Theorem 2] where the proof does not depend on Ḋ(0); therefore the profile is sharp if
and only if D(0) = 0 and c = c∗. Though this is an expected result, and we refer, for
example, to [4] and [5, Theorem 33] for the cases when D(u) > 0 in [0, 1], and to [9]
and [15] for D(0) = D(1) = 0, D(u) > 0 in (0, 1) but Ḋ(0)Ḋ(1) 6= 0, we remark that
the techniques introduced in this paper are able to discuss the qualitative behavior
of the minimum speed front also when D(0) = Ḋ(0) = 0 and/or D(1) = Ḋ(1) = 0.

3. Mono-stable diffusion-aggregation processes. By means of the results and
techniques introduced in the previous section, we now present the proof of Theorem
1 dealing with front propagation for mono-stable diffusion-aggregation dynamics.

Proof of Theorem 1. The proof contains several parts.
I - Existence of fronts for c ≥ c∗ and estimate of c∗. Let us consider the first order
equation (18) for 0 < u < β. Note that g(u) is a mono-stable, i.e. of Fisher-type,
reaction function in the interval [0, β]. Since (12) is satisfied, Theorem 2 holds
in [0, β], and we deduce the existence of a threshold value c∗1 > 0, satisfying the
estimate

2
√

D+g(0) ≤ c∗1 ≤ 2

√
sup

s∈(0,β]

g(s)
s

(26)

such that (18) has a unique negative solution z(u) in (0, β) with z(0+) = z(β−) = 0,
if and only if c ≥ c∗1.

Given c ≥ c∗1, consider the Cauchy problem
{

u′ = z(u)
D(u) , 0 < u < β

u(0) = β
2 .

(27)

Let u(t) be the unique solution of (27) defined in its maximal existence interval
(t1, t2), with −∞ ≤ t1 < t2 ≤ +∞. It is easy to see that u(t) is a solution of (3) in
(t1, t2).

Observe now that u′(t) < 0 for every t ∈ (t1, t2), so there exists the limit u(t−2 ) ∈
[0, β). Since z(u) 6= 0 in (0, β), we deduce that u(t−2 ) = 0. Moreover, since ż(u) =
−c− g(u)

z(u) > −c for every u ∈ (0, β), then z(u) > −cu in (0, β). So, denoting by t(u)
the inverse function of u(t) in (t1, t2), when D(0) 6= 0 we have

t2 − t
(β

2

)
=

∫ 0

β/2

ṫ(u) du =
∫ β/2

0

D(u)
−z(u)

du ≥
∫ β/2

0

D(u)
cu

du = +∞, (28)

that is, t2 = +∞.
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In order to study the behavior of u(t) when t → t+1 , we will use the following
lemma, whose proof is left until the end of the present proof.

Lemma 1. Under the assumptions of Theorem 1, for every c ≥ c∗1 there exists

ż(β) = 1
2 (

√
c2 − 4f(β)Ḋ(β)− c), and

lim
u→β−

z(u)
D(u)

= − 2f(β)

c +
√

c2 − 4f(β)Ḋ(β)
. (29)

Taking into account that u(t+1 ) = β and according to (29) there exists the limit

lim
t→t+1

u′(t) = lim
u→β−

z(u)
D(u)

6= 0.

Therefore t1 ∈ R and we obtain a solution u(t) of equation (3) in (t1, t2) such
that t1 ∈ R, t2 ≤ +∞, u(t1) = β, u(t2) = 0 and u′(t1) satisfying (29). Moreover
D(0) 6= 0 implies t2 = +∞.

Let us now consider (3) when β < u < 1. We make the following change of
variable:

D̃(u) := −D(1− u) , f̃(u) := f(1− u) , g̃(u) := D̃(u)f̃(u) = −g(1− u).

Since g̃(u) > 0 for every 0 < u < 1− β, with g̃(0) = g̃(1− β) = 0 and according to
(13), D+g̃(0) < +∞, we can apply Theorem 2 in [0, 1− β] and derive the existence
of a threshold value c∗2 > 0 satisfying

2
√

D+g̃(0) ≤ c∗2 ≤ 2

√
sup

s∈(0,1−β]

g̃(s)
s

,

that is

2
√

D−g(1) ≤ c∗2 ≤ 2

√
sup

s∈[β,1)

g(s)
s− 1

, (30)

such that the equation

ẇ = −c− g̃(u)
w

, 0 < u < 1− β, (31)

admits negative solutions w(u), satisfying w(0+) = w((1− β)−) = 0, if and only if
c ≥ c∗2. Putting z(u) := −w(1− u), we have

ż(u) = ẇ(1− u) = −c− g̃(1− u)
w(1− u)

= −c− g(u)
z(u)

, β < u < 1.

Moreover, z(β+) = z(1−) = 0, and z(u) > 0 for every u ∈ (β, 1) . So, if we consider
the Cauchy problem {

u′ = z(u)
D(u) , β < u < 1

u(0) = 1+β
2

(32)

we can repeat the same arguments developed for the case when 0 < u < β, and
obtain that the unique solution u(t) of problem (32) is a solution of (3) in (τ1, τ2),
with τ1 ≥ −∞, τ2 ∈ R, u(τ−1 ) = 1, u(τ+

2 ) = β and u′(τ+
2 ) satisfying (29). In fact,

as in the case when u ∈ (0, β), it follows that

u′(τ+
2 ) = − 2f̃(1− β)√

c2 − 4 ˙̃g(1− β) + c
,
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implying (29). Moreover, since ż(u) < −c on (β, 1), then z(u) > c(1 − u) in the
same interval. Therefore, when D(1) 6= 1, this implies

t
(1 + β

2

)
− τ1 =

∫ 1

1+β
2

ṫ(u) du =
∫ 1

1+β
2

D(u)
z(u)

= +∞ (33)

that is, τ1 = −∞. Therefore, putting c∗ := max{c∗1, c∗2}, by (26) and (30) we find
that c∗ satisfies the condition (14). Moreover, for every c ≥ c∗ we can glue the
solutions of (27) and (32) by a time-shift, obtaining a C2 function u(t) on some
interval (a, b), with −∞ ≤ a < b ≤ +∞, which is a decreasing solution of equation
(3) in (a, b) and satisfies u(a+) = 1 and u(b−) = 0.

II) Positivity of c∗. This follows immediately from the positivity of c∗1 and c∗2.

III) Non-existence for c < c∗. Let u be a t.w.s. of equation (1). Notice that
D(u) > 0, whenever 0 < u(t) < β. Therefore it is possible to reason as in the proof
of Proposition 1, and show that u′(t) < 0 whenever 0 < u(t) < β. This implies the
existence of the inverse function t(u) in (0, β); defining z(u) as in (17), then z(u)
satisfies (18) for 0 < u < β, and z(β−) = D(β)u′(t(β)) = 0. Moreover, as in the
proof of Proposition 1, one can show that lim

t→t̄
D(u)u′(t) = 0, where t̄ was defined

in (20); this implies z(0+) = 0.
Summarizing, if (3) has a solution u(t) for some real c, satisfying any one of the

conditions (4), (7), (8) and (9), then equation (18) has a negative solution z(u),
satisfying z(0+) = z(β−) = 0. Therefore, by applying Theorem 2, we deduce that
c ≥ c∗1.

Similarly, it is possible to show that if (3) has a solution u(t) for some real c,
satisfying any one of the conditions (4), (7), (8) and (9), then u′(t) < 0 whenever
β < u(t) < 1. If we define w(u) := −D(1−u)u′(t(1−u)) for 0 < u < 1−β, it is easy
to check that w is a negative solution of (31), satisfying w(0+) = w((1− β)−) = 0.
Therefore, by applying Theorem 2, we deduce that c ≥ c∗2.

Summarizing, c ≥ c∗ is a necessary condition for the existence of t.w.s. of (1)
satisfying any one of the conditions (4), (7), (8) and (9).

IV) Sharp-type profile for c = c∗. First of all notice that the existence of t.w.s. of
(10) between its stationary states 0 and β is equivalent to the solvability of (19)
with 1 replaced by β. This can be easily proved following the same arguments as in
the proof of Theorem 3. Therefore c∗1 = c∗0β . Similarly one can show that c∗2 = c∗β1.

According to Remark 1, the solution of (27) is sharp of type (I) if and only if
D(0) = 0 and c = c∗1. Similarly, the solution of the following problem

{
v′ = w(v)

−D(1−v) , 0 < v < 1− β

v(0) = 1−β
2

(34)

is sharp, again of type (I), if and only if D(1) = 0 and c∗ = c∗2. Notice that the
change of variable u = 1− v reduces (34) to (32); hence the sharpness phenomenon
appears at the point u = 1. Since the t.w.s. u∗(t) of (1), having wave speed c∗, is
obtained by gluing the solutions of (24) and (34), after a possible time-shift, this
implies the behavior of u∗(t) near 0 and 1.

V - Study of the front-type profile for c > c∗. The argument derives from Remark
1, and it is similar to the one for c = c∗. The proof is then complete.
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Proof of Lemma 1. For c ≥ c∗1, let z(u) be the solution of (18) satisfying z(0+) =
z(β−) = 0. Put α := 1

2 (
√

c2 − 4ġ(β)− c) and assume the existence of the limit

λ := lim
u→β−

z(u)
u− β

. (35)

Notice that λ ≥ 0, since z(u) < 0 in (0, β). First consider the case Ḋ(β) 6= 0,
equivalent to ġ(β) 6= 0. If λ = 0, then according to (18), ż(u) → +∞ as u → β−,

which is not possible. Consequently λ 6= 0, and since ż(u) = −c − g(u)
u− β

u− β

z(u)
,

there exists also lim
u→β−

ż(u) = λ. Then, we obtain λ2 + cλ + ġ(β) = 0, hence λ = α.

Assume now ġ(β) = 0. By (18), we have

lim
u→β−

z(u)[ż(u) + c]
u− β

= 0.

Notice that λ 6= 0 implies λ = −c which is not possible since λ ≥ 0; hence λ = 0 = α.
We prove now that the limit in (35) exists. Indeed, assume by contradiction that

L := lim sup
u→β−

z(u)
u− β

> lim inf
u→β−

z(u)
u− β

:= l ≥ 0.

Let γ ∈ (l, L) and let (un)n be an increasing sequence converging to β such that

z(un)
un − β

= γ , and
d

du

(
z(u)
u− β

)

|u=un

≤ 0.

Since
d

du

z(u)
u− β

=
1

u− β

(
ż(u)− z(u)

u− β

)
, we have

ż(un) = −c− g(un)
γ
(
un − β

) ≥ γ.

Passing to the limit as n → +∞, since γ > 0, we have γ2 + cγ + ġ(β) ≤ 0, implying
γ ≤ α. Similarly, if we choose an increasing sequence (vn)n converging to β, such
that

z(vn)
vn − β

= γ , and
d

du

(
z(u)
u− β

)

|u=vn

≥ 0,

we can deduce γ2 + cγ + ġ(β) ≥ 0, that is γ ≥ α. By the arbitrariness of γ ∈ (l, L),
we conclude that l = L = ż(β).

It remains to prove (29). When Ḋ(β) 6= 0, we obtain

lim
u→β−

z(u)
D(u)

= lim
u→β−

z(u)
u− β

u− β

D(u)
= − 2f(β)

c +
√

c2 − 4ġ(β)
< 0,

so (29) is satisfied. Consider now the case when Ḋ(β) = 0. Given ε > 0, since c > 0,
it is possible to find 0 < δ1 < β satisfying

−c +
cf(u)

f(β) + cε
+

(f(β)
c

+ ε
)
Ḋ(u) < 0, β − δ1 ≤ u ≤ β.

We claim that

z(u) > z̃(u) := −
(f(β)

c
+ ε

)
D(u), β − δ1 < u < β. (36)
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In fact, assuming z̃(u0) ≥ z(u0) for some u0 ∈ (β − δ1, β), we obtain

ż(u0) = −c− g(u0)
z(u0)

≤ −c +
cf(u0)

f(β) + cε
< −

(f(β)
c

+ ε
)
Ḋ(u0) = ˙̃z(u0),

implying the contradictory conclusion z(β−) < z̃(β−) = 0. Hence (36) is valid.
With a similar reasoning we are able to find 0 < δ2 < β such that

z(u) < −
(f(β)

c
− ε

)
D(u), β − δ2 < u < β, (37)

for ε sufficiently small. Let δ := min{δ1, δ2}. According to (36) and (37),

−f(β)
c

− ε ≤ z(u)
D(u)

≤ −f(β)
c

+ ε, β − δ < u < β.

Since ε is an arbitrary positive value

lim
u→β−

z(u)
D(u)

= −f(β)
c

;

consequently, in this case also (29) is satisfied.

Remark 2. Assume D(0) = 0 and Ḋ(0) 6= 0. Let u∗(t) be a sharp t.w.s. of type (I).
According to Theorem 1, its wave speed is c = c∗ = c∗1. Moreover, its corresponding
z(u), defined as in (17), satisfies (27) with ż(0) = −c∗ (see Remark 1). Hence, it
follows that

lim
t→t∗1

u′∗(t) = lim
u→0+

z(u)
D(u)

= lim
u→0+

z(u)
u

u

D(u)
= − c∗

Ḋ(0)
.

Similarly one can show that whenever D(1) = 0, Ḋ(1) 6= 0 and u∗(t) is a sharp
t.w.s. of type (II), then u′∗(t) = − c∗

Ḋ(1)
. Instead, when Ḋ(0) = 0 or Ḋ(1) = 0 then

the threshold t.w.s. reaches the corresponding equilibrium with infinite slope.

Remark 3. According to (28), when D(0) > 0, every wave profile u(t) of (1)
satisfies u(t) > 0 for all t ∈ R. Similarly, when D(1) > 0, by (33) it follows that
u(t) < 1 for all t.

Remark 4. Assume g differentiable in [0, 1] with g(u) concave in [0, β] and convex
in [β, 1]; then

c∗ = 2
√

max{ġ(0), ġ(1)} = 2
√

max{D(0)ḟ(0), D(1)ḟ(1)}.
When, in particular, β = 1

2 and g is a function symmetric with respect to u = 1
2 ,

then c∗ = c∗1 = c∗2. Assuming in addition D(0) = D(1) = 0, then sharp t.w.s. of
type (III) appear corresponding to the minimum wave speed.

As an illustrative example, let f(u) = u(1 − u) and D(u) = 1 − 2u. Then
g(u) = D(u)f(u) = 2u3 − 3u2 + u is concave in [0, 1

2 ], convex in [ 12 , 1]; moreover,
ġ(0) = ġ(1) = 1. Therefore, c∗ = 2.

4. Discussion. The study of travelling wave solutions to reaction-diffusion equa-
tions has a long history and it is well known that in the case with constant posi-
tive diffusion coefficient and certain nonlinear reaction forms these equations admit
smooth travelling wave constant profile solutions with constant wave speed. In this
paper, we have analysed the case where the diffusion coefficient is not constant and
can change sign. In some very approximate sense, this models a population which
is diffusive under certain conditions, but aggregative under other conditions. We
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have shown that this equation can exhibit a range of travelling wave behaviours in
the degenerate case, including sharp profiles as well as what we term “finite speed
of saturation” [10], that is, the dependent variable reaches its maximum value at a
finite value of the (independent) spatial variable. We find conditions under which
each type of solution occurs and determine the corresponding wave speed.
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