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Abstract Pattern formation in many biological systems takes place during growth
of the underlying domain. We study a specific example of a reaction–diffusion
(Turing) model in which peak splitting, driven by domain growth, generates a se-
quence of patterns. We have previously shown that the pattern sequences which
are presented when the domain growth rate is sufficiently rapid exhibit a mode-
doubling phenomenon. Such pattern sequences afford reliable selection of certain
final patterns, thus addressing the robustness problem inherent of the Turing mech-
anism. At slower domain growth rates this regular mode doubling breaks down in
the presence of small perturbations to the dynamics. In this paper we examine the
breaking down of the mode doubling sequence and consider the implications of
this behaviour in increasing the range of reliably selectable final patterns.

Keywords Turing model · Schnakenberg · Spatial pattern · Robustness ·
Mode-doubling failure · Mode selection

1. Introduction

One of the central issues in developmental biology is to understand how spatial
patterns arise as an embryo develops from a single fertilised cell into an adult.
In 1952, Alan Turing proposed that a system of interacting chemicals could be
driven unstable by diffusion and evolve into a spatial pattern. This was an exam-
ple of self-organisation giving rise to emergent behaviour. Since this paper, there
has been a great deal of mathematical research on this model framework, and it
has been applied to several systems in development (see, for example, Meinhardt,
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1995; Murray, 2003). In this era of integrative biology, Turing’s model is one of the
very first examples of how integrating simple processes can give rise to complex
outcomes, in this case, the combination of stabilising processes yields an unstable
system.

When Lee Segel moved into mathematical biology, one of his first interests was
in the problem of pattern formation and in trying to make sense of the counter-
intuitive results of Turing’s paper. In 1972, the paper by Segel and Jackson showed
how one could understand Turing’s result at a conceptual and intuitive level, with
an illustrative application in ecology.

The Turing model assumed that cells did not move but simply responded to
chemical cues by differentiating accordingly. However, in other systems it is well-
known that cells do move, and the paper by Keller and Segel (1970) was the first
to show that within the amoeboid cells of the slime mold, pattern formation could
arise as the result of a chemotactic instability. This paper is now a classic and has
served as an inspiration for models in many areas of development, as well as in
medicine (specifically in models for wound healing and for cancer).

One of the main problems with the Turing reaction–diffusion theory for mor-
phogenesis is that the patterns it produces can be very sensitive to small perturba-
tions (see, for example, Bard and Lauder, 1974) and thus the model seems inappro-
priate when applied to robust pattern formation in developmental biology. Dillon
et al. (1994) showed that the judicial choice of boundary conditions could greatly
increase the robustness of certain patterns by making other patterning modes in-
admissible.

More recently, Crampin et al. (1999) showed that domain growth could select
certain patterns in a robust manner. Specifically, they showed that an exponentially
growing domain could produce a sequence of mode-doubling pattern transitions,
but that this broke down if the growth rate was too high or too low. While they
were able to present an explanation for the former behaviour, it was not clear why
the latter behaviour occurred.

Pattern sequences featuring mode doubling via regular insertion or splitting of
peaks are common in diverse biological systems. For example, pigmentation pat-
terns in fish (Kondo and Asai, 1995), skeletal patterning in vertebrate limbs (Hayes
et al., 1998) and heterocyst spacing in cyanobacterium Anabaena (Yoon and
Golden, 1998) feature such sequences. Given that regular splitting and insertion
of peaks is a recurring feature in pattern forming systems in nature it is essential to
understand why mathematical models of such reaction–diffusion systems exhibit
mode-doubling failure when the growth rate of the domain is too slow. The aim
of this paper is to address this question in the case of the exponentially growing
domain.

In Section 2 we present the model system that we will study and illustrate how
the standard numerical technique of discretising in space leads to a solution se-
quence in which mode-doubling breaks down under exponential growth in the do-
main with low growth rate. We show that this does not happen if we use a spectral
method to solve the equations. We deduce that it is the erroneous introduction
of asymmetries from the numerical scheme that causes mode-doubling failure. In
Section 3 we use the numerical bifurcation package AUTO (Doedel et al., 2001) to
trace the bifurcation diagram for the fixed domain case with domain length as the
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bifurcation parameter. From this, we note that mode-doubling failure appears to
occur when the solution on the growing domain has to trace an unstable portion of
a solution branch. We examine this in more detail in Section 4 by considering the
form of the unstable solution at the onset of instability.

Having seen that it is the noise in the numerical scheme that drives mode-
doubling breakdown, we then consider in Section 5 other forms of noise which
may arise in a biological context, namely noise in the parameter values. In
Section 6 we consider our results in light of the problem of robust pattern selection
and present conclusions in Section 7.

2. Pattern sequences on the growing domain

As a concrete example we use the Schnakenberg kinetics, which arise from an
application of the law of mass action to the trimolecular reaction scheme

B
k1�

k−1

X, (1)

A
k2→ Y, (2)

2X + Y
k3→ 3X. (3)

We chose this model mechanism because of its relative simplicity and because it
has been well-studied (Murray, 2003). In this case, the species X acts as the activa-
tor.

The non-dimensionalised kinetics with u(x, t) the concentration of Y and v(x, t)
the concentration of X on the one-dimensional domain of length L(t) growing
exponentially, but rescaled continuously onto the unit interval x ∈ [0, 1], are

∂u
∂t

= 1
L2

∂2u
∂x2

+ a − uv2 − ρu, (4)

∂v

∂t
= d

L2

∂2v

∂x2
+ b + uv2 − v − ρv, (5)

dL
dt

= ρL, (6)

where ρ is the domain growth rate (see Crampin et al., 1999 for details). The terms
−ρu and −ρv describe the dilution effects due to the local expansion of the do-
main. In this paper we fix the kinetics parameters a = 0.9 and b = 0.1. We also
take the ratio of diffusion coefficients d = 0.06 so that the inhibitor diffuses more
rapidly than the activator and Turing pattern expression is permitted on the static
fixed-length domain. Patterns arising in this system are in the form of spike solu-
tions (Iron et al., 2004), and the activator and inhibitor profiles are out of phase.

For the zero-flux boundary conditions to which we restrict our attention the
corresponding uniform steady state on the static domain has (u, v) = (0.9, 1). Our
initial conditions are small amplitude spatially uncorrelated random perturbations
from this steady state and an initial domain length of L(0) = 1.
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This system was studied in detail by Crampin (2000) for the case of exponen-
tial domain growth. Here, we solve the system numerically using the NAG library
routine D03PCF which implements a finite difference method—the method of
lines—with integration in time using a backward differentiation formula method.
In this case we see the canonical mode-doubling sequence through peak splitting.
In the mode-doubling sequence the number of peaks (the ‘pattern mode’) doubles
each time the domain doubles in length. For this model, such a sequence occurs by
splitting of each existing peak at regular intervals, while other models show mode
doubling via peak insertion, where new peaks appear in between existing peaks as
the length of the domain doubles (Crampin et al., 2002).

The first pattern to develop as the domain grows (the first admissible pattern)
is a half peak which consists of a peak located on either the left- or the right-
hand boundary. Which of these two pattern polarities occurs depends on the initial
conditions. However, after the transition from this first pattern mode we see that
all subsequent pattern modes are of the same polarity (with internal peaks, rather
than peaks located on the boundaries). This locking in of polarity is a consequence
of the peak splitting mechanism (and a sequence of patterns of opposite polarity,
with peaks located on the boundaries, is observed for peak insertion).

The mode-doubling sequence is characterised by smooth transitions between
the quasi-steady patterns. That is, there is a separation of timescales between the
dynamics of the reaction–diffusion system and the growing domain, the growth
being on the slow timescale and the chemical dynamics on a fast timescale. How-
ever, when ρ increases so that the separation of timescales becomes less apparent
we see that there is no longer a recognisable sequence of quasi-steady patterns.
Figure 1b shows such a pattern sequence with ρ = 0.05. The lack of applicability
of the quasi-steady state assumption in such cases is clear and we can no longer
assume that the processes of growth and pattern formation are decoupled.

At the other extreme of the domain growth rate ρ we consider the case ρ =
0.0001. Numerical solutions of the system (4)–(6) obtained by discretising the
system on a spatially uniform mesh exhibit the phenomenon of mode-doubling
failure shown in Fig. 2. In this case the sequence of patterns is not the same

Fig. 1 Activator concentration profile sequences on the growing domain with large growth rate.
(a) Mode doubling evident in the quasi-steady pattern sequence with ρ = 0.001. (b) ρ = 0.05 and
there is no quasi-steady evolution.
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Fig. 2 Mode doubling breaks down at low domain growth rates when (4)–(6) is solved using a
spatial discretisation explicit method. (a) A typical activator concentration profile for ρ = 0.0001;
(b) snapshots of the profile showing the asymmetric splitting of the single interior peak which
forces the failure of mode doubling.

as before (compared to Fig. 1(a)) and there is not a uniform splitting of peaks
leading to doubling of the pattern mode each time the domain length doubles.
This phenomenon, whereby the mode-doubling sequence is not realised for very
slow growth rates ρ, is what we refer to as mode doubling failure.

In this case we do see recognisable quasi-steady patterns, but the transitions
between these are more abrupt. In part this is related to the difference in the
timescales of domain growth and pattern formation, but we shall see later that
there are further qualitative differences between the two cases of mode-doubling
failure and mode-doubling success. Figure 2 illustrates the mechanism by which
peak splitting fails to generate mode doubling, via asymmetric splitting of a peak.
This asymmetric splitting of the single central peak, rather than the symmetric
splitting and separation of peaks in Fig. 1(a) suggests that mode-doubling failure is
related to the symmetry of the system and occurs when there is a sufficient degree
of asymmetry introduced in this splitting process. We investigate this further
below.

Due to the form of Eqs. (4)–(6), we expect mode-doubling to be the only
form of behaviour, appealing to the invariance of the system under the mapping
x �→ 1 − x. The asymmetry that is necessary to lead to a breakdown of mode
doubling must therefore be introduced by errors arising during numerical solu-
tion of the equations, or persist from the initial state. Should that be the case we
would wish to understand the nature by which mode-doubling transition may be
sensitive to these numerical issues. Before we examine this sensitivity, however,
we note that, rather than a ‘critical growth rate’ for a given transition—below
which mode doubling persistently fails, and above which it persistently succeeds—
we observe the presence of a critical growth rate window (Fig. 3). For growth
rates within this window there is a given probability for successful mode doubling
where mode doubling is deemed to have succeeded if the pattern expressed at
domain length L = 5 is close to the stable mode 4 pattern. For a given numer-
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Fig. 3 Indicative critical growth rate window for the PDE system (4)–(6) as solved by an explicit
finite difference scheme on a uniform spatial mesh. The mode-doubling probability for a given
growth rate is estimated by sampling from 200 realisations with initial conditions (at domain length
L = 1) randomly selected small perturbations from the homogeneous steady state.

ical method, whether or not mode doubling occurs is determined by the initial
state.

As an alternative to this basic numerical method we also consider a spectral
method reduction of the PDE system (4)–(6) to a finite ODE system. A natural
choice of basis for the system with zero-flux boundary conditions is the Fourier
cosine series

U(x, t) =
∞∑

n=0

Un(t) cos(nπx) and V(x, t) =
∞∑

n=0

Vn(t) cos(nπx). (7)

Using these series expansions, we can derive from the system (4)–(6) an alterna-
tive ODE form which preserves the symmetry of the initial state. Without a direct
translation of the initial conditions from the Schnakenberg PDE system to the fi-
nite ODE system we therefore, consider this ODE form as a distinct system.

The truncation to N modes in each of the series U and V, which represent
the true solutions u and v, respectively, of Eqs. (4)–(6), gives rise to the ODE
system

dU0

dt
= a − c0 − ρU0, (8)

dV0

dt
= b + c0 − (1 + ρ) V0, (9)
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and, for 1 ≤ n ≤ N − 1,

dUn

dt
= −cn −

(
n2π2

L2
+ ρ

)
Un, (10)

dVn

dt
= cn −

(
dn2π2

L2
+ 1 + ρ

)
Vn, (11)

dL
dt

= ρL, (12)

where ci represents the truncated Fourier cosine series reduction of the cubic term
uv2 in the Schnakenberg kinetics.

Solving this new system (8)–(12) numerically, again using a backward differ-
entiation formula method for the time integration, we are able to reproduce the
phenomenon of mode doubling by symmetric peak splitting. With the truncation
to N = 40, the steady state patterns expressed (with ρ = 0) in the two systems (4)–
(6) and (8)–(12) are in close agreement. In addition, however, we find that, under
this scheme, mode doubling appears to persist at arbitrarily small domain growth
rates. This discrepancy reinforces the view that numerical inaccuracy, and the er-
roneous introduction of anti-symmetric Fourier modes, plays a significant rôle in
mode-doubling failure.

3. Bifurcation structure for the Schnakenberg kinetics

We have established that the influence of numerical errors whilst solving the
Schnakenberg system (4)–(6) with an explicit finite differences scheme with the
method of lines may be sufficient to drive the system towards a mode-doubling
failure state. With an alternative reduction to an ODE system we observe the per-
sistence of mode doubling at arbitrarily small growth rates. In this section we ex-
amine in depth how the mode-doubling mechanism is susceptible to the influence
of erroneous Fourier mode growth.

To this end, we consider the bifurcation structure of the Schnakenberg system on
the static domain, with the domain length L as the primary bifurcation parameter.
We generate this structure, with the primary branches shown in Fig. 4, using the
numerical bifurcation and continuation package AUTO taking as the solution mea-
sure the left-hand boundary value of the activator V. In Fig. 4, we also illustrate our
labelling scheme for the primary branches which are expressed as large-amplitude
patterns. The primary branches are labelled by a mode number which denotes
position of the branch (in the increasing L direction) on the bifurcation diagram
and corresponds to the wavenumber of the branch in the linear system; a super-
script + or − which denotes the polarity of the branch: branches labelled by +
have left-hand boundary activator concentration greater than that of the uniform
steady state; a subscript u or s which denotes instability or stability, respectively,
of the branch region. Unstable branch regions in Fig. 4 are additionally indicated
by broken lines, whereas stable regions have solid lines.
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Fig. 4 The bifurcation structure of the system (8)–(11) with the domain length L as primary
bifurcation parameter and ρ = 0 so that we ignore the dilution terms. For clarity we show only the
primary branches; during quasi-steady evolution the secondary branches (which are unstable) are
not traced.

With slow domain growth, Figs. 1(a) and 2(a) show evidence of quasi-steady
behaviour in the activator concentration profile. Both of these pattern sequences
exhibit the long-term expression of a pattern before the rapid re-organisation
of this pattern to a further long-expressed pattern, adiabatically following pri-
mary bifurcation branches. We therefore consider how these quasi-steady state
patterns, and their re-organisation, tie in to the steady states of the static
domain.

By visual inspection we can see that the quasi-steady patterns expressed dur-
ing domain growth are close to the steady-state patterns on the static domain. We
note that the effects of the dilution terms −ρu and −ρv, as well as the differ-
ences resulting from the different ODE reductions, are small as ρ is small. Fur-
thermore, we can project the evolving pattern onto the one-dimensional domain
using the same solution measure as for the bifurcation structure. In Fig. 5 we see
how these two profiles trace the steady-state branches for significant periods of
time during domain growth. For this reason, then, we refer to the quasi-steady pat-
terns that are expressed by the labels of the steady-state branches to which they
are close.

We also see that mode-doubling failure appears to be related to the tracing of
an unstable branch. In Fig. 5(a), we see that the region 4−

u is closely traced by the
dynamic solution until the branch 4− becomes stable. In Fig. 5(b), where mode
doubling fails, we see that this same branch region is incompletely traced before
departure to the stable branch 3+

s .
In Section 4 we examine the nature of mode-doubling failure in depth and its

relation to this tracing of an unstable branch region. Before then, however, we
note that for the solutions of the system (8)–(12), where mode doubling persists
for all slow growth rates, tracing of the unstable 4−

u is observed.
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Fig. 5 Projection of the pattern sequences of Figs. 1(a) and 2(a)—grey trajectories—onto the
bifurcation diagram of Fig. 4.

4. Mechanism of mode-doubling failure

The steady state of the system for the traced region 4−
u on the static domain is a

saddle point with a one-dimensional unstable manifold. Failure of mode doubling
is the departure of the phase point along the unstable manifold away from the
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Fig. 6 The unstable eigenfunction on the branch 4−
u corresponding to the eigenvalue 0.0109 for

domain length L = 4.62. The profile of the eigenfunction does not change significantly with vari-
ation in L. The solid line details the V-component of the eigenfunction and the broken line the
U-component.

branch 4−
u to either of the branches 3±

s . This mechanism accounts for the occur-
rence of mode-doubling failure once the growth rate of the domain becomes too
slow. At slower growth rates the time spent in the presence of the unstable man-
ifold is increased. Consequently there is a tendency for greater movement along
the unstable manifold. At some point, in the nonlinear regime, the phase point lies
within the basin of attraction of either of the alternative stable branches. Certainly,
mode doubling fails if the dynamic solution is not within the basin of attraction of
the newly stable 4−

s (around L ≈ 4.71).
Mode-doubling failure, then, is an expression of large deviation along an unsta-

ble manifold. The unstable eigenfunction along 4−
u (shown for the point L = 4.62 in

Fig. 6) is found to be anti-symmetric. The presence of this anti-symmetric unstable
eigenfunction drives the expression of asymmetric peak splitting as the means of
mode-doubling failure. Furthermore, the symmetry properties of the two branches
2− and 4− for Eqs. (4)–(6) and (8)–(12) explain why mode doubling is the natural
behaviour of the dynamic system. Finally, the occurrence of mode-doubling failure
in Eqs. (4)–(6) is indeed promoted by the possibility of erroneous Fourier mode
introduction by the numerical method.

In addition to the existence of a critical growth rate for mode doubling in the
system (4)–(6) as solved using a spatial discretisation method we are in a posi-
tion to explain the appearance of the critical growth rate window of Fig. 3. Simi-
larly to the robustness problem for Turing pattern formation on the static domain,
there is sensitivity to the initial conditions for whether mode doubling succeeds
or fails.

At some growth rates the success of mode doubling is sensitive to the initial state
and the subsequent propagation of numerical error. The growth rate ρ = 0.000136
corresponds to a mode-doubling probability close to 0.5 in the critical growth rate
window of Fig. 3. Mode doubling and failure of mode doubling are illustrated in
Fig. 7. These solutions have distinct sets of initial conditions. Both solutions ini-
tially trace the unstable branch 4−

u and both move away along the unstable mani-
fold. In one case the solution is re-captured by the stable branch 4−

s . For the other,
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however, even though the distance from 4−
u is not appreciably greater, the phase

point is not recaptured by 4−
s .

5. Mode doubling transitions under perturbed kinetics

The mode-doubling failure at low growth rates that we observe appears to be due
to accumulation of small errors. This motivates us to consider the influence of small
perturbations to the Schnakenberg kinetics. We note that an application of this
theory of pattern formation to a biological setting requires us to move away from
the idealisation that Eqs. (1)–(3) present. Mode-doubling failure may be presented
as an erroneous solution of (4)–(6), but it is a valid phenomenon away from the
idealised state or in a noisy environment.

There are many possible ways by which perturbations to the Schnakenberg ki-
netics may be introduced. Such perturbations could account for spatio-temporal
variation in the rate parameters ki or in the source concentrations [A] and [B].
For simplicity, we consider perturbations to the source concentrations which are
likely to be much larger than those which arise from a variation in the kinetic rate
parameters.

The effect of this variation is to replace the terms a and b in Eqs. (4), (5), (8)
and (9) by appropriate spatio-temporally varying terms. Under suitable assump-
tions about the spatial structure of the perturbations we restrict our attention to
the perturbations to the system (8)–(12).

Fig. 7 Unreliable mode doubling for ρ = 0.000136 across the tracing of 4−
u . Two initial states

close to the homogeneous steady state, such as used for Fig. 3, are chosen: for one state mode
doubling fails; for the other mode doubling succeeds by virtue of recapture by 4−

s .
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The first class of perturbations that we study is that of temporally constant per-
turbations. In (4), then, we replace a by a + εa

∑N−1
i=0 ai cos(π i x) and similarly for b

in (5). These changes propagate to (8)–(11) and we introduce the convention that
the perturbations are normalised by

∑
a2

i + b2
i = 1 and set εa = εb.

During growth we require for mode doubling to fail that the source of U or V
be spatially asymmetric. A simple case, therefore, is to consider the normalised
perturbation

ai =
{

10
√

101
101 i = 1

0 otherwise
; bi =

{−√
101

101 i = 1

0 otherwise
, (13)

which has the ratio of U and V components of the perturbation of the same mag-
nitude as the ratio of the steady state pattern components.

Under these perturbed kinetics with ε = 1 × 10−5 we see continued applicabil-
ity of the quasi-steady state assumption and tracing of the steady state branches.
As for the solutions of the Schnakenberg PDE system with the spatial discretisa-
tion method we see the possible occurrence of mode-doubling failure. This mode-
doubling failure (for ρ < 0.0002) once again follows from movement away from
the unstable 4−

u towards 3±
s . Unlike for the previous case, however, the critical

growth rate window arises purely from the influence of the initial conditions, and
the window is very narrow.

We find the critical growth rate window becomes wider for the perturbed ODE
form with the introduction of temporally varying perturbations. These perturba-
tions can take many forms. Motivated by biological systems we consider the cases
where ai and bi vary.

Spatially correlated perturbations similar to coloured noise can be implemented
by sampling ai and bi over time from the distributions

ai , bi ∈
[
− ε̃

(i + 1)
,

ε̃

(i + 1)

]
, (14)

with

ε̃ = ε

(
N−1∑
i=0

1
i + 1

)−1

. (15)

With this basic form of spatially correlated perturbation we can determine the
form of the corresponding critical growth rate windows for each mode-doubling
transition. In Fig. 8 we present such windows for the transitions 2− → 4−, 3− → 6−

and 4− → 8−.



Bulletin of Mathematical Biology (2006) 68: 981–995 993

Fig. 8 Critical growth rate windows for the transitions 2− → 4−, 3− → 6− and 4− → 8− of
(8)–(12) subject to the kinetic perturbation (14). In each, × denotes the transition mode-doubling
probability, whilst in (c), + represents the probability that mode-doubling failure is by 4− → 5±.

6. Domain growth and the robustness problem

The critical growth rate windows of Fig. 8 show that, for a consistent perturbation
characteristic, the growth rate at which mode doubling can be viewed as reliable
varies with the transition. This raises the possibility of robust pattern selection
through a pattern sequence involving a failure of mode doubling. Whereas per-
sistent mode doubling provides for robust selection of pattern modes of the form
(2n)− for the appropriate final domain length it is not possible to robustly generate
further pattern modes when the pattern 1± is initially expressed.

When mode-doubling failure is included, however, the pattern 6−
s is selectable

for a range of final domain lengths. A sequence such as 1± → 2− → 3± → 6−,
should it arise, is precisely this selection. The possibility of robust selection of 6−

s
arises with (loose) control of the growth rate of the domain, as indicated by the
critical growth rate windows for the final two transitions.

We also note that control of the perturbations may further aid both the selection
of polarity of branch following mode-doubling failure and increase the range of
growth rates suitable for robust selection. A constant pre-pattern, for example, in
addition to, but of a greater magnitude than, stochastic perturbations may be such
a guide.

7. Conclusions

In this paper we have examined mode transition in a reaction–diffusion system
solved on an exponentially growing domain. We have shown that the typical long
term mode-doubling behaviour breaks down due to noise induced by our numer-
ical scheme. Although, this is an artifact of our solution technique, it is not bio-
logically irrelevant, because processes in biology have to operate under constant
exposure to noise. This motivates us to consider the case of noise in parameter
values and to show that this also contributes to mode-doubling failure.

Applications of reaction–diffusion theory to biological pattern formation have
been studied in great detail. While its relevance to biology is still controversial,
it has been shown that Turing structures do arise in chemistry (DeKepper et al.,
1991; Ouyang and Swinney, 1991). It is still unclear as to whether morphogen pat-
terns in biology do arise via diffusion-driven instability and whether such a mech-
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anism presents stable patterns. Moreover, it is surprising that little attention has
been paid to the effects of domain growth, given that growth is one of the main
characteristics of development. It was shown by Kondo and Asai (1995) that pig-
mentation patterns on certain Angelfish followed a transition sequence consistent
with that predicted by a Turing type model. This motivated the work of Crampin
et al. (1999), which showed that domain growth could be used to select robustly
certain types of patterns.

In this paper, we have examined why mode-doubling on an exponentially grow-
ing one-dimensional domain breaks down under very slow growth rate, specifically
when symmetry arguments would suggest otherwise. We have shown that this phe-
nomenon appears to arise due to noise. At certain transition points, instability of
the solution arises due to a saddle point and the solution must trace an unstable
branch for some time before it reaches a stable branch. The presence of noise can
throw the solution off this branch and we propose this as a mechanism for mode-
doubling failure.

The results in this paper are for a single point in parameter space for the
Schnakenberg model. In current work we are examining this in more detail with
application to other models, but we note that the behaviour presented here is
widespread. In particular, for the Gray–Scott system, which has been widely stud-
ied (Kolokolnikov et al., 2005) in many of its behavioural regimes, we see mode
doubling with the possibility of failure when the pattern sequence is driven by do-
main growth.
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