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Abstract. A multiscale model for vascular tumour growth is presented which

includes systems of ordinary differential equations for the cell cycle and regula-
tion of apoptosis in individual cells, coupled to partial differential equations for

the spatio-temporal dynamics of nutrient and key signalling chemicals. Fur-

thermore, these subcellular and tissue layers are incorporated into a cellular
automaton framework for cancerous and normal tissue with an embedded vas-

cular network. The model is the extension of previous work and includes novel

features such as cell movement and contact inhibition. We present a detailed
simulation study of the effects of these additions on the invasive behaviour of

tumour cells and the tumour’s response to chemotherapy. In particular, we find
that cell movement alone increases the rate of tumour growth and expansion,

but that increasing the tumour cell carrying capacity leads to the formation of

less invasive dense hypoxic tumours containing fewer tumour cells. However,
when an increased carrying capacity is combined with significant tumour cell

movement, the tumour grows and spreads more rapidly, accompanied by large

spatio-temporal fluctuations in hypoxia, and hence in the number of quies-
cent cells. Since, in the model, hypoxic/quiescent cells produce VEGF which

stimulates vascular adaptation, such fluctuations can dramatically affect drug
delivery and the degree of success of chemotherapy.

1. Introduction. Cancer, together with cardiovascular disease, is the biggest killer
in the Western World. The term cancer denotes hundreds of different diseases, each
of which is characterised by deregulation of the homeostatic mechanisms that prevail
in normal tissue. Thus, whereas normal cells are social entities whose behaviour and
life cycle are intimately related to the function they perform and the tissue in which
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they reside, cancer cells exhibit selfish behaviour, with uncontrolled proliferation
and invasion routinely observed.

In spite of the massive resources devoted to cancer research, significant progress
towards more efficient treatments is scarce. For many years, cancer research has
been dominated by the so-called gene-centric approach, whereby the genetic mu-
tations that occur in cancer cells are analysed. Attempts are then made either to
reverse the mutations or to target the affected genes in order to eliminate cancer
cells [18]. Although this approach is obviously sound and has produced a wealth of
useful information on the different types of cancer, two serious problems threaten
its viability as an effective therapeutic tool. Firstly, there is evidence that cancer
genomes may be too unstable to be feasible therapeutic targets and too numerous
to reverse (for example, 11000 genetic alterations per cell have been found in col-
orectal carcinoma). For further details, see the review by Folkman et al. [18] and
references therein.

There is also strong evidence that epigenetic, cell-cell and intracellular inter-
actions are instrumental in a tumour’s development, so that tumour progression
and growth are not simply products of genetic mutations. Tumour growth in-
duces aberrant behaviour at all levels of tissue organisation, from gene expression
to macroscopic tissue properties. These disturbances, in turn, feed back into the
carcinogenic process, leading to the selection of more aggressive phenotypes that are
better able to survive and progress in the increasingly abnormal environment. The
ability of normal cells to survive in such tumour-modified environments becomes
increasingly difficult. In this way, the cancer cells are able to out-compete their
normal counterparts for space and resources. Two examples of this behaviour are
the tumour-induced abnormalities in the vascular system and acidosis. We describe
each phenomenon in turn below.

Tumour vessels frequently lack the well-defined anatomical structure of their
normal counterparts, tortuous and leaky. Most of these effects are due to over-
expression by the tumour of angiogenic factors, such as vascular endothelial growth
factor. Endothelial cells of tumour blood vessels also exhibit abnormal profiles
of protein synthesis and activity. Taken together these features result in highly
irregular blood flow, which in turn leads to the appearance of extensive regions of
hypoxia (i.e. low oxygen levels) [35]. Hypoxia is undesirable for two main reasons: it
promotes drug resistance and favours the selection of more aggressive (e.g. invasive)
phenotypes.

Tumour microenvironments are acidic due to the extensive use of glycolytic rather
than aerobic metabolic pathways. Glycolytic metabolism is far less efficient than its
aerobic counterpart and increases local pH levels. Whereas cancer cells are resistant
to such acidic environments, normal cells struggle to survive in such conditions, thus
losing their competitive advantage to the more resilient cancer cells. In fact, cancer
cells are known to use glycolysis even in oxygen-rich conditions [24]. The informa-
tion presented above illustrates the complexity of tumour growth and, in particular,
the intricate way in which phenomena operating at different levels of biological or-
ganisation, i.e. on different time and length scales, may interact. Therefore, not
only do we need to fully investigate processes occurring at a single scale (see, for
example [6, 40, 50, 56] and references therein) but we must also determine emergent
behaviour from their interactions (see, for example, [1, 3, 5, 10, 11, 25, 42, 48, 54]).
In view of this, it seems that a full understanding of the dynamics of tumour growth
requires that traditional (experimental) approaches be accompanied, and guided,
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by theoretical approaches which can integrate the different physical phenomena. In
an attempt to establish such an integrative modelling framework the authors have
formulated a mathematical model, based on the hybrid cellular automaton concept
[16, 48]. The framework accounts for blood flow and vascular adaptation, diffusion
of nutrients, drugs and signalling cues, competition between normal and cancer
cells, and intracellular processes such as cell division and apoptosis [3, 4, 13]. In
the present paper, we extend our model to account for cellular crowding and cell
movement. These two processes are of fundamental importance to study processes
such as invasion [5], or new therapies based on tumour infiltration by engineered
cells of the immune system, e.g. macrophages [12, 29, 47] or lymphocytes [45].

This paper is organised as follows. In Section 2, we summarise the general model
framework and explain how cell crowding and cell movement are incorporated. In
Section 3, we present our simulation results before considering, in Section 4, the
effects of chemotherapy on the system. The paper concludes in Section 5 where we
discuss our results and suggest possible directions for further research.
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cycle

proteins
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Figure 1. Basic structure of the model

2. Model description. In this section we summarise the main features of our
multiscale model. The interested reader is referred to [3, 4, 13] for more detailed
information, including parameter values.

2.1. General model framework. The model we use integrates phenomena occur-
ring on very different time and length scales. These inter-related features include
blood flow and structural adaptation of the vascular network, transport into the
tissue of blood-borne oxygen, competition between cancer and normal cells, cell
division, apoptosis and VEGF (growth factor) release. Our theoretical framework
is based on the hybrid cellular automaton concept which has been used to model
several aspects of tumour development (see [1, 5, 16, 48]). We extend this approach
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to account not only for the presence of a diffusive substance (here oxygen) as in
previous papers, but also to include intracellular and tissue-scale phenomena, and
the coupling between them. To this end, we have organised our model into three
layers: vascular, cellular, and subcellular, which correspond, respectively, to the
tissue, cellular and subcellular time and length scales (see Fig. 1).

In the vascular layer, we focus on the structure of the network and blood flow
(see [1] for more details). We consider a hexagonal vascular network (similar to that
observed in liver) in which each individual vessel undergoes structural adaptation
(i.e. changes in radius) in response to different stimuli. In addition to determining
vessel radii we also compute the blood flow rate, the pressure drop and the haema-
tocrit (i.e. relative volume of red blood cells) distribution in each vessel. Coupling
between the vascular and cellular layers is mediated by the transport of blood-borne
oxygen into the tissue. This process is modelled by a reaction-diffusion equation.
The haematocrit acts as a distributed source of oxygen, whereas the cells act as
spatially-distributed sinks of oxygen.

In the cellular layer, we focus on cell-cell interactions (competition) and the
spatial distribution of the cells. We distinguish between normal and cancerous cells
and assume that a given element may contain up to Nmax ≥ 1 cells (this extends
earlier work in which Nmax = 1). The two cell populations compete for space
and resources, the cancerous phenotype usually performing better. Competition
between the two cell types is introduced by simple rules, which connect the cellular
and subcellular layers. Apoptosis (programmed cell death) is controlled by the
expression of p53 (whose dynamics are dealt with in the subcellular layer): when the
level of p53 in a cell exceeds some threshold the cell undergoes apoptosis. However,
this threshold depends on the distribution of cells in a given neighbourhood.

Processes that are handled in the subcellular layer include cell division, apopto-
sis, and VEGF secretion, with ordinary differential equations (ODEs) being used
to model the relevant biochemistry. One issue on which we focus is how the ex-
ternal conditions modulate the dynamics of these intracellular phenomena and, in
particular, how the extracellular oxygen concentration affects the division rate, the
expression of p53 (which regulates apoptosis) and the production of VEGF. Since
the spatial distribution of oxygen depends on the spatial distribution of cells (cel-
lular layer) and haematocrit (vascular layer), processes at the subcellular level are
intimately linked to the behaviour of the other two layers: cell proliferation and
apoptosis alter the spatial distribution of the cells (see Fig. 1); the cellular and the
intracellular layers modulate the process of vascular structural adaptation through
another transport process: diffusion of VEGF into the tissue and its absorption by
the endothelial cells (ECs) lining the vessels.

2.2. New model features. As mentioned in the Introduction, the main aim of
this paper is to extend our multiscale model to allow more than one cell to occupy an
element in the cellular automaton and to account for cell movement. Additionally
we introduce a more realistic method for calculating the haematocrit concentration.
We describe these and other new features in turn below.

In order to account for cell crowding we introduce a carrying capacity Nmax ≥ 1;
Nmax denotes the maximum number of cells that can be located within an element
of our cellular automaton. Additionally, we assume that vessels and cells may
occupy the same locations, provided the constraints on carrying capacity are not
violated. Further, while the size of each cell type is assumed to be equal, the
carrying capacity of the vessels, tumour cells and normal cells may differ. In our
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earlier work Nmax = 1, and, since a particular element could contain at most
one cell, successful division could only occur if there was an empty neighbouring
site to which a daughter cell could move. Thus successful cell division was always
accompanied by movement. Here, with Nmax ≥ 1, we treat cell proliferation and
movement separately, first deciding whether a division can occur and then carrying
out movement (note that division can only occur if a cell has successfully completed
the cell cycle and this is determined at the subcellular level). If there is space for
the daughter cell to remain in the same location as its mother then both will remain
at that site. Otherwise, the daughter cell moves to the neighbouring cell with the
largest oxygen concentration, assuming that this site has not reached its carrying
capacity. This latter option means that for the case Nmax = 1 cell division is treated
identically to before, providing for a clean transition from previous implementations.

The rates of oxygen consumption and VEGF expression in the governing partial
differential equations are adjusted to account for the number of cells (and their
type) at each location.

Cell movement is modelled as a stochastic process, with transition probabilities
depending on the numbers of cells in an element and adjacent elements. In more
detail, the probability Pij that a cell moves from site i to a neighbouring site j is
assumed to be given by the number of vacancies at site j (Nmax −Nj), divided by
the total number of vacancies at site i and its neighbours plus an additional term,
the inertia number M , which measures the tendency of cells stay at site i. For
example, invasive cancer cells will have a lower inertia number than normal, non-
invasive cells. Combining these ideas, we deduce that the transition probabilities
Pij have the following form:

Pij =



Nmax −Nj∑
k∈nbhd

(Nmax −Nk) + Nmax(1 + M)−Ni

for i 6= j,

1−
∑

k Pik = Nmax(1 + M)−Ni∑
k∈nbhd

(Nmax −Nk) + Nmax(1 + M)−Ni

for i = j.

(1)
In the simulations, each active cell is given a chance to move, in an order which is
randomised on each time step.

The movement rules described above resemble a reinforced random walk [46] due
to the dependence on local and neighbouring cell numbers. We may consider the
limit Nmax →∞, for which we have a strictly unbiased random walk with

Pij =
1

K + 1 + M
for i 6= j

and

Pii = 1−
∑

k

Pik =
1 + M

K + 1 + M

where K =
∑

k 1 measures the number of elements in the neighbourhood (unless
otherwise stated, for the two-dimensional geometry considered here we have K = 8).
The mean-waiting time for this random walk is (K+1+M)/K, which is proportional
to the inertia number M .

In an improvement to the methods used in [1, 2, 3] and [4], we calculate vessel
haematocrit according to Fung [19]. There are two cases to consider depending on
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the structure of the vessel bifurcation. In case 1 the flow and haematocrit enters
the bifurcation from the parent vessel (denoted f) and exits through two daughter
vessels (denoted 1 and 2); for case 2 the flow enters from two vessels (again denoted
1 and 2) and exits through a single vessel (denote f). In both cases we assume that
the flux of haematocrit is conserved across the bifurcation so that

Q̇fHf = Q̇1H1 + Q̇2H2, (2)
where Q̇i and Hi denote the flux and haematocrit in vessel i.

For case 2 (two inflows, single outflow) we assume that the fluxes Q̇1, Q̇2 and Q̇f

and the incoming haematocrit concentrations are known and equation (2) is used to
determine Hf . For case 1 (single inflow, two outflows) we assume that Q̇f , Q̇1, Q̇2

and Hf are known and that the following expression holds:

H1

H2
− 1 = α(Hf )

(
v1

v2
− 1
)

= α(Hf )

(
Q̇1R

2
2

Q̇2R2
1

− 1

)
. (3)

This equation describes a bias in the distribution of haematocrit due to differences
in the daughter velocities v1 and v2 [19]. Given v1 and v2, we then solve equations
(2) and (3) simultaneously to determine H1 and H2. In equation (3) vi = Q̇i/R2

i

denotes the velocity of vessel i and Ri denotes its radius. The dependence of α
on Hf is supported by experimental data presented by Fung [19] showing that, for
case 1, as the haematocrit in the parent vessel increases the bias in H1 and H2 due
to differences in daughter velocities decreases. For example, as Hf approaches one,
the haematocrit must split almost symmetrically, with H1 ≈ H2 ≈ Hf ≈ 1. For
these reasons and for simplicity, henceforth we fix α(Hf ) = (1−Hf ).

Broadly speaking, our model works as follows. The vessel network adapts its
structure in response to mechanical and metabolic cues, setting up a pattern of
haematocrit which serves as a distributed source for oxygen in a partial differential
equation to describe oxygen diffusion. We assume that cells serve as point sinks
of oxygen. The cells themselves are progressing through the cell cycle in a manner
determined by a set of coupled nonlinear ordinary differential equations describing
the temporal dynamics of key proteins in the cell cycle. Cells divide accordingly or,
under hypoxic conditions, undergo quiescence, apoptosis or begin to produce VEGF,
which modifies the vasculature allowing more nutrient to infiltrate the region. The
full details of the model may be found in the series of papers [1, 2, 3].

3. Simulations. We consider as initial condition the set-up in Figure 2, namely
the introduction of a small number of tumour cells into a region of vascularised
normal tissue. We explore the effects of the novel features that have been added
to the original model, namely the phenomena of cell movement and over-crowding
(contact-inhibition).

Before we describe the results below, we briefly review the consequences of the
improved haematocrit splitting. Previous implementations have used Hf = H1 +
H2 rather than equation (2), so that haematocrit is diluted at branches where a
parent flows into two daughters, or concentrated at branches where two parents
flow into a single daughter. Consequently, in such a case oxygen and haematocrit
concentrations peak close to the inflow and outflow (see Figure 3 and [4, 13]). This
should be compared with the new distributions in Figure 2. In particular, in the
new, more realistic formulation the haematocrit concentration is maximal along the
path of maximal flow from inlet to outlet.
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Figure 2. Initial conditions for all simulations. At t = 0 a small
number of tumour cells are introduced into the vascularised tissue.
At this time, the vasculature and oxygen concentration are at their
quasi-steady states, with haematocrit flowing predominantly down
the path of least resistance.
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Figure 3. Oxygen distribution and vascular structure for previ-
ous implementations of haematocrit-splitting using Hf = H1 + H2

[3, 4, 13] rather than equation (2). Haematocrit concentration is
diluted/concentrated at branches, so haematocrit and oxygen lev-
els are maximal close to the inflow (bottom left) and outflow (top
right).

3.1. Impact of cell movement on tumour growth. Figure 4 shows results from
a basic model simulation where the normal and tumour cells move only as a result
of cell division (i.e. M → ∞ in equation (1) and Nmax = 1, so that cells can only
divide by placing daughter cells in a vacant neighbouring site). In consequence,
tumour invasion requires the creation of empty spaces. In this model normal cells
develop lower p53 thresholds for apoptosis when their neighbourhood comprises
predominantly tumour cells, and therefore die, creating the necessary space for
tumour cell invasion. As the tumour spreads, hypoxia leads to the formation of
quiescent regions which stimulate vessel enlargement and more uniform haematocrit,
and consequently oxygen, distributions. Figure 4 also illustrates which normal and
tumour cells are dividing. At any given time this number is relatively small, and
concentrated predominantly in well-oxygenated areas.

In Figure 5 we present results showing how including active cell movement (with
M = 50) influences the tumour’s development. Comparing Figures 4 and 5 we see
that tumour cell movement leads to significantly more rapid invasion. More cell
movement also means that cells can migrate into the corners of the tissue domain
(which are particularly low in oxygen). Tumour cells in such regions ultimately
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Figure 4. Output from a basic simulation (no active cell move-
ment and carrying capacity of one) at times t = 10 (left) and t = 40
(right). The cell cycle panel indicates that at any given time there
are relatively few dividing cells. As the tumour spreads, hypoxia
leads to the appearance of quiescent cells which stimulate vessel
enlargement and a more uniform haematocrit, and consequently
oxygen, distributions. Parameter values: M →∞ and Nmax = 1.

die, but before this happens normal cells also located in the corners die (via com-
petition/changing normal cell thresholds) so that at large times very few normal
cells remain in the tissue. This is also reflected in a widening of the sparsely popu-
lated margin between the tumour mass and surrounding normal tissue as the inertia
number M decreases (this is particularly apparent for M = 5, results not shown).
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Figure 5. Output at times t = 10 (left) and t = 40 (right) from
a simulation with active movement for comparison with Figure 4.
We note that when movement is included, tumour cell infiltration
is more rapid and there are greater fluctuations in the number of
quiescent tumour cells. Parameter values: M = 50 and Nmax = 1.

Figure 6 summarises how tumour growth changes as the inertia number M varies.
Decreasing M gives more rapid and complete colonisation of the domain, and larger
fluctuations in quiescent cell numbers. We also see how the average vessel radius
follows these fluctuations, this phenomenon being mediated by the production of
VEGF by the quiescent cells.
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Figure 6. Summary data showing how, when Nmax = 1, changes
in the inertia number M influence the evolution of the number of
normal cells, the total number of tumour cells, the number of CA
locations occupied by one or more tumour cell, the number of non-
quiescent tumour cells, the number of quiescent tumour cells, and
the mean vessel radius. In general the number of CA locations
occupied by one or more tumour cells gives a measure of the extent
of tumour invasion. Since for this simulation Nmax = 1 the number
of CA location occupied by one of more tumour cells is identical
to the total tumour cell number. Key: Solid line, no movement
(M →∞); dashed line, M = 50; dot-dashed line, M = 5.

3.2. Impact of over-crowding on tumour development. In this section we
assume that cells only divide locally (unless they have reached carrying capacity),
and there is no other source of cell movement. The tumour will thus expand only
when it has locally reached carrying capacity, and hence our simulations show a
dense tumour that invades more slowly than one with a lower carrying capacity (see
Figure 7 and compare with Figure 4). A tumour of this type would therefore be
more manageable than a population with active movement. As the summary data
presented in Figure 8 shows, as the carrying capacity Nmax increases there is a trade-
off between increased cell number and high cell density. Indeed, as Nmax increases
the total number of tumour cells decreases due to increases in hypoxia and the
attendant cell death. This also leads to much larger fluctuations in quiescent tumour
cell numbers and the mean vessel radius. Altering this balance would probably
require a reduction in the rate at which tumour cells consume oxygen, the reduction
being in line with the increase in local cell density.

Indeed, Figure 9 shows how reducing the rate of oxygen consumption per cell
by a factor equal to the carrying capacity significantly increases the tumour cell
population, although the initial rate of tumour invasion does not match that with
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Figure 7. Results from a pair of simulations showing how in-
creasing the tumour cells’ carrying capacity (Nmax) changes the
tumour’s size and structure at time t = 40. As Nmax increases
invasion is substantially reduced (compare also with Figure 4). Pa-
rameter values: Nmax = 3 (left hand plots); Nmax = 5 (right hand
plots).
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Figure 8. Summary data for the simulations presented in Figures
4 and 7 showing how the tumour’s size and composition change
as the tumour cell carrying capacity Nmax varies. As Nmax in-
creases the total number of tumour cells and their colonisation of
the tissue decrease. This is because local increases in cell number
lead to hypoxia and cell death, without a compensatory increase
in invasiveness. Key: solid line, Nmax = 1; dashed line, Nmax = 3;
dot-dashed line, Nmax = 5.
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Nmax = 1. Another consequence of having a lower rate of oxygen consumption is
that there is a considerable reduction in the number of quiescent cells.
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Figure 9. Summary data showing how varying the tumour cells’
carrying capacity (Nmax) and their rate of oxygen consumption
affects the system’s dynamics. We observe that increasing Nmax

and decreasing the rate of oxygen consumption significantly in-
creases the number of tumour cells but not invasion. Key: solid
line, Nmax = 1, with standard rate of oxygen consumption; dashed
line, Nmax = 3 with standard rate of oxygen consumption; dot-
dashed line, Nmax = 3, with rate of oxygen consumption by tumour
cells reduced by factor of Nmax = 3.

3.3. Combined effects of active movement and over-crowding. In this case
there is a complex balance between enhanced invasion due to cell movement and
reduced invasion associated with higher local densities: increasing the carrying
capacity has different effects depending on the rate of tumour cell movement. As
we have already seen, when tumour cells cannot move, except via cell division,
increasing their carrying capacity reduces the rate of invasion and the overall rate
of growth of the tumour cell population (see Figure 8). Even when tumour cells can
move actively, increasing the carrying capacity still decreases the rate of tumour
invasion, although the growth in the total number of tumour cells is not necessarily
retarded. This is accompanied once more by large fluctuations in quiescent cell
numbers and the mean vessel radius (Figure 10).

Figure 11 illustrates how, for a fixed value of the tumour carrying capacity,
increasing the rate of movement increases the speed of invasion and the tumour’s
overall growth. Combining these results, we see that increases in carrying capacity
must be accompanied by increases in motility in order to maintain invasiveness, in
the absence of other factors such as reductions in nutrient consumption.
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Figure 10. Summary data showing how changes in the tumour
cell carrying capacity (Nmax) affect the system dynamics when
there is active tumour cell movement (M = 50). Even with sub-
stantial tumour cell movement, increasing Nmax gives a decrease in
invasion speed. Although the invasion speed is reduced, the total
number of tumour cells grows more rapidly and to greater numbers
than without cell movement (compare Figure 8). Key: solid line,
Nmax = 1; dashed line, Nmax = 3, dot-dashed line, Nmax = 5.

4. The impact of chemotherapy. We now investigate how active movement
and over-crowding affect the dynamics when a blood-borne antiproliferative drug is
introduced into the system. We assume that the drug is continuously administered
to the vessels and, hence, that the drug concentration at the inlet vessel is held
constant. Furthermore, as in [4], we assume that the drug is carried in the plasma,
and hence that its concentration in a particular vessel is proportional to 1 − H,
where H is the haematocrit concentration in that vessel. We treat the vessels as
distributed sources of drug and assume that, once the drug leaves the vessels, it
diffuses through the tissue and is taken up by the normal and healthy cells.

Denoting by θ and θvess the drug concentrations in the tissue and vessels respec-
tively, we solve the following diffusion equation, with no-flux boundary conditions,
to determine the drug concentration in the tissue at a given time:

0 = Dθ∇2θ + hθ(θvess − θ)− λdrugθ. (4)

In Eq. (4), Dθ denotes the assumed constant diffusion coefficient of the drug, hθ

the rate at which it is transported across the vessel wall and λdrug the assumed
constant rate at which the drug decays. Importantly, θvess = θadm(1 − H) where
θadm is the administered drug dose. We further assume that the drug works in the
following manner. When a cell attempts to divide, if the drug concentration exceeds
a threshold value θkill then the cell fails to divide and is itself killed.
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Figure 11. Summary data showing how, for a fixed tumour cell
carrying capacity (Nmax = 5), changes in the degree of tumour cell
movement (M) affect the system dynamics. With Nmax = 5, as
the inertia number increases the rates at which the tumour invades
and increases in cell number also increase, this effect being more
pronounced for larger values of Nmax (compare Figure 6). Key:
solid line, no movement (M → ∞); dashed line, M = 50, dot-
dashed line, M = 5.
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Figure 12. Output at times t = 10 (left) and t = 40 (right) from
a simulation with active cell movement (M = 50) and cell crowding
(Nmax = 5). Invasion is substantially enhanced in comparison to
Figure 7 (where Nmax = 5 and M → ∞), but not in comparison
to Figure 5 (where Nmax = 1 and M = 50).
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For θadm sufficiently large, all regions of simulated tissue will have θ > θkill,
and such a simulated treatment would be guaranteed to eradicate a tumour (but
also all normal cells). On the other hand, for θadm small enough, no regions will
experience high enough drug levels to induce cell kill. We are interested here in the
marginal case for which drug levels are close to θkill, such that inhomogeneities in
blood flow and cell distributions may or may not give rise to significant cell kill. As
a base example, Figure 13 shows the effect of a marginal dose of drug on normal
tissue. Since H is inhomogeneous, and tends to be greatest down the diagonal, in
the absence of tumour-induced stimuli such as VEGF, the drug concentration will
tend to be maximal away from the diagonal (top left and bottom right). Thus, if the
drug concentration is close to the threshold required for cell death upon division,
this inhomogeneity will result in some regions being above threshold, and others
below. Thus we see in Figure 13 that normal cells are only killed in relatively small
numbers. We now wish to explore how changes in haematocrit distribution due to
the presence of a tumour alter the drug distribution and the consequent effects of
the drug on a growing tumour.
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Figure 13. Output at time t = 40 Drug delivery to normal tissue.
Since drug delivery is proportional to 1−H, its distribution is com-
plementary to that of oxygen. Normal cells are killed at the top left
and bottom right of the tissue region, where drug concentrations
are maximal. Drug is administered according to equation (4), with
Dθ = 0.00145, hθ = 8, λdrug = 2, and θvess = θadm(1 − H) with
θadm = 4.625.

Figure 14 shows how movement alone affects drug treatment in this marginal
situation. There is only a small effect on the growth of the tumour, since the
magnitude of fluctuations in haematocrit is insufficient to create large regions with
θ > θkill.

Figure 15 shows how movement affects drug treatment when the tumour cell
carrying capacity is larger (in this case Nmax = 5). There is a much greater effect
on tumour growth due to increased numbers of VEGF-producing quiescent cells,
which in turn cause inhomogeneity in haematocrit and drug delivery. The effect
is particularly strong when a larger carrying capacity is combined with significant
tumour cell movement.

5. Discussion. Given that biological function does not arise as a property of any
one spatial scale, to investigate fully biological phenomena multiscale approaches
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Figure 14. Summary data showing the response to chemotherapy
of a tumour for which Nmax = 1 and M = 50. We note that in
this case the drug has little effect on the total number of tumour
cells but does reduce significantly the number of quiescent cells and
the fluctuations in both their number and the mean vessel radius.
Key: solid line, with drug; dashed line, without drug. Parameter
values for drug delivery: as in Figure 13.

need to be adopted. In this paper, we have extended our preliminary multiscale
models for vascular tumour growth to incorporate cell movement, over-crowding,
and more realistic dynamics for haematocrit distribution. We have investigated the
resultant effects of these and shown they can greatly affect tumour cell invasion
dynamics. We also investigated, briefly, the effects of drug treatment.

Our model is for a “generic” tumour in that it includes generic processes. To
apply our model to a real situation we need to focus on a particular cancer. Future
work, therefore, will include specialising the model to describe specific tumours.

We are presently working on implementing the general model framework in a
modular way that will allow easy expansion. Processes that are currently described
phenomenologically will be easily replaced by “slot-in” mechanistic models as more
data becomes available. For example, in the present model we include the effects
of glycolytic metabolism of tumour cells on normal cells by lowering the apoptotic
threshold for normal cells (to reflect the fact that the acidic by-products of glycolysis
are toxic to normal cells). This is a very important process and we will need to
include more detailed models of this, together with the somatic evolution that is
proposed to arise as a consequence [24, 59].

Many multiscale models to date include, at best, very weak coupling and feed-
backs between levels and this is biologically unrealistic. For example, one might
expect that the inertia number, M, in our model should be a function of oxygen
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Figure 15. Summary data showing the response to chemotherapy
of a tumour for which Nmax = 5 and M = 50. Comparison with
Figure 14 (Nmax = 1) shows how a larger value of Nmax leads to
more extensive hypoxia. The resulting increase in VEGF levels cre-
ates inhomogeneities in blood flow and drug concentration, leading
to a much stronger chemotherapeutic effect. Key: dashed line, no
drug; solid line, with drug.
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Figure 16. Output at times t = 10 (left) and t = 40 (right) from
a simulation in which a tumour with Nmax = 5 and M = 50 is
exposed at a blood-borne drug. Comparison with Figure 12 shows
that the drug has a significant effect on the tumour’s growth.

concentration, becoming infinite at low oxygen levels (no oxygen means that cells
cannot move) and decreasing as the oxygen concentration increases.

At the vascular level, we could make the model more realistic by including a
number of features. For example, greater flexibility is needed concerning the number
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and location of inlet and outlet vessels. Given the highly tortuous and irregular
nature of tumour vasculature, it is also important to relax our assumption that the
vasculature lies on a hexagonal lattice and to consider instead arbitrary geometries.
This modification is also needed to account explicitly for the new branches that are
formed during angiogenesis. Recent work by Gevertz and Torquato illustrates how
some of these changes may be accomplished [25]. Finally, introducing a carrying
capacity for the cells and vessels, so that more than one cell may occupy a given
site, means that the number of cells surrounding vessels may vary markedly in
time and space. This information could be used to estimate the mechanical force
being exerted on the vessels by the cells and hence to allow for phenomena such
as occlusion of vessels by rapidly proliferating tumour cells, such features being
common in immature tumour vessels [30].

Another noteworthy feature of [25] is their use of Voronoi tessellations rather
than cellular automata to model the cells. Other alternatives that exist and whose
relative strengths and weaknesses should be assessed include Potts models [63] and
agent-based models [60].

With a more realistic model of the tumour vasculature, it should be possible to
study the role of endothelial progenitor cells (EPCs) and, in particular, the relative
contribution of vasculogenesis and angiogenesis to the formation of new tumour
vessels. This balance may provide insight into why existing anti-vascular therapies
often fail and aid the development of more effective anti-vascular therapies.

Our preliminary results suggest that the impact of chemotherapy is strongly
related to the behaviour of the tumour and the ways in which the vasculature
and haematocrit concentration are modelled. For example, a mutant population
characterised by the ability to move through the tissue will be less sensitive to
chemotherapy than a population which has an elevated carrying capacity (compare
Figures 14 and 15). These results highlight the difficulties associated with designing
therapies that can successfully target the different subpopulations within a tumour
without causing excessive damage to healthy tissue. In particular our results suggest
that a drug of the type studied here would have limited success when used to treat
glioblastoma, a highly invasive brain tumour with poor patient prognosis [64, 65, 66].
Biopsies from glioblastomas suggest that the tumours typically contain cells of two
main phenotypes: some cells are highly proliferative with low motility (i.e. high
carrying capacity and high inertia number) while others are highly motile with low
proliferation rates (i.e. low inertia number and carrying capacity). By extending
our model to distinguish between such phenotypes and then exposing the tissue
to chemotherapy, we expect that the highly motile cancer cells would be largely
insensitive to the drug while the less motile cells would be preferentially targeted.
Additionally, if we wish to use the model to investigate the effects of particular
therapies, then we need also to construct and analyse models that account in more
detail for the manner in which the drugs actually work [17, 31, 32, 53].

Cells of the immune system, such as lymphocytes and macrophages, are increas-
ingly the target for novel genetic therapeutic interventions [12, 29, 45], and there
has been considerable work modelling such tumour–immune system interactions
(see [8, 47] and references therein). Such immune cells are noted for their ability to
migrate through tissues, including densely-packed tumours, and this migration is
an important factor in many immunotherapies — genetically modified immune cells
are typically delivered in the blood, and must leave the bloodstream and migrate
through tissues before acting on tumour cells. Thus it is essential to include cell
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movement in our multiscale model framework, in order to explore the dynamics
of tumour–immune system interactions. In future work we will introduce immune
cells, such as macrophages, via the vasculature, allowing them to extravasate (i.e.
leave the vasculature) at a rate that depends on stimuli such as VEGF. In order to
allow such cells to migrate through tissue containing normal and tumour cells, we
must allow variable carrying capacities at each automata location, as outlined in
this paper. Modifications to the transitions rates defined in equation (1) will allow
the inclusion of leukocyte chemotaxis, a key mechanism whereby white blood cells
can target, for example, hypoxic tumour regions.

The extensions mentioned above will certainly make the model more realistic
biologically but we run the risk of rendering it, at the same time, clinically use-
less because of computational tractability and expense. Perhaps one of the great
challenges that applied mathematics faces this century is to be able to reduce mul-
tiscale models in biology to make them tractable. At the moment the mathematics
required to do this does not exist.
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