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ABSTRACT 

Several models for the spread of AIDS within a homosexual community have been 

proposed that incorporate biased mixing of different risk groups. A simple model is 

presented that captures many of the features of these more complex models. Analytical 

expressions are derived for the time to the state of maximum infection (SMI) in a 

particular risk group, the proportion infected at SMI, and the number of infected 

individuals as the group approaches SMI. These results agree qualitatively with numerical 

simulations of the model. 

1. INTRODUCTION 

The growth of the human immunodeficiency virus (HIV) and acquired 
immunodeficiency syndrome (AIDS) has been the subject of much recent 
theoretical and medical research (see, for example, 12-4, 8, 18, 201). As 
more becomes known about AIDS, the mathematical models proposed to 
account for the spread of the disease become more complex. The 1988 
paper by Hyman and Stanley [151 contains a review of some of the main 
processes involved and presents numerical simulations of several models 
that account for such factors as variable infectiousness of individuals and 
variable incubation periods in a homosexual community. Anderson et al. [5] 
presented a model for the spread of disease in the U.K. homosexual 
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population using field data and considered the effects of changes in sexual 
behavior. Anderson and coworkers [6, 191 analyzed a model for the spread 
of AIDS in heterosexual communities in developing countries and explored 
the effects of control strategies. Although the majority of AIDS cases in 
developed countries occur in the homosexual community, the disease is 
spreading into the heterosexual community. Hethcote [14] presented a 
general model that accounts for interaction between heterosexuals, bisexu- 
als, homosexuals, and intravenous drug abusers. 

Models of a homogeneous population in which behavior is constant with 
time predict that the initial growth of disease is exponential with constant 
growth rate. However, recent surveys show that the total number of AIDS 
cases reported to the Centers for Disease Control (CDCI in the United 
States has grown as the cube of time [9, 11, 15, 161, which implies that the 
growth rate is decreasing inversely with time. These data relate to AIDS 
patients infected before the publicity campaigns for AIDS prevention 
began; thus it is improbable that cubic growth is due to modified sexual 
behavior. Hyman and Stanley [16] proposed a model (hereafter referred to 
as HSM) for HIV transmission within a homosexual community based on 
biased mixing; that is, the community is divided into categories consisting of 
individuals of similar risk behavior (where risk is quantified by the number 
of sexual partners), and it is assumed that individuals interact mainly with 
people of similar risk behavior. With this assumption, the magnitude of the 
epidemic, the expected time of its peak, and its growth rate all depend 
upon how different risk groups are distributed and how they interact with 
one another. Whereas the assumption of random mixing leads to the 
prediction that large numbers of low-risk individuals-that is, those who 
have relatively few new sexual partners per year-will become infected 
early on in the epidemic, biased mixing predicts an infection wave that 
passes from high-risk groups into those of lower risk. Colgate et al. [lo] 
showed that a biased mixing model predicts cubic rather than exponential 
growth and hence is in accord with present data on AIDS cases. 

The intuitive explanation for these quite different predictions is that 
with random mixing the infection tends to spread most rapidly in the most 
densely populated risk groups, which correspond to low-risk individuals. 
Biased mixing, however, assumes that high-risk individuals interact primar- 
ily among themselves; hence, they are the group who suffer most at the 
outset of the epidemic while lower risk individuals are not affected until the 
wave of infection has passed through intermediate risk groups. Hyman and 
Stanley [16] call this wave a “saturation wave,” where saturation refers to 
the state of maximum infection in a given group. The term saturation is 
perhaps a little confusing as it suggests that no more individuals are 
infected after this point, which is not the case. We shall refer to this state 
as the state of maximum infection (SMI); that is, this is the point in a 
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particular risk group when the number of newly infected individuals in that 
group is a maximum. After this point individuals continue to become 
infected but at a lesser rate. 

One important consequence of this infection wave is that as it progresses 
into the lower risk groups, the intrinsic growth rate of the epidemic 
decreases proportionately so that rather than pure exponential growth the 
model predicts a polynomial growth rate in AIDS cases that can be 
approximated by a cubic [lo, 161. Another consequence of the infection 
wave is that within a lower risk group the growth of HIV is rather 
complicated: At first, growth is exponential at a rate that corresponds to 
the intrinsic growth rate within this risk group, but as time progresses this 
intrinsic growth rate becomes dominated by the people infected from 
individuals in higher risk groups. Thus, one might predict that the total 
number of infected individuals at a given time could be approximated by a 
sum of exponentials (corresponding to risk groups far in front of the 
infection wave) and time-dependent exponentials that include both an 
intrinsic growth rate and interference from other risk groups. This interpre- 
tation differs from that of Colgate et al. [lo]. 

A mathematical model that contains all factors that may contribute to 
the spread of AIDS would be very complex and impossible to solve 
analytically. Moreover, initial numerical simulation would provide little 
insight into the effect each factor has on the spread of infection and the 
interactions occurring between different factors. Consequently it is neces- 
sary, at first, to study simplified versions of the more general model that 
focus on particular aspects of the epidemic. In this paper we focus on 
biased mixing in a homosexual community, and we ignore such factors as 
variable infectiousness and variable incubation periods, which are ac- 
counted for in HSM. We stress that our model and analysis are not 
intended to give accurate predictions on the growth of the AIDS infection; 
rather, they are aimed at understanding how a particular assumption on 
biased mixing affects the spread of the disease. We show that although the 
total number of AIDS cases can be approximated very well with a polyno- 
mial, the mechanism according to which the disease is spreading may 
perhaps be better explained as a sum of various functions that differ 
significantly from polynomials. 

In Section 2, we formulate a discrete model that is similar in many 
respects to the Hyman and Stanley continuous model with biased mixing 
but contains some simplifying assumptions. In Section 3, we present numer- 
ical simulations of our model to show that it captures the qualitative 
behavior of the more complex model. In Section 4 we derive expressions for 
the time to SMI in a particular risk compartment, the proportion of 
infected individuals at SMI, and the growth of infection up to SMI. Finally, 
in Section 5, we discuss our results. 
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2. MODEL EQUATIONS 

We restrict our study to the case of a homosexual community. We 
separate individuals into three general categories: uninfected susceptibles, 
infecteds without AIDS, and diagnosed AIDS cases. A susceptible person 
can become infected through sexual contact with an infected individual. We 
assume that movement from one category to another obeys the law of mass 
action. It is not known what fraction of individuals with HIV eventually 
proceed to develop AIDS. In this model, we assume this fraction to be 1, 
that is, that everyone with HIV will eventually develop AIDS. Those 
individuals who have AIDS are assumed to be removed from the popula- 
tion in the sense that they are no longer sexually active. We divide each of 
the three categories into n different compartments, or activity classes, 
defined by risk behavior. Each compartment initially contains l/n of the 
total population under consideration. The risk behavior of each compart- 
ment is given by a mean risk defined as the average number of sexual 
partners per year (see [7] for a detailed discussion on different methods for 
quantifying activity within a particular class). Interaction within and be- 
tween compartments is assumed to be homogeneous. There is a constant 
recruitment rate into all susceptible compartments that is assumed to be 
initially equal to the natural death rate so that the population is initially at 
equilibrium; this simplifies analysis and is a common assumption [3, 161. 

We introduce the following definitions: 

t = time (years) 

II = number of compartments 

S,(t) = number of susceptibles in the kth compartment at time t 

Z,(t) = number of infecteds in the k th compartment at time t 

Ak( t) = number of AIDS cases in the kth compartment at time t 

Nk( t) = total number of sexually active individuals in the k th 
compartment at time t, that is S,(t) + I,(t) 

p = transmission efficiency per contact 

y = rate at which infected individuals develop AIDS (per year) 

p = natural death rate (per year) 

S = death rate due to AIDS (per year) 

Mk = average number of sexual partners per year 
in the k th compartment 

B, = recruitment into the k th compartment (per year) 

c( k, j) = average number of sexual contacts per partnership 
between people from compartments k and .i 
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I fiMkXk(t)Sk(t) 

I 6&,(t) 

FIG. 1. Compartmental diagram for the kth compartment of the model. The term 
x,(t) accounts for interaction with other compartments (see text for definitions). 

p( t , k, j) = probability that a person in compartment k forms a 
partnership with a person in compartment j at time f 

With these definitions, our model can be formulated as follows (see 
Figure 1 for compartmental diagram): 

ds, 
-=Bk-PM~XXk(t)Sk(t)-/1Sk(t), dt (1) 

dlk dt=p”,X,(t)S,(c)-(I*+r)zk(t), 

dA 
~=yIk(t)-(p+8)Ak(t). 
dt 

(2) 

(3) 

In the above equations, Xk(t) is the expected number of contacts that an 
individual in the kth compartment will have with infected individuals: 

ljCt) 
&(t) = 5 p(t,k,j)c(k,j)N(t). 

j=l J 
(4) 

We assume that high-risk individuals have approximately one contact per 
partnership but that the number of contacts per partnership increases for 
lower risk groups up to some maximum value. These assumptions may be 

captured by taking 

c( k, j) = 1 + cleKcZCMk+~), (3 
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where ct and c2 are (positive) constants to be determined [16]. For our 
analytical proposes, only the qualitative form of c(k, j) is important. 

It is hypothesized that an individual infected with HIV undergoes an 
initial short period of high infectivity followed by a long period of low 
infectivity and then a period of high infectiousness immediately prior to 
developing AIDS [l]. (This hypothesis is based on virus in the blood, which 
may not be related to infectivity.) It also appears that the rate at which 
individuals develop AIDS varies with time from infection [lo]. This suggests 
more complicated forms of X,(t) and of y that depend also on time from 
infection. For example, Jacquez et al. [17] model the long period to 
infectiousness prior to the onset of AIDS by a series of compartments that 
represent different stages of infection. However, to simplify analysis, we 
ignore this dependence. We also assume that people with AIDS die from 
the disease at a constant rate. The choices of y and 6 correspond to means 
taken over observed rates. 

It remains to define p(t, k, j) in a way that accounts for biased mixing. 
In order to do this, we first need an interaction function, f(r,s>, which 
gives the frequency with which a person of risk r forms a partnership with a 
person of risk s, where r and s are continuous variables corresponding to 
Mk, We simply use the interaction function given by Hyman and Stanley 

[ 161, namely, 

I 
-1 

f(r,s)= 1+ (r--)m 1 E(r+T,.)m ’ (f-9 

where we take r, = 10, m = 2, and vary E according to the degree of mixing 
we wish to allow between different risk groups. This function attains its 
maximum of 1 when r = s and becomes very small when r and s are far 
apart, corresponding to the assumption that a person in risk group r 
interacts mostly with others of similar risk. Using this frequency function, 
we can define our probability function, recalling that Mk is the mean 
number of sexual partners in the kth compartment, as 

p(t,k,i) = 

’ f(Mk,MiPWi(f) 

~ f(Mk,Mj)Mj~~:(t) If ‘> k7 
j=l 

f(Mi,Mk)MiW(f) 

5 ~(M,,M,)M~Y(~) If lck’ 
j=l 

I- c p(t,k,.O if i=k. 

, j#k 
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We motivate the form of this function as follows. When i > k, we assume 
that the probability that an individual in the kth compartment interacts 
with one in the ith compartment is equal to the number of partnerships 
that a person in the kth compartment forms with individuals in the ith 
compartment, divided by the total number of partners that an individual in 
the kth compartment has. When i < k, p(t, k, i) must be adjusted because 
the total number of partnerships between the kth and ith compartments 
must equal the total number of partnerships between the ith and kth 
compartments; thus, 

Finally, p(t, k, k) has been defined so that the probability of selecting a 
partner from the entire population is 1. This function is the discrete analog 
of the continuous probability function, p(t, r, s), used in HSM. Clearly one 
could assume different types of interaction function f that would, in turn, 
lead to different probability functions. The particular f chosen here is 
simply a quantitative example that captures the essential qualitative fea- 
tures of the assumptions on biased mixing. The paper by Stanley [20] 
discusses this in more detail. 

3. NUMERICAL RESULTS 

To illustrate the behavior of the model described by Equations (l)-(3), 
in our numerical simulations we choose parameter values and initial condi- 
tions similar to those used in HSM, namely, 6 = 0.5, y = 0.133, /L = 0.02, 
p = 0.025, c(k, j) = 1+ 10e-“.‘(MktM~), B, = @Sk(O), Z,(O) = 103M, /Cy=,M,. 
A,(O) = 0. The infected individuals are thus initially distributed according 
to risk so that at the outset of the epidemic there are more high-risk 
infecteds than low-risk (similar to HSM). This accounts for the observation 
that regardless of where the infection starts, it will rapidly move toward the 
higher risk groups. The qualitative nature of our numerical simulations is 
independent of the form of this initial condition. For the initial distribution 
of the population according to risk r we use the inverse quartic given in 

[lOI> 

N(r) = 
3No.4g3 

(48+ r)4 ’ 

and we take N,, the total initial population, to be 106. With this distribu- 



136 G. DE YOUNG, P. K. MAINI, AND M. NAKAMAYE 

tion, the mean risk in compartment k is given by 

j*‘+‘rN( r) dr 

Mk= ‘li 

jrk+‘N( r) dr ’ 
r!i 

(7) 

where r,, = 0, r,, =m, and /$+IN(r)dr = No/n. 
In the simplest case, where IZ = 1, our model essentially reduces to the 

simple homogeneous model formulated by Anderson and May [2], the 
primary difference being that we do not have a second class of infected 
individuals who do not go on to develop AIDS. In the next simplest case, 
II = 2, we consider only two groups of people, low-risk and high-risk. In this 
case, the most important factor that affects qualitative behavior is the form 
of f(r, s). Taking E very small, there is only negligible interaction between 
low- and high-risk groups. One would thus expect two independent waves 
of infection that, initially, are exponential. Total growth of number of 
infected individuals in this case would be the sum of these exponentials (see 
Figure 2). As E increases, Z,(t) remains exponential but It(t) becomes 

7x1 O6 

1 

0 
0 5 10 15 

Time$ks) 
25 30 35 40 

FIG. 2. Numerical solution of Equations (l)-(3) for two risk compartments. The time 

when the infection wave reaches the low-risk group depends heavily upon the rate of 

interaction between low-risk and high-risk groups. Here we show three different rates of 

interaction f(r, s): (a) E = 0.001, (b) l = 0.01, and (c) E = 0.1. 
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FIG. 3. (a) With only two compartments, the simple discrete model given by Equations 
(l)-(3) exhibits behavior that is qualitatively similar to that of the more complex HSM 
[16] and to the model of Jacquez et al. [17]. After a brief, initial exponential phase, the 
growth of the total number of AIDS cases, A(t ), is polynomial. The double-peak behavior 
of the infecteds, I(?), occurs because we have only two risk groups with a weak 
interaction. By taking more risk groups, the effect of high-risk individuals on low-risk 
individuals is mediated through intermediate compartments smoothing out the curve of 
infection. (b) shows the behavior for six compartments. In both (a) and (b), E = 0.01. S(t) 
is the total number of susceptibles and I(t) the total number of infecteds. 
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increasingly distorted by interaction with the high-risk group. When E is 

made large enough, the distortion is so great that the cumulative number of 
infecteds is smoothed out. This behavior is similar to that observed in the 
more complicated model of Jacquez et al. [17]. It is important to note that 
the two independent waves of infection in Figure 2a are a result of our 
discretization. This type of behavior would be observed in reality only if it 
were possible to identify two groups with different risk behavior that 
interacted only weakly. We note that even in the simplest case of two 
compartments we get behavior that is remarkably similar, at least qualita- 
tively, to the predictions made by the more complicated HSM (see Figure 
3). We also note that this serves to confirm that the rate at which the 
epidemic spreads and the shape of the infection wave depend heavily upon 
the rate of mixing between highly dissimilar groups [lo, 151. When mixing is 
great, the infection wave approaches that predicted by the Anderson and 
May model in which partner selection is random. 

With six compartments, one sees the infection wave predicted by HSM 
(see Figure 4). As was the case with the two-compartment model, the 
highest risk group initially exhibits exponential growth of infectives, which 
slows down prior to the group reaching SMI; in fact, we will see in the next 

3 6 x 10’ 

1.4 

1 2 

10 

P 

$ 0.8 

‘; 

06 

FIG. 4. Number of infected individuals in each risk group as a function of time. In this 

simulation we took six risk groups numbered from 6 (highest risk) to 1 (lowest risk), 

calculated as detailed in the text. We see the infection wave similar to that observed in 

HSM. High-risk groups become infected early on, and the epidemic slowly passes into 

lower risk groups. 
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TABLE 1 

Comparison of the Fraction wk of Individuals Infected at SMI in Each Risk Group k 

Obtained from Numerically Solving the Full System Given by Equations (l)-(3) with the 

Bounds Calculated from Equation (14)* 

k Risk (M,) wk Lower bound (14) Upper bound (14) 

1 9 0.7390 0.7221 0.7486 

2 28 0.7912 0.7583 0.8022 

3 47 0.8687 0.8337 0.8743 

4 66 0.9047 0.8659 0.9095 

5 84 0.9262 0.8818 0.9294 

6 103 0.9396 0.8913 0.9422 

7 122 0.9484 0.8994 0.9510 

8 140 0.9563 0.9112 0.9574 

9 161 0.9613 0.9315 0.9625 

10 190 0.9679 0.9545 0.9682 

11 248 0.9737 0.9721 0.9754 

12 599 0.9907 0.9897 0.9898 

*We estimate the amount of out-of-group mixing at SMI, tnk, by the initial out-of-group 

mixing. 

section that up to SMI the growth of infectives for the highest risk 
compartment may be approximated by logistic growth. The other compart- 
ments have an intrinsic exponential growth that becomes dominated by the 
growth in higher risk compartments as they approach SMI. The total 
number of AIDS cases exhibits polynomial growth, similar to HSM. In each 
case, the greatest interference comes, as one might expect, from neighbor- 
ing higher risk groups. Even when interaction rates between greatly differ- 
ing risk groups are low, there may be no apparent delay in the total growth 
of infecteds, as there was in the two-compartment case, because the 
intermediate risk groups through which the infection wave passes before it 
reaches the lowest risk individuals may smooth out the total infected curve. 
With a finer discretization (more compartments), the qualitative and quan- 
titative differences are small, the main quantitative difference being that 
with many compartments the infection wave can reach low-risk individuals 
slightly sooner as a result of the introduction of a larger number of 
intermediate risk groups. We note that as risk decreases, the level of 
infection at SMI, measured by the fraction of people infected at SMI within 
a risk group, also decreases (see Table 1). This result is similar to that 
obtained by Jacquez et al. [171 with their more complicated model. 

4. ANALYSIS 0F THE EPIDEMIC 

In this section we derive analytical expressions for the percentage of 
individuals infected in each risk compartment at SMI and the time to SMI. 
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We first note that the model given by Equations (l)-(3) is unrealistic for 
people in very low risk compartments. We expect that such individuals 
would be engaged in long-term partnerships and that a pairing model of the 
type proposed by Dietz [12] would be more realistic. Therefore, the 
following analysis applies only to middle- and high-risk groups. 

4.1. FRACTION INFECTED IN EACH RISK COMPARTMENT AT SW 

At the SMI time t, (or at steady state) in a given compartment k, 

dIk /dt = 0. We proceed to calculate bounds on the fraction of individuals 
infected in each particular risk group as follows. We define 

wk = Ik/Nk, (8) 

where Zk and Nk are evaluated at SMI in risk category k. We let mk be the 
probability of out-of-group mixing for risk category k at SMI; thus 

at SMI. 

(9) 

From the definition of xk and c(k, j) and the observation that wk i 1 
for all k, the following inequalities are immediate: 

(1-m~)c(k,k)wk,<X~~c(k,l)mk+(l-m,)c(k,k)w,. (10) 

Letting a, = (1 - m,)c(k, k) and pk = c(k, l)mk, Equation (10) becomes 

ffkwk < x, < pk + a,wk. (11) 

At SMI in the compartment with risk k, dZk /dt = 0; hence, from Equation 

(2), 

wk=xk/(xk+ak) (12) 

where (Ye = (CL + y)/pMk. Now the function S(x) = x/(x + A) is an in- 
creasing function of x for positive A; hence from Equation (11) we have 

akwk 
< wk < 

pk + ukwk 

ukwk + “k pk+“kwk+ak’ 
(13) 

From these inequalities we deduce the following bounds on wk: 

max(O, 1 - ak /ak) < wk < hk+, (14) 

where Ak+ iS the larger real rOOt Of the quadratic crkX2 +(pk + cxk - uk>X - 

pk = 0. Note that if mk = 0, that is, there is no out of group mixing at SMI, 
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2 

1 

0 
0 3 6 9 12 15 

Time (years) 

FIG. 5. Numerical simulation of Equations (l)-(3) with risk groups as in Table 1 

showing (a) spread of infection, Ik(t), (b) number of AIDS cases, A,(t), and Cc) total 

number of individuals, Ark(t), in each compartment. At SMI in the medium- and high-risk 

groups, the number of individuals in each group is roughly the same as before the 

infection began. That is, at SMI in medium- and high-risk groups, few people have 

developed AIDS. Also note that the ratio I, /Nk is approximately constant after SMI. 

Here we show the results for the risk group k = 9. The qualitative form of the graph is 

similar for other high risk groups. 

then pk = 0, which implies that the lower and upper bounds are equal and 
we have an exact value for wk. Note that Equation (14) also holds at steady 
state for infection. 

Clearly these bounds are very close together for small to medium 
out-of-group mixing, which will be the case from the form of the acceptance 
function f given by Equation (6). Table I shows the values of wk obtained 
for a set of risk categories from simulating the full system given by 
Equations (l)-(3) together with the bounds calculated from the inequalities 
given in (14). 

To calculate the number of infecteds in risk group k at SMI we need to 
know the number of individuals iVk(fk> in that risk group at SMI. From 
curve (cl in Figure 5, it is clear that N,(t,) is approximately equal to the 
initial population number, No/n, in high- and medium-risk groups. This 
observation implies that by the time SMI is reached in a particular 
compartment, the number of individuals who have gone on to develop 
AIDS in that compartment is small. Thus, the number of infectives in risk 
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group k at SMI can be estimated by 

Zk(tk) = N,hk, /n. (15) 

In Appendix A, we show that this is an overestimate of the actual 
number of infectives at SMI in a particular risk group. 

4.2. THE TIME TO SMI 

We now find estimates on the time tk taken to reach SMI in the 
compartment with risk Mk. Assuming that at time tk the number of 
infectives in lower risk compartments is small (see Figure 41, Equation (2) 
can be approximated by 

dt =pMk t p(t,k>j)c(k,_Q 
dlk 

i=k 
G”*(‘) -(/1+ Y)zk(t)* (16) 

I 

As we have noted above, this model is realistic only for middle- and 
high-risk groups; thus, c(k, j) = 1. As SMI approaches in a risk group k, we 

assume that higher risk groups are at SMI or at steady state. Furthermore, 
our simulations suggest that the probability of interaction between two risk 
groups remains virtually constant, as does Nk(t). Thus, Equation (16) may 
be approximated by 

p(W,k)#+ k P(O, k,j>wj [ Nk(o) - zk(t)] 
j=k+l 1 

-(p + -/)ldt), (17) 

which yields the solution 

a + Ka2eb,( 
‘dt) = ‘I+ Keb,t ’ 

where 

(18) 

b, = pM,P(o, k, k), b, = pMk 2 p(O, k,.dwj, 
j=k+l 

b3 = Nk(o) 
h,(a2-al), 

K = Ik(O) - ‘1 

a2 - Ik(O) ’ 
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FIG. 6. (a) Logistic growth provides an excellent fit to the growth of number of 

infected individuals in the highest risk group up to SMI (see text for details). (Solid line) 

Actual number of infecteds in the highest risk group calculated from Equations (l)-(3). 

(Dashed line) Estimate of the number of infecteds for this risk group using the logistic 

growth approximation given by Equation (18). (b),(c) For risk groups k = 11 and k = LO, 
respectively, the solid line shows the number of infecteds as calculated from Equations 

(l)-(3); the short and long dashed lines show the logistic growth estimates using Equation 

(18) summing j = k + 1 to N and k + 2 to N, respectively. These approximations enable 

us to estimate bounds for the time to SMI in high-risk groups (Table 2). 
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” I z 
Time (yearsf 
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FIG. 6 (Continued) 

and a, < 0 and a2 > 0 are the roots of 

Equation (18), which is essentially the solution of a logistic growth 
equation, is a remarkably good approximation, for the highest risk group, to 
the actual growth of infectives (see Figure 6) up to a fraction C#I of the 
carrying capacity u2. As a group approaches its SMI it is clear that the 
logistic growth of Equation (17) will break down prior to SMI. This results 
from infected individuals in higher risk groups developing AIDS, thus 
decreasing the “growth” term in (16). Hence, the true value of Z,(t) never 
reaches a2 as Equation (18) suggests. As a result we estimate the time to 
SMI as 

t, = $og[ &y_$ 1. 
Note that in the above analysis the wj’s are unknown. Since we are 
assuming that the higher risk groups are at steady state or at SMI, we may 
approximate wj by Aj+ (from Table 1). Furthermore, although we cannot 
find an a priori value for 4, our numerical simulations show that the 
logistic growth curve approximates the actual growth up to a very large 
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TABLE 2 

Comparison of Time to SMI, t,, from Equation (19) with the Actual SMI Time 

for High-Risk Groups* 

k tk (sum k + 1 to N) 

9 2.31 

10 2.01 

11 1.80 

12 0.89 

*See text for details. 

tk (sum k +2 to N) Actual tk 

3.64 2.76 

3.16 2.46 

2.62 1.98 

0.89 0.88 

fraction of the carrying capacity a2 and that Equation (19) is reasonably 
insensitive to the actual value of C$ for large values. Table 2 compares this 
estimate for a typical value of C/J with the actual SMI time for the high-risk 
groups. 

Figure 6 and Table 2 show that the above approximation leads to an 
excellent fit for the highest risk group. However, Table 2 shows that for 
groups with risk lower than the highest, the predicted SMI time is much 
less than the actual SMI time. Furthermore, the approximation to the 
growth of infection given by Equation (18) grows too quickly. This is to be 

FIG. 7. Estimate of growth of number of infected individuals in the risk group given by 

k = 11 using the two-time-scale procedure outlined in Appendix B. The dashed line is the 

approximation. 
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, 

FIG. 8. Plot of In[(Ik - a,)/K(a, - I,)] against time for (a) k = 12, (b) k = 11, and 

Cc) k = 10, showing that high-risk groups exhibit logistic growth as they approach SMI and 

that during this phase of growth the logistic growth approximation given by Equation (18) 

is a good one. 

expected because in Equation (17) we assume that euery compartment 
above the one in question has reached SMI or steady state. This is true for 
compartments of risk much higher than that in question, but not for the 
immediate higher risk group, in which the infection is still growing. Thus 
the sum from j = k + 1 to N in Equation (17) is an overestimate of the 
interaction that compartment k experiences with infecteds from higher risk 
groups. For high-risk groups, therefore, we get a lower bound on the time 
to SMI. Summing from j = k + 2 to N would give us an upper bound for 
the time to SMI for high-risk groups (see Table 2 and Figure 6b,c). Note 
that for lower risk groups it is impossible to say a priori whether the above 
predictions are upper or lower bounds because other factors, such as death 
due to AIDS in the very high risk groups, come into play. 

In Appendix B we outline a multi-time-scale procedure to approximate 
the growth to SMI of infecteds in high-risk groups (Figure 7). Figure 8 
shows that the number of infecteds in high-risk groups exhibits logistic 
growth just prior to SMI. 

5. DISCUSSION 

We have analyzed the growth of HIV in a simplified version of the 
model presented by Hyman and Stanley [15] for a homosexual community 
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wherein sexual behavior is assumed to be heterogeneous. Because of the 
simplifying assumptions we make, our model cannot give accurate predic- 
tions for the spread of HIV infection. This is also true of the more 
complicated models. However, the simple form of our model captures much 
of the qualitative behavior of more complex models and enables us to 
quantitatively analyze the spread of infection through different risk groups 
and to investigate the dynamics of the spread from one risk group to 
another. Moreover, we can calculate upper and lower bounds for the 
fraction infected at SMI and the time to SMI in high-risk groups in terms of 
the parameters of the model. For example, Equation (14) shows that the 
fraction of individuals infected at SMI in a particular risk group increases 
as out-of-group mixing increases or as the average number of sexual 
partners increases. Our analysis shows that the growth of HIV infection 
appears to be composed of several .parts. Initially, when the infection wave 
is passing through the highest risk group, growth of the infection is 
approximately logistic, but as it reaches high- and middle-risk groups, 
interference begins to play a large role and complicates behavior. We 
present a two-time-scale procedure to analyze this case and show that 
growth of infection in middle- and high-risk groups may be closely approxi- 
mated by an initial exponential phase followed by a logistic growth phase 
up to SMI. 

One important aspect of risk-based models is the quantification of risk. 
In both our model and HSM there is no difference in intrinsic growth rates 
between a group of individuals who have 50 contacts with one partner over 
a year and a group who have one contact with 50 different individuals. Yet 
there clearly ought to be a difference in the way infection spreads in such 
groups. In such cases we need to use a model similar to that proposed by 
Dietz [12], which takes into account the duration of relationships. Thus we 
restrict the analysis of our model to that of middle- and high-risk individu- 
als. Low-risk behavior should be modeled as in [12]. Furthermore, contact 
patterns are also important. Jacquez et al. [17] presented a detailed 
numerical analysis of the effects of different contact patterns. Recently, 
Gupta et al. [13] analyzed the significance of the sexual contact network by 
studying a number of cases ranging from the extremes of high within-class 
contact to low within-class contact. Anderson et al. [5] considered the case 
of movement between sexual activity classes as a result of change in 
behavior. In this paper we have presented a model that assumes one 
particular type of contact pattern and, in terms of risk-based behavior, is 
appropriate for middle- and high-risk groups. The analysis presented here 
is a first step in analyzing more complex behavior patterns. 

In this paper we have used the abbreviation SMI to describe the state of 
a risk compartment when it reaches maximum infection. This terminology 
contrasts with that of Hyman and Stanley. Their terminology may be 
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misleading, for the term saturation usually means that a certain carrying 
capacity has been attained and that the system will remain there for some 
time. A more appropriate, albeit more cumbersome, term is state of 
maximum infection, which we employ here. 

This work was started while M. N. was attending an NSF-funded REU 
program, grant number NSF DMS 8900490, at the Department of Mathemat- 
ics, Uniuersity of Utah, during the summer quarter of 1989. G. D. Y. would 
like to acknowledge NIH grant #GM29123-09, and to thank the Department 
of Mathematics, University of Utah, for financial support. 

APPENDIX A. NUMBER OF INFECTIVE INDIVIDUALS AT SMI 

Here we show that Equation (1.5) is an overestimate of the number of 
individuals infected in a particular risk group at SMI in that risk group. We 
show, in fact, that (i> A:(m,(O)) > A:(m,(t,)) and (ii> N,(O) > Nk(tk). 

To show (i) we first recall that Ak+ is the larger root of the quadratic 
akx2 + ( pk + ayk - u,>x - pk = 0, where a,, pk, and LYE are defined in the 
text. Differentiating this quadratic with respect to m, the mixing, we have 

dr [c(k,k)x-c(k,l)](x-1) 
XL= (2x - l)ok + pk + CYyk (‘4.1) 

As the model is realistic only for medium- and high-risk groups, we may 
approximate both c(k, k) and c(k, 1) by 1. Thus, Equation (A.l) becomes 

and, clearly, 

dx 
dm ” 

(A.21 

(A.3) 

Our numerical simulations show that m,(t,) < m,(O) and that hkf > l/2. 
Therefore, Equation (A.31 shows that A:(mk(O>> 2 A:(m,(tk)). 

To show (ii), we add Equations (1) and (2) to get 

T = cL[N#) - N,c(t)] - ddo) - Yldt). 

Clearly, dNk /dt Q 0 at N,(t) = N,(O); hence Nk(tk) < N,(O). 

(A.41 

APPENDIX B. TIME-SCALE MATCHING 

As shown in Figure 6 and Table 2, the approximation in Equation (17) is 
good for the highest risk group but is poor for lower risk groups. This is 
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because the approximation made in Equation (17) assumes that during the 
whole course of infection in a particular risk group, all higher risk groups 
are at SMI or steady state. Although this is a good approximation for the 
latter stages of infection in a particular risk group, it is invalid for the initial 
stage. During the early stages of infection in a medium- or high-risk group, 
its neighboring groups will also be in early stages of infection. Thus, a 
better approximation to the growth of infection in a risk group k during the 
early stages would be to put b, = 0 in Equation (18), that is, assume that 
there is no infection from other risk groups. The approximation to the 
initial growth of infection is thus given by Equation (18) with b, = 0. In 
order to get a solution up to SMI, one has to match this to the solution of 
the more general form of Equation (18) with b, nonzero where, in the 
latter, one has to replace Z,(O) with the value of Zk at the matching time. 
Figure 7 shows the result of this procedure. The matching time, t,, was 
taken to be the time at which Z, = 103, that is, 

1 103 
tm = a ‘n m. 

Note that although we approximate the initial phase of infection by logistic 
growth, because the number of infected individuals is small this is approxi- 
mately exponential. 

Although crude, the above procedure proved to be reasonably accurate 
for estimating Zk(t) for high-risk groups. The procedure assumes that there 
are two phases for infection up to SMI: an initial exponential growth phase 
in which the group acts mainly within itself, and a later logistic growth 
phase in which the group interacts with higher risk groups all of which are 
at SMI or steady state. A numerical study of the medium- and high-risk 
groups shows that they do exhibit logistic growth toward SMI (Figure 8). A 
more refined scheme would take account of the transition phase, wherein 
the interaction of the group with higher risk groups changes from zero to 
that appropriate at SMI. This would require detailed information that 
could be obtained only from the simulations. As this transition phase is 
rather short, it appears that ignoring it can still give good approximations. 
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