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Summary. The dynamics of cancerous tissue growth involves the complex inter-
action of a number of phenomena interacting over a range of temporal and spatial
scales. While several processes involved have been studied, the adaptation of the
vasculature within a growing tumour has thus far received little attention. We con-
sider a hybrid cellular automaton model which analyses the interaction between the
tumour vascular network and tissue growth. We compute the temporal behaviour of
the cancerous cell population under different hypotheses of structural adaptation in
the vasculature. This may provide a possible method of determining experimentally
which adaptation mechanisms are at work.

1 Introduction

The main function of vasculature is to ensure adequate and efficient nutrient
delivery to tissue. To achieve this, blood vessels must be able to structurally
adapt in response to signals from the tissue they perfuse. Experimental and
theoretical studies have significantly advanced our understanding of the pos-
sible design principles and adaptation mechanisms at work in normal vessels
[7], but there are still many open questions, and how these aspects of vascu-
lature design change under diseased or abnormal conditions largely remains a
mystery.

In normal vasculature, design principles based on an optimality assump-
tion were first proposed by Murray [8], whereby the structure of the vascular
system is postulated to arise from the balance between blood metabolic energy
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consumption and energy dissipated by blood flow. Murray’s design principle
has been shown to imply that the wall shear stress (WSS) must be constant
over the vascular network and experimental data appear to validate these pre-
dictions for arteries [15]. However, more recent experimental studies by Pries
et al. [10] have shown that the WSS is not constant in smaller arterioles and
capillaries, thus contradicting these predictions. Based on these results, they
proposed a design principle whereby the vascular system must adapt to a sig-
moidal WSS-pressure curve. A design principle based on Murray’s optimality
principle and recent blood-rheological data [3] has been shown to reproduce
the non-constant WSS-pressure relationship found by Pries et al. [10].

Adaptation of the normal vascular system to a number of stimuli has been
extensively analysed by Pries et al. [11, 12]. They have considered a model
which accounts for adaptation in response to haemodynamic signals (WSS and
pressure [13]) and metabolic stimulus, and have also considered both upstream
and downstream signalling between vessels. The actual mechanistic bases for
these stimuli are largely unknown, although there is some evidence that the
downstream signal is carried by ATP molecules, whereas the upstream signal
consists of changes in the membrane potential of endothelial cells that are
propagated along the vessel walls.

In contrast to normal vasculature, which appears well organised according
to the principles mentioned above, tumour vasculature appears to be very
disorganised in all respects. Vessels lack the well-defined anatomical structure
of their normal counterparts and are leaky. Blood flow in tumour vascular
beds is also quite disorganised compared to normal ecirculation. In addition,
there is evidence of signalling between tumour cells and normal vessels that
induces a dematuration process within normal vessels as tumour malignancy
progresses and co-opts normal vessels [14]. The significance of understanding
how these changes affect circulation is obvious when one considers that the
vasculature delivers drugs to the tumour.

In a first attempt towards a model of tumour vasculature, we aim to as-
sess which of the normal adaptation mechanisms are more likely to be absent
in tumour vasculature. To this end, we use the multi-scale model framework
proposed in [2] to assess the effects of different adaptation cues. In effect, we
“turn off” individual elements of the normal adaptation mechanism proposed
by Pries et al. [12] and determine predicted outcomes. We hope that by exper-
imental observation of tumour dynamics, one might then be able to deduce
what structural adaptation mechanisms are at work.

2 Summary of the Multi-scale Model
The model we use integrates phenomena occeurring on very different time

and length scales TLSs (see Fig. 1). These features include blood flow and
structural adaptation of the vascular network, transport into the tissue of
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Fig. 1: Time and length scales involved in our model [6].

blood-borne oxygen, competition between cancer and normal cells, cell di-
vision, apoptosis, VEGF (growth factor) release, and the coupling between
them. In this section we present an overview of the main features of the inte-
grated model without entering into a detailed description of the sub-models
which form its component parts.

The modelling framework we use is based on the hybrid cellular automaton
concept which has been used to model several aspects of tumour development
(see [1, 5, 9]). We extend this approach to account not only for the presence
of a diffusive substance (such as oxygen or glucose) as in previous papers,
but also to include intracellular and tissue-scale phenomena, and the coupling
between them. To this end, we have organised our model into three layers: vas-
cular, cellular, and intracellular, which correspond, respectively, to the tissue,
cellular and intracellular TLSs, (see Fig. 2). For a full account of the details
we refer the reader to [2]. :

In the top layer, we deal with the structure of the vascular network and
blood flow (see [1] for more details). We consider a hexagonal vascular net-
work (similar to the one observed in liver). Each individual vessel is assumed
to undergo structural adaptation (i.e. changes in radius) in response to differ-
ent stimuli until the network reaches a quasi-equilibrium state. Through this
structural adaptation process we compute the blood flow rate, the pressure
drop and the haematocrit (i.e. relative volume of red blood cells) distribution
in each vessel. Between the vascular layer and the cellular layer, i.e. coupling
the dynamics at the cellular level to blood flow and vascular adaptation, we
have the transport of blood-borne oxygen into the tissue. This process is mod-
elled by a reaction-diffusion equation. The distribution of haematocrit is the
source of oxygen, whereas the distribution of cells (provided by the cellular
layer) gives us the (spatially distributed) sink of oxygen.

In the intermediate layer, we focus on cell-cell interactions (competition)
and spatial distribution of cells. We consider two types of cells: normal and
cancerous, which are modelled as individual elements. These two populations
compete for space and resources. Cancerous phenotypes are usually better
competitors, which results in the cancer population taking over. Compe-
tition between the two types of cells is introduced by a very simple rule,
which, in turn, couples this middle layer to the intracellular layer. Apoptosis
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(programmed cell death) is controlled by the expression of p 53 (whose dy-
namics is dealt with in the intracellular layer): when the level of p 53 in a cell
exceeds some threshold the cell undergoes apoptosis. However, this threshold
is fixed according to the local spatial distribution of cells, which links the
spatial distribution (cellular layer) with the apoptotic process (intracellular
layer).

In the bottom layer, we consider intracellular processes, in particular cell
division, apoptosis, and VEGF secretion. In this layer, we use ordinary dif-
ferential equations (ODEs) to model the relevant biochemistry. One issue we
focus on is how the external conditions modulate the dynamics of these intra-
cellular phenomena and, in particular, how the level of extracellular oxygen
affects the division rate, the expression of p 53 (which regulates apoptosis)
and the production of VEGF. Since the spatial distribution of oxygen depends
on both the spatial distribution of cells (cellular layer) and on the distribution
of haematocrit (vascular layer), these processes at the intracellular level are
linked to the behaviour of the other two layers: cell proliferation and apopto-
sis alter the spatial distribution of the cells (see Fig. 2); the cellular and the
intracellular layers modulate the process of vascular structural adaptation
through another transport process: diffusion of VEGF into the tissue and its
absorption by the endothelial cells (ECs) lining the vessels.

! . — |
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Fig. 2: Diagrammatic representation of the layer structure of our model.
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3 Structural Adaptation in Normal Vasculature

In a series of papers, Pries, Secomb and co-workers have put together a model
for vascular structural adaptation [11, 12]. According to this model, structural
adaptation in normal vasculature occurs by adapting vessel radii to different
stimuli:

AR = Syt RAt

where R is vessel radius, At the time step, and Siot is the total stimulus,
given by the sum of the different stimuli. According to [11], there are three
types of stimuli, and we briefly describe each one in turn. They assume a
haemodynamic stimulus, which forces the vessels to adapt to blood flow con-
ditions. The main signals involved in haemodynamic adaptation appear to be
wall shear stress, 7,,, and pressure, P [13], although each of these magnitudes
seems to play a different role: whereas increased WSS generally induces radius
increase, increased pressure leads to decrease in vessel radius [12]. Accordingly,
Pries et al. [12] postulate the following form for the haemodynamic stimulus,

Sh:
Sh = lOg(Tw s Tf) - kp lOg(Te (PJ)

where 7. is a constant introduced to avoid singular behaviour for low WSS,
ky is a constant and 7,(P) is the level of WSS expected from the actual value
of the intravascular pressure [12].

The second stimulus is the so-called metabolic stimulus. It is well known
that, as part of their normal functionality, vessels respond and adapt to the
metabolic needs of the surrounding tissue. Pries et al. [11] considered the
following functional form for the metabolic stimulus, Sm:

Qr
Sm = ki, log (1 + QH) (1)

where k,,, is a constant, Q, is a reference blood flow and H is the haematocrit.
In [2], a modification of Eq. (1) was proposed in order to explicitly take into
account the effect on the vasculature of VEGF, V' (produced by nutrient-
deprived cells) whereby the constant k,, was replaced by a function of V;

L _ 0 v
V) = 8% (14 ) @
where k2, and V} are constants.

The third stimulus is actually a pair of stimuli, the so-called conducted
stimuli, which consist of signals generated by the vessels and propagate ei-
ther downstream or upstream. They are assumed to be necessary to maintain
a fully functional vascular system. These signals are usually emitted under
stress conditions, and therefore are closely related to the metabolie stimulus
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described above. Although most of the underlying biological details of these
signalling mechanisms are unknown, the downstream stimulus is hypothesised
to be transmitted by a chemical which is released into the blood (a good can-
didate seems to be ATP released by red blood cells under hypoxic conditions
[4]) and thereby carried downstream by the flow. The upstream transmission
of information seems to be along the vessel walls, perhaps by spread of changes

in membrane potential through gap junctions [12].

4 Deconstructing Normal Vasculature

We now examine, in turn, the effect on tumour cell population dynamics of
these stimuli. Specifically, we focus on those stimuli which are most likely to
be absent in tumour vascular networks.

4.1 Adaptation Decoupled from VEGF Production

For completeness and later comparison, we first carry out simulations with
by, = kb, independent of VEGF in Eq. (1). No conducted stimuli are infro-

duced, so Siq¢ is given by:

Stot = Sh T Sm — ks

where k. is the so-called shrinking tendency which accounts for vessel shrink-
age in the absence of stimuli [11].

The results obtained are shown in Fig. 3. As we can see, the growth of
the tumonr does not have any impact on the vascular network, as tumour
growth and vascular adaptation are effectively decoupled. It is worth noting
the formation of a necrotic core in the centre of the growing tumour. We see
that the flow is evenly distributed along the pathways running parallel to the
diagonal as a consequence of the boundary conditions which are flow inward
at the bottom left-hand corner, flow outward at the top right-hand corner,

and zero flux elsewhere.

4.2 Adaptation Coupled to VEGF Production
We now account for the coupling between vasculature and VEGF, by taking in
Eq. (1) km = km (V) as given by Eq. (2). No conducted stimuli are introduced,

$0 Sipt is given by:

Stot =S + Sm — ks.

[n this case (see Fig. 4) the behaviour of the system resembles more closely
what we would expect in a tumour: there are extensive hypoxic regions within
the tumour. but no noticeable necrotic regions. We also see that this model, as
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Fig. 3: Four snapshots showing simulations with no VEGF coupling and no con-
ducted stimuli. Time increases from top to bottom. The left column corresponds
to the evolution of the colonies of normal and cancerous cells, the central column
to the distribution of oxygen and the right column to VEGF distribution. See also
Plate 4 on page 339
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in the previous case, leads to parallel circulatory pathways running along the
diagonal. However, in this case, due to the coupling between VEGF production
and vascular adaptation, there is only one pathway that takes most of the flow.
This continues until eventually an instability occurs whereby there is basically
only one pathway that carries all the flow. This may well contribute to the
dynamic and rather unstable spatial patterns formed by real tumours.
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I'ig. 4: Four snapshots showing simulations with vascular adaptation coupled to
VEGF released by hypoxic cells. Time increases from top to bottom. The left column
corresponds to the evolution of the colonies of normal and cancerous cells, the central
column to the distribution of oxygen and the right column to VEGF distribution.
See also Plate 5 on page 340
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4.3 Inclusion of Downstream Signalling

The mechanism we propose for downstream transmission of signals differs
somewhat from that proposed by Pries et al. [12]. Whereas they consider
that the downstream stimulus is long-range and propagates from any vessel
of the network to any other vessel downstream of it. we will assume that
the downstream stimulus is only transmitted to the nearest neighbour, i.e.
to the vessels immediately downstream of the one releasing the signal. The
mechanism proposed by Pries et al. [12] relies on the fact that the chemical
carrying the signal has a long half-life time in blood, which allows it to stay
in the circulation for a significant length of time. Our mechanism, on the
contrary, is based on the assumption that the chemical has a short half-life
time. Because the identity and properties of the actnal chemical are unknown,
both mechanisms are feasible a priori.

The intensity of the downstream stimulus, 54 is assumed to depend on
the current of the signalling chemical along a particular vessel (vessel “1”

say). If the vessels upstream (vessels “2” and “3") of vessel 1 are irrigating
hypoxic regions, they will be receiving signals from the tissue in the form
of secreted VEGF. If this is the case, i.e. if the concentration of VEGF in
any of the vessels 2 or 3 is larger than zero, then these vessels will produce a
(constant) amount of signalling chemical, po- The chemical produced in vessels
2 and 3 will enter vessel 1 and its current along vessel 1 will be (due to mass
conservation):

J] =M {V}(gz -+ IHQ(I,\JCJJ

where p; (V') = pg if V # 0 in vessel i = 1,2 and pi(V)=0if V = 0 in vessel
i =1,2. Using now the formula given in [12], ’Sd is given by:

J
Sq=log |1+ — < P

where Q... is a constant introduced to avoid singular behaviour. The total
stimulus is then given by

St.ot = S['I + Sm + S(l —k,

with kp, = k,, (V) as in Eq. (2), i.e. the coupling between vascular adaptation
and VEGF production is taken into account.

The corresponding results are shown in Fig. 5. Comparing the results to
those obtained in Section 4.2, we see that this vasculature vields tumours
with smaller hypoxic regions which release lower concentrations of VEGF,
Related to this behaviour, we also observe differences in the vasculature and
blood flow with respect to the two previous cases (Sections 4.1 and 4.2). In
this case, the flow is initially distributed within disconnected pathways along
the diagonal, but eventually blood flow is established along paths connecting
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the diagonal pathways (which are still the main flow paths). This generates
a more homogeneous pattern of blood flow and oxygen concentration which
leads to smaller hypoxic regions and therefore to a much more stable spatial
pattern.

Therefore the inclusion of “first-neighbour” downstream signalling yields
a more “normal-looking” vasculature and more static spatial pattern within
the tumour. This leads to the conclusion that this mechanism of vascular
adaptation is quite likely to be absent in tumour circulation.

4.4 Inclusion of Upstream Signalling

Following Pries et al. [12], the intensity of the upstream stimulus, Sy, is as-
sumed to depend on a signal produced by vessels in hypoxic regions (V > 0).
The “amount” of signal produced is assumed to be proportional to the length
of the vessel, Ly. As in [12], we further assume the existence of a dissipative
mechanism in the upstream signal propagation, which will be modelled by an
exponential decay. At a given node of the network, the current of upstream
stimmilus produced by each “outgoing” vessel (defined as one such that the
corresponding current has a negative value) is given by:

J? = Lee /L
where L is a constant.
The total current, J., is the sum over all the outgoing vessels at a given
node of the corresponding values of J¢. The upstream stimulus at each of the
incoming vessels at the corresponding node is given by [12):

i
Su = km Jl"c""r.—
ke Je+Jo

where Jy is a constant. The total stimulus is then given by

Stot = LL"ll + Sm + Su — ks-

Typical results are shown in Fig. 6. Comparing the results to those ob-
tained in Section 4.3, we see that this mechanism yields a vasculature in
which the ecirculation is heavily concentrated around the regions under hy-
poxic stress, in contrast to the situation observed in Fig. 5, in which the
action of the downstream stimulus tends to homogenise the pattern of flow.
The way in which this flow concentration around hypoxic regions is achieved
is different from the one shown in Fig. 4, corresponding to an adaptation
mechanism without long-range stimuli. In Fig. 4 we see that when several
hypoxic regions appear within the tumour mass the adaptation mechanism
reacts by creating large parallel vessels running through the hypoxic regions
from inlet to outlet. In the present case (see Fig. 5), the pattern of flow when
a number of hypoxic regions appear is much more homogeneous and “normal
looking” . Therefore we suggest that this mechanism is quite likely to be absent
in tumour vasculature.
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Fig. 5: Four snapshots showing simulations with a structural adaptation mechanism
coupled to VEGF released by hypoxic cells plus “nearest-neighbour” downstream
stimulus. The left column corresponds to the evolution of the colonies of normal
and cancerous cells, the central column to the distribution of oxygen and the right
column to VEGF distribution. See also Plate 6 on page 341

5 Conclusions and Discussion

We have used a previously developed hybrid cellular automaton model to
explore the effects on tumour cell dynamics of different vasculature structural
adaptation mechanisms. We summarise our new results as follows:

e Only vasculature in which adaptation is decoupled from VEGF can sup-
port a necrotic core, with a size which appears to correlate with total
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Fig. G: Four snapshots showing simulations with a structural adaptation mecha-
nism coupled to VEGF released by hypoxic cells plus “nearest-neighbour” upstream
stimulus. The left column corresponds to the evolution of the colonies of normal
and cancerous cells, the central column to the distribution of oxygen and the right
column to VEGF distribution. See also Plate 7 on page 342

tumour size (see Fig. 3). This is due to the inability of the tumour to
induce sufficient vasculature to supply extra oxygen to that particular re-
oion.

e The vasculature generated by assuming coupling between vascular adap-
tation and VEGI' production appears to produce the most spatially het-
erogeneous pattern of flow and oxygen. Eventually the system evolves to
one pathway carrying almost all of the flow.
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e  When introducing nearest-neighbour downstream signalling, the distribu-
tion of flow and oxygen becomes more homogeneous, yielding a much more
stable spatial pattern within the tumour.

e Upstream signalling yields concentration of flow and oxygen around the
hypoxic regions, although the patterns of flow look much more homoge-
neous than in the case without downstream and upstream stimuli.

e The size of hypoxic regions appears to correlate with the homogeneity of
How and oxygen distributions. Heterogeneous distributions (Fig. 4) yield
larger hypoxic regions.

While in the above we have compared spatial distributions of key com-
ponents in response to different stimuli, we can also easily compute how the
total number of cells changes over time. In Fig. 7 we observe how the total
number of cells and their temporal dynamics depend quite eritically on the
adaptation mechanism assumed. Intriguingly, the model predicts oscillatory
behaviour in cancerous cell population.

Fig. 7: Number of cells as a function of time for the different vascular adaptation
mechanisms considered. Panel (a) shows the results for a VEGF-sensitive vasculature
with no conducted stimuli. Panels (b) and (¢) incorporate, in addition to VEGF
coupling, downstream stimulus and upstream stimulus, respectively. Key: solid line
corresponds to the total number of cancerous cells (quiescent plus proliferating),
dashed line to the number of proliferating cancerous cells and dotted line to the
number of quiescent cancerous cells.

There are many future directions in which this preliminary work must be
extended to capture more realistically the biology of vasculature adaptation
and cancerous cell dynamics. For example, the approach that we have used
is based on empirical evidence of structural adaptation in large vessels. It is
unclear if this holds in general for blood vessels. We will need to develop an
adaptation principle which is more mechanistically based, allowing it to be
verified more easily experimentally. However, the present study has yielded
a number of experimentally testable predictions which may help elucidate
some of the key underlying processes of adaptation which are absent or work
abnormally in tumour vasculature,
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Plate 4: Four snapshots showing simulations with no VEGF coupling and no con-
ducted stimuli. Time increases from top to bottom. The left column corresponds to
the evolution of the colonies of normal and cancerous cells, the central column to
the distribution of oxygen and the right column to VEGF distribution (P.K. Maini
et al., Figure 3 page 171)
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anism coupled to VEGF released by hypoxic cells plus “nearest-neighbour” down-
stream stimulus. The left column corresponds to the evolution of the colonies of
normal and cancerous cells, the central column to the distribution of oxygen and
the right column to VEGF distribution (P.K. Maini et al., Figure 5 page 174)



sk
(=]

Vascular

o o*

Quiescient

Cancer

Normal

Empty

Vascular
Quiescient
Cancer
Normal

Empty

Vascular
Quiescient
Cancer
Normal

Empty

Vascular
0.1

Quiescient 0.08

Cancer 0.06

Normal 0.04

Empty 0.02

0

Plate 7: Four snapshots showing simulations with a structural adaptation mecha-
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stimulus. The left column corresponds to the evolution of the colonies of normal
and cancerous cells, the central column to the distribution of oxygen and the right
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