
Appendix
Cellular metabolism

We first define a simple model of cellular glucose metabolism. Under normal physiological
conditions, human cells rely on aerobic respiration to produce their energy. Each glucose
molecule reacts with six oxygen molecules to produce carbon dioxide and ATP. This reaction
may be caricatured by

glucose  6O2  6CO2  nA ATP

where nA denotes the number of ATP produced during complete oxidation of glucose. In this
paper we assume nA  36, though this value may vary slightly depending on the specific cell
type under consideration.

During periods of hypoxia, cells revert to the less efficient anaerobic metabolism,
producing two molecules of lactic acid per glucose

glucose  2 lacticacid  2ATP.

The details of the mathematical models capturing cellular dynamics are included in the
appendix. During the first stage of carcinogenesis, the dominant growth constraints involve
cellular interactions with the extracellular matrix and other cells. During this phase, substrate
supplies are assumed adequate and, therefore, cellular metabolism neither promotes nor
constrains growth. Once these social constraints have been overcome and tumor cells
proliferate into the lumen and away from the basement membrane, the dominant growth
constraint becomes limited substrate availability, and thus increased ATP production confers a
competitive advantage.

The dynamics of aerobic and anaerobic metabolism of glucose are summarized in Eqs.
(1)–(4). Cells using inefficient glycolytic metabolism maintain adequate ATP concentrations
by increasing glucose flux. Normal cells are assumed to adopt glycolytic metabolism only
when environmental conditions are hypoxic 1. Transformed cells exhibit a similar response to
hypoxia but also maintain glycolytic metabolism even in the presence of oxygen 2. Differences
between the two cell types are also seen in H production. Normal cells produce increased acid
(i.e. above the basal rate) only when oxygen supply is low. However, glycolytic cells produce
increased amounts of H even in normoxic conditions and thus acidify the extracellular space,
irrespective of the oxygen levels.
Metabolite profiles

Having defined a model of cellular respiration, we are now in a position to determine the
metabolite distributions around the cells. The details of the mathematical modelling are
included in the appendix. After each automaton generation, the known rates of metabolite
consumption and production for each cell are used to calculate the corresponding metabolite
profiles. This allows us to generate a continuously varying regional map of oxygen, glucose,



and acid concentrations.
Cell Dynamics

We now proceed to investigate how the carcinoma evolves in response to the associated
distribution of glucose, oxygen and H within the tissue. Initially, the automaton is composed
of normal cells forming a monolayer along the basement membrane. After each generation, the
resultant glucose, oxygen and H fields are calculated using the methods outlined above. Each
cell in the automaton is then updated (in a random order) according to the local metabolite
levels. Cells may proliferate, adapt or die, and cells with different phenotypic patterns respond
to the microenvironmental pressures in different ways. As such, competition is incorporated
into the model: for a new population to progress and grow, it must successfully compete for
space and resources with existing populations.

The rules governing the evolution of the automaton elements are as follows:
1. An element that is empty does not evolve directly. It may evolve

indirectly when cell division takes place in a neighboring cell.

2. If the amount of ATP produced by a cell a falls below a critical
threshold value, a0, it dies, and the element becomes empty. As such, a0
represents the level of ATP required for normal cellular maintenance. We do
not allow hypoxia to directly induce cellular death within our model. Rather,
hypoxia indirectly causes cell death through a reduction in ATP production.
As mentioned previously, cells displaying the glycolytic phenotype produce
significantly more ATP than their normal counterparts during periods of
hypoxia, thus they are less susceptible to cell death via this mechanism. We
assume a0  0.1, corresponding to normal cell death occurring when oxygen
levels drop below c  0.05 (3)

3. The locDG∇2G − G  0,al H level may also induce cellular death, with
probability pdea. We define this probability by

pdea 

h/hN in a normal cell, if h  hN,
h/hT in an acid-resistant cell, if h  hT,
1 otherwise.

where hN  hT. Thus the probability of cell death increases with acidity,
and the cell will always die if the H level is greater than hN or hT, dependent
on the cell type under consideration. These values are taken to be
hN  9.3  102 and hT  8.6  103 for normal and acid-resistant cells,
respectively, corresponding to threshold values of pH 6.8 and pH 6 (4).

4. If the cell is not attached to the basement membrane, and is not
hyperplastic, it dies.



5. If the cell does not die through any of the mechanisms above, it either
attempts to divide, with probability pdiv, or becomes quiescent. The
probability of division is a function of the cellular ATP production

pdiv 
a − a0/1 − a0 a0  a  1,
1 a ≥ 1.

Hence we assume that the probability of division is proportional to the
ATP generated that is not needed for maintenance, and that the cell will
always attempt to divide if the production rate is more than its normal level of
1. If the cell attempts to divide, we determine whether cell division occurs by
sampling its neighboring elements. If there is one empty space, then the cell
divides, and the new cell occupies this empty space. If there is more than
one empty space, the new cell goes to the element with the largest oxygen
concentration5.

6. If a cell divides, each of the two daughter cells has probability pa of
randomly acquiring one of the three heritable characteristics (hyperplasia,
glycolysis and acid-resistance). In order to avoid bias in the model, we
assume these changes are reversible. For example, a cell displaying
constitutive up-regulation of glycolysis may revert to normal glucose
metabolism; if this metabolism is most appropriate for the current
microenvironmental conditions, the cell will successfully compete for
resources with its neighbors. We choose pa  10−3 as a base value, to reflect
the fact that heritable change is a relatively rare occurrence.

It remains to define the dimensions of the automaton M and N. We take N  50,
corresponding to a typical ductal carcinoma of radius 200 m. However, we leave M
undefined, allowing it to dynamically increase as the carcinoma grows. Essentially the final
value taken by M will represent the maximum distance from the basement membrane the cells
may survive, given the limited nutrient supply and acid removal.

Throughout this model derivation, we have assumed that the various processes above
follow simple, linear dynamics. It can be argued that these assumptions are too unrealistic to
represent complex biological phenomena such as these. However, these processes are poorly
understood and, as a first approximation, an assumption of linearity is sufficient to capture
qualitatively similar monotonic behavior. We would not expect these assumptions to have a
marked effect on the model’s conclusions. Moreover, the relative simplicity of the model
means that the parameter space is kept to a manageable size.
Model of cellular metabolism

Suppose the cell consumes glucose and oxygen at rates G and C, respectively, and that
all of the consumed glucose and oxygen is used to generate ATP under the two processes



outlined above. Then, from above, we are assuming G ≥ C/6. If this condition is satisfied,
we may calculate the rates of ATP production A and lactic acid production L

A  nAC
6  2G − C

6 ,

L  2G − C
6 .

    (1)

    (2)

The lactic acid produced by the cell partially disassociates into H and lactate. These H

ions lower the pH of the extracellular space, inducing cellular toxicity. We caricature the rate
of cellular H production H as proportional to the rate of lactic acid production, H  kHL,
for some kH  1. Note that the aerobic pathway also contributes to cellular acid production
through hydration of CO2. However, this contribution is small – for each mole of ATP
synthesized, anaerobic metabolism produces one mole of lactic acid, whilst aerobic
metabolism produces only 1/6 mole of CO2. As such we ignore this term, considering only the
acid production in excess of the normal rate.

It remains to define the rates of cellular glucose and oxygen consumption G and C.
Whilst complex empirical functional forms for these rates are available6 here we assume that
the rates follow simpler first-order dynamics

G 
kNG in a normal cell,
kTG in a glycolytic cell,

C  kCC,

    (3)

    (4)
where G and C denote the extracellular concentrations of glucose and oxygen, respectively,
and kT  kN. Note that we assume that tumor cells do not significantly alter their rate of
oxygen consumption during carcinogenesis, consistent with experimental observations7

We non-dimensionalize Eqs. (1) – (4), to reduce the size of the parameter space. Let GX

and CX denote the normal extracellular concentrations of glucose and oxygen, and suppose that
under normal conditions, normal cells rely on aerobic respiration alone to produce energy.
Then kCCX  6kNGX and

g 
g in a normal cell,
kg in a glycolytic cell,

c  c,
a  c  ng − c,
h  g − c,

    (5)

    (6)
    (7)
    (8)

subject to the condition g ≥ c, where

g  G
GX

, c  C
CX

, g 
G

kNGX
, c 

C
kCCX

,

a 
A

nAkNGX
, h 

H
2kHkNGX

, n  2
nA

, k  kT
kN

.

    (9)

    (10)

The non-dimensionalized model of cellular respiration relies on two parameters: n  1/18



and k. Given ranges 10−6 s−1
 kN  5  10−4 s−1 and 10−5 s−1

 kT  10−3 s−1 (8) for the rates
of glucose consumption by normal and tumor cells, respectively, we assume 1  k  103, i.e.
that glycolytic cells may increase their glucose consumption by up to three orders of
magnitude
Metabolite Models

Consider first the extracellular concentration of glucose, G. Note that the glucose diffusion

time-scale (minutes) is much shorter than the cellular proliferation timescale (days), and
thus we may assume that G is in diffusive equilibrium at all times. Then we have

DG∇2G − G  0,     (11)
where DG is the (assumed constant) glucose diffusion coefficient. We non-dimensionalize
Eq. (11), taking cell diameter as our length scale. Using Eq. (10),

dg
2∇2 g − g  0,     (12)

where   x/Δ and dg  DG/kNΔ2 . Given DG  5  10−6 cm2 s−1 (9) and taking
kN  5  10−5 s−1, we find dg  1.3  102. In a spatially homogeneous system of normal cells,
dg log2 ≈ 90 represents the number of cells away from the basement membrane at which the
glucose concentration drops to half its normal level. In a system of glycolytic cells, where
glucose is consumed at a higher rate, this distance falls to dg log2/ k .

Eq. (12) is solved using a finite-difference approximation
gi1,j  gi−1,j  gi,j1  gi,j−1 − 4   i,jgi,j  0,     (13)

where gi,j refers to the glucose level of the i-jth automaton element and  i,j depends on the
element’s occupancy

 i,j 

0 in a vacant cell,
1/dg

2 in a normal cell,

k/dg
2 in a glycolytic cell.

    (14)

As boundary conditions, we assume that the glucose levels are fixed at their normal levels at
the basement membrane (as the stroma is well-vascularized), zero flux at the edge furthest
from the membrane (as there are no sources or sinks of glucose beyond this point), and
periodic boundary conditions at the other two edges. Using the notation of Eq. (13), this may
be written as

g0,j  1, gM1,j  gM,j ∀j  1,… ,N,
gi,0  gi,N, gi,N1  gi,1 ∀i  1,… ,M.

    (15)
    (16)

Eq. (13) holds ∀i  1,… ,M and ∀j  1,… ,N and is thus representative of a system of M  N
linear algebraic equations in the unknowns gi,j. The equilibrium glucose field g  gi,j may
then be found through simple matrix inversion.

The oxygen distribution around the tumor is found using the same method. In



non-dimensional form we have
dc

2∇2 c − c  0,     (17)

where dc  DC/kCΔ2 and DC is the oxygen diffusion coefficient. Given
kC  9.41  10−2 s−1 (6) and DC  1.46  10−5 cm2 s−1 (10), we find dc  5  dg. In stark
contrast to glucose, oxygen supply is very limited due to its small relative diffusion rate, with
areas of hypoxia developing within a few cells of the basement membrane. Note that, in order
for the model to be well-defined, we require g ≥ c at each cell, for which it is sufficient that
g ≥ c everywhere. This holds if k ≤ dg

2/dc
2 ≈ 700 and as such we restrict our attention here to

the parameter range 1  k ≤ 500.
The equilibrium oxygen field c is found from Eq. (17) using the same technique as for

glucose. Having determined the glucose and oxygen fields, we know their rates of
consumption, g and c, for each individual cell. Then, from Eq. (9), we may calculate the rate
of cellular H production, h. Unlike glucose and oxygen, H ions do not follow simple
(Fickian) diffusion, as this would lead to charge separation. Rather, they diffuse in association
with mobile buffering species such as bicarbonate, phosphate, or amino acids11. However,
their movement may be approximated by simple diffusion, with appropriate modification of
the diffusion coefficient. Thus the H distribution, h, is defined by

∇2 h  h  0,     (18)

where h  H − HX/H0 and H0  2kHkNGXΔ2/DH. Here H is the extracellular concentration
of H , HX ≡ pH 7.25 its normal level and DH its effective diffusion coefficient. This specific
form for the scaling factor H0 is chosen to remove the diffusion coefficient from Eq. (18).
Given parameter values DH  1.08  10−5 cm2 s−1 and a maximum tumor acid production rate
of 10−4 mM s−1 (4) and assuming this is equivalent to our maximum non-dimensionalized rate
of h  500, we may estimate H0  1.1  10−7 mM.

Eq. (18) is solved as before using a finite-difference approximation, with the difference in
this case that h  0 is the normal level at the basement membrane.
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