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ABStrACt
Mathematical modeling is being increasingly recognized within the biomedical 

sciences as an important tool that can aid the understanding of biological systems. The 
heavily regulated cell renewal cycle in the colonic crypt provides a good example of how 
modeling can be used to find out key features of the system kinetics, and help to explain 
both the breakdown of homeostasis and the initiation of tumorigenesis.

We use the cell population model by Johnston et al.5 to illustrate the power of 
mathematical modeling by considering two key questions about the cell population 
dynamics in the colonic crypt. We ask: how can a model describe both homeostasis and 
unregulated growth in tumorigenesis; and to which parameters in the system is the model 
most sensitive? In order to address these questions, we discuss what type of modeling 
approach is most appropriate in the crypt.

We use the model to argue why tumorigenesis is observed to occur in stages with long 
lag phases between periods of rapid growth, and we identify the key parameters.

introDuCtion
Mathematical	modeling	can	be	a	powerful	tool	for	understanding	biologically	observed	

phenomena	which	cannot	be	understood	by	verbal	reasoning	alone.1	One	such	example	
is	that	of	homeostasis	in	the	colonic	crypt.	The	single	layer	of	epithelial	cells	that	line	the	
crypt	is	renewed	every	two	to	three	days	by	a	number	of	long-living	stem	cells	that	remain	
at	the	bottom	of	the	crypt.2	As	the	stem	cells	divide,	their	progeny	migrate	up	the	crypt	
wall,	and	once	at	the	top	they	are	shed	into	the	lumen	or	undergo	apoptosis.	This	general	
structure	of	 stem,	 transit	and	differentiated	cells	 is	also	 found	 in	many	other	biological	
systems,	for	example	the	hematopoietic	system.

Many	modeling	studies	have	tried	to	capture	this	tightly	regulated	system,	and	three	
common	approaches	are	to	use	compartmental,	simulation	or	stochastic	models	(reviewed	
in	ref.	3).	Compartmental	models	include	those	by	Tomlinson	and	Bodmer,4	Johnston	etet	
al.,,5	Boman	et	al.,6	Hardy	and	Stark,7	Wodarz8	and	Paulus	et	al.,9	and	simulation	models	
have	been	presented	by	Loeffler	 et	 al.10,11	Models	 that	 capture	 the	 stochastic	 effects	of	
mutational	changes	include	those	by	Nowak	et	al.,12,13	Michor	et	al.,14-17	Komarova	and	
Wang18	and	Komarova.19,20

In	 this	 paper	 we	 focus	 on	 a	 compartmental	 model,	 and	 discuss	 mathematical	 tech-
niques	that	can	be	used	to	address	key	questions	relating	to	the	population	dynamics	of	the	
system.	We	will	also	show	how	this	mathematical	approach	can	suggest	which	parameters	
are	most	important	to	determine	experimentally,	and	which	it	is	less	important	to	know	
accurately.	We shall draw some examples from the recent paper by Johnston et al.We	shall	draw	some	examples	from	the	recent	paper	by	Johnston	et	al.5

We	consider	two	biological	questions:	(1)	how	can	we	formulate	a	model	that	will	allow	
for	both	the	tight	regulation	of	the	number	of	cells	in	a	healthy	crypt,	but	also	the	break-
down	of	homeostasis	when	cancer	occurs?	(2)	Which	are	the	important	parameters	in	this	
system?	These	questions	are	addressed	in	Examples	2	and	3	respectively.	Firstly,	we	need	to	
decide	the	most	appropriate	form	of	mathematical	modeling	for	the	cell	populations,	and	
this	is	discussed	in	Example	1.	We	begin,	however,	by	summarizing	our	compartmental	
model5	which	we	will	later	use	to	address	the	key	questions	relating	to	colorectal	cancer.
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Tomlinson	 and	 Bodmer,4	 we	 count	 the	 number	 of	
stem	 cells	 N0(G)	 at	 each	 generation	 G	 measured	
in	 time	units	of	 the	 stem	cell	division	 time	 t0.	The	
parameter	a3	denotes	the	proportion	of	the	stem	cell	
population	 that	 renews	 at	 each	 division,	 assuming	
that	 all	 divisions	 are	 symmetric	 (asymmetric	 divi-
sions	can	be	thought	of	as	half	a	symmetric	renewal	
and	 half	 a	 symmetric	 differentiation).	 We	 relate	
the	 number	 of	 stem	 cells	 at	 any	 generation	 to	 the	
number	in	the	previous	generation	by	the	difference	
equation

	 	 (1)

Assuming	an	initial	number	of	stem	cells,	n0	,	this	
can	be	 solved	to	 find	the	population	at	each	 future	
Gth	generation	by	the	formula

	 	 (2)

An	 alternative	 approach	 is	 to	 use	 an	 age-struc-age-struc-
tured	model5	to find the number of stem cellsto	find	the	number	of	stem	cells	N0(t,a)	
at	 a	 continuous	 time	 point	 t	 and	 age	 a.	 In	 this	
context,	the	“age”	of	a	cell	refers	to	the	length	of	time	
since	 its	 last	division.	This	model	consists	of	partial	
differential	 equations	 (PDEs)	 that	quantify	 the	 rate	

of	change	of	N0	as	both	time	t	and	age	a	vary	[see	equation	(3)].	For	
example,	assuming	(as	we	did	in	ref.	5)	that	the	cells	only	die,	differ-
entiate	or	renew	at	the	end	of	their	cell	cycles,	we	obtain	the	PDE

	 																															 (3)
	

which	 is	valid	 for	all	 ages	0<a<t0.	At	 the	end	of	each	cell	 cycle	we	
also	have	that

	 	 (4)

which	is	a	more	specific	form	of	equation	(1)	relating	the	numbers	
of	cells	being	born	and	those	reaching	the	end	of	their	cell	cycle	at	
time	 t.	 If	an	 initial	distribution	of	the	ages	of	cells	n0(a)	 is	known,	
the	solution	is	given	by

																								 (5)

where	G	is	the	number	of	times	that	cells	of	age	a	have	been	through	
the	cell	cycle	at	time	t.

A	 third	 approach	 that	 can	 be	 adopted	 is	 that	 of	 continuumcontinuum	
modeling which follows the number of cells	which	 follows	 the	number	of	 cells	N0(t)	 at	 a	 continuous	
time	 t.	Whereas	 in	 the	 discrete	 and	 age-structured	 models	 the	 cell	
population	renewal,	differentiation	and	death	are	assumed	to	occur	
only	at	the	end	of	cell	cycles,	in	a	continuous	model	these	processes	
are	 assumed	 to	 occur	 continuously	 in	 time.	 In	 the	 discrete	 and	
age-structured	 models	 we	 consider	 the	 proportions	 ai,	 bi	 and	 c	 of	
the	 populations	 that	 undergo	 each	 process	 at	 the	 end	 of	 each	 cell	
cycle,	 but	 in	 the	 continuous	 model	 we	 must	 monitor	 the	 rates	 at	
which	these	processes	occur	in	time,	which	we	denote	by	their	Greek	
equivalents	ai,	bi	and	g	(measured	in	hours-1),	as	shown	in	Figure	1.	
Thus,	for	example,	over	a	small	time	t	we would expect a proportionwe	would	expect	a	proportion	
a2	t	of	stem	cells	to	have	differentiated,	on	average.

ˆ

A CoMPArtMEntAl MoDEl

In	our	compartmental	model,5	which	is	summarized	in	Figure	1,	
we	followed	Tomlinson	and	Bodmer4	who	separated	the	cells	in	the	
crypt	into	populations	of	stem	cells	(denoted	N0),	fully-differentiated	
cells	(denoted	N2),	and	a	third	population	for	all	the	transit-ampli-
fying	 cells	 that	 are	 in	 the	 process	 of	 differentiating,	 referred	 to	 as	
semi-differentiated	cells	(denoted	N1).	At	the	end	of	each	cell	cycle	
the	 stem	cells	 can	die,	differentiate	 into	 transit	 cells	or	 renew	with	
probabilities	a1,	a2	and	a3	respectively,	whereas	transit	cells	will	die,	
differentiate	 into	 fully-differentiated	 cells	 or	 renew	 with	 probabili-
ties	 b1,	 b2	 and	 b3	 respectively.	The	 fully-differentiated	 cells	will	 be	
removed	 from	 the	 system	with	probability	 c.	The	probabilities	 can	
also	 be	 thought	 of	 as	 the	 proportions	 of	 the	 cell	 populations	 that	
undergo	each	process.	The	cell	cycle	 times	 for	 the	stem	and	transit	
cell	populations	are	denoted	by	t0	and	t1	respectively	and	measured	
in	hours.

We	use	this	model	 to	address	 the	question	of	modeling	homeo-
stasis	in	Example	2.	First,	however,	we	discuss	discrete,	age-structured	
and	continuous	models	and	their	relevance	to	crypt	modeling.

ExAMPlE 1: WhiCh iS thE BESt tyPE oF MoDEling 
For thE CryPt?

What	is	the	simplest	and	most	appropriate	technique	for	modeling	
the	cell	division	process	in	the	colonic	crypt?	In	this	section	we	first	
compare	 and	 contrast	 the	 discrete,	 age-structured	 and	 continuous	
modeling	approaches,	illustrating	them	by	considering	the	stem	cell	
population	from	Figure	1,	and	then	explain	when	each	approach	is	
appropriate.

A	 discrete modeling approach follows the number of cells in adiscrete	 modeling	 approach	 follows the number of cells in afollows	 the	 number	 of	 cells	 in	 a	
population	at	regular	time	intervals,	and	does	not	take	into	account	
where	the	individual	cells	are	in	their	cell	cycle.	As	in	the	model	by	

Mathematical	Modeling	of	the	Colonic	Crypt

Figure 1. A schematic of a colonic crypt showing the compartmental structure used in the 
model by Johnston et al.5 The stem cells differentiate into semi‑differentiated cells, which in 
turn differentiate into fully‑differentiated cells. Each cell population can die, and the stem cells 
and semi‑differentiated cells can renew. The parameters for the age‑structured model are the 
proportions of the populations ai, bi and c that are leaving the compartments, and the param‑
eters for the continuous model (described in Example 1) are the rates of conversion ai, bi and 
g measured in hours‑1. Note that these compartment sizes are not to scale and that, in reality, 
the number of stem cells is very much less than the number of transit cells.
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This	 continuous	 approach	 yields	 ordinary	 differential	 equations	
(ODEs)	that	follow	the	population	as	it	changes	in	time.	The	corre-
sponding	ODE	for	the	stem	cell	compartment	is

	 (6)

which	has	a	solution	of	the	form

	 (7)

where	a	=	a3	-	a1	-	a2	represents	the	net	per-capita	growth	rate	of	
stem	cells.

Note	that	in	order	to	compare	formula	(5)	with	(2)	and	(7)	it	is	
necessary	to	integrate	the	solution	over	all	possible	ages	to	obtain	the	
total	numbers	for	each	cell	population	(as in ref. 5). These solutionsas	in	ref.	5). These solutions).	These solutionsThese	solutions	
are	 compared	 in	Figure	2,	with	 an	 initial	 age	profile	 for	 (5)	where	
all	 the	 cells	have	 the	 same	age.	Each	of	 the	 solutions	has	 the	 same	
overall	growth	behavior,	 and	any	of	 these	models	could	be	used	 to	
describe	 the	 stem	cell	population.	However,	which	approach	 is	 the	
most	appropriate	to	use	when	modeling	all	the	cells	in	the	crypt,	and	
which	produces	the	model	that	is	most	mathematically	tractable?

Let	 us	 consider	 both	 the	 stem	 cells	 and	 the	 transit-amplifying	
cells,	which	are	assumed	to	divide	on	different	timescales,	 t0	and	t1	
respectively.	 There	 is	 an	 implicit	 assumption	 of	 synchrony	 of	 cell	
division	associated	with	the	discrete	model,	where	all	the	cells	divide	
at	the	same	time	and	are	at	the	same	stage	in	their	cell	cycle.	Although	
not	biologically	realistic,	in	the	case	of	only	one	cell	type	this	assump-
tion	is	at	least	self-consistent	because	every	cell	will	divide	once	every	
generation.	However,	the	discrete	model	cannot	be	used	to	describe	
two	 cell	 types	 with	 different	 generation	 times	 since,	 except	 in	 the	
special	case	where	the	stem	cell	cycle	time	is	an	integer	multiple	of	the	
transit	cell	cycle	time,	t0	=	pt1	(where	p	is	an	integer),	the	cells	that	are	

differentiating	from	the	stem	cell	compartment	will	
enter	 the	 transit	 cell	 population	 when	 the	 existing	
transit	cells	are	already	partly	through	their	cell	cycle,	
which	breaks	the	synchrony	condition.

Hence,	 in	 the	 case	 of	 two	 populations	 dividing	
at	 different	 rates,	 it	 is	 necessary	 to	 use	 either	 the	
age-structured	or	 continuous	models.	 If	 it	 is	neces-
sary	 to	 follow	 specific	 variations	 at	 times	 on	 the	
order	of	the	cell	cycle	then	the	age-structured	model	
is	the	best	choice.	The	age-structured	model	is	more	
accurate	 than	 the	 continuous	 model	 but	 produces	
more	 complicated	 solutions,	 as	 illustrated	 in	 ref.	 5	
where	 we	 solved	 the	 age-structured	 model	 for	 two	
different	 initial	 age	 profiles.	 Alternatively,	 when	
a	 population	 changes	 over	 a	 timescale	 of	 many	
cell	 cycles,	 the	 continuous	 model	 can	 capture	 the	
same	overall	 behavior	with	more	 clarity:	ODEs	 are	
much	easier	to	solve	mathematically	than	difference	
equations	 or	 PDEs.	 In	 ref.	 5	 we	 showed	 that	 the	
continuous	 and	 age-structured	 models	 produced	
solutions	 with	 the	 same	 behavior,	 and	 we	 derived	
conditions	relating	their	parameters.

In	conclusion,	discrete	modeling	can	be	an	infor-
mative	technique	when	there	is	only	one	cell	division	
timescale	 to	consider,	but	 if	 there	 is	more	 than	one	
timescale,	as	is	the	case	with	cells	in	the	colonic	crypt,	
then	 an	 age-structured	 or	 continuous	 approach	
must	be	adopted,	and	then	the	choice	comes	down	

to	the	timescale	of	 interest.	 In	Example	2	we	 investigate	the	global	
stability	behavior	of	the	system	over	long	timescales,	and	so	we	use	a	
continuous	model.

ExAMPlE 2: hoW CAn MoDElS DESCriBE Both 
hoMEoStASiS AnD tuMorigEnESiS?

Homeostasis	in	the	crypt	is	observed	to	control	cell	numbers,	but	
this	 regulation	 is	 broken	 in	 tumorigenesis	 where	 cell	 populations	
grow	without	bound.	 In	 this	 section	we	discuss	 the	need	 to	model	
homeostasis,	how	 it	 can	be	overcome	 in	 tumorigenesis,	 and	how	a	
mathematical	model	can	capture	both	these	processes.

One	feature	of	all	of	the	solutions	(2),	(5)	and	(7)	to	the	models	
in	 Example	 1	 is	 that	 the	 stability	 of	 the	 population	 is	 critically	
dependent	 on	 the	 choice	 of	 one	 particular	 parameter	 value.	 The	
age-structured	and	discrete	model	solutions	vary	in	time	according	to	
functions	of	the	form	(2a3)G,	where	G	is	the	number	of	divisions	that	
the	cells	have	undergone.	The	continuous	model	solutions	vary	with	
time-dependent	functions	eat,	where	a	represents	the	net	per-capita	
growth	 rate	 of	 the	 stem	 cells.	 It	 is	 often	 assumed	 that	 stem	 cells	
normally	 divide	 asymmetrically,	 producing	 one	 daughter	 stem	 cell	
and	one	daughter	transit	cell	each	generation.	However	it	is	equally	
possible	 that	 stem	 cells,	 sometimes	 at	 least,	 divide	 symmetrically	
producing	two	daughter	cells	of	the	same	type,	either	both	stem	cells	
or	both	transit	cells.	In	that	case,	for	the	age-structured	model,	the	
stem	cell	population	will	remain	stable	if,	and	only	if,	exactly	half	of	
all	 symmetric	divisions	produce	two	stem	cells	while	the	other	half	
produce	two	transit	cells,	a3	=	1/2.		This	is	equivalent	to	the	stem	cells	
dividing	asymmetrically	on	average.	If	a3	>	1/2	then	the	population	
will	increase	exponentially	while	if	a3	<	1/2	then	the	population	will	
decrease	 to	 zero.	The	 same	 applies	 in	 the	 continuous	 model,	 with	
exponential	growth	(decay)	occurring	if	a	is	greater	(less)	than	zero,	

Figure 2. A plot of the stem cell population using the discrete model (equation 2), age‑ 
structured model (equation 5) and continuous model (equation 7). The parameters are taken 
to be a = 0.02 hours‑1, t0 = 24 hours and n0 = 5. a3 is chosen such that a3 = eat0/2 (as in 
ref. 5).

Mathematical	Modeling	of	the	Colonic	Crypt

ˆ
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and	a	stable	population	occurs	only	if	a	=	0.	When	the	stability	of	
a	 system	 is	 dependent	 on	 a	 specific	 parameter	 value	 being	 taken	 a	
model	 is	 said	 to	 be	 structurally unstable. Such models are usuallystructurally	 unstable. Such models are usually.	 Such	 models	 are	 usually	
unrealistic	 since	 there	 is	 often	 some	natural	 variation	 in	parameter	
values.

Furthermore,	when	some	stem	cells	are	removed	from	the	crypt,	
it	has	been	observed	that	a	homeostatic	response	is	induced	to	create	
more	stem	cells.9	It	is	not	known	whether	this	is	due	to	more	stem	
cells	dividing	symmetrically,	or	to	de-differentiation	of	first	genera-
tion	 transit	 cells,	 but	 neither	 scenario	 can	 be	 modeled	 when	 these	
parameters	are	forced	to	take	fixed	values.	A	dynamic	system	requires	
regulation	of	cell	numbers	to	maintain	equilibrium.

One	method	that	captures	the	homeostatic	regulation	of	the	stem	
cells	is	to	introduce	feedback	into	the	system	by	making	the	param-
eter	values	dependent	on	the	population	sizes.	In	ref.	5	we	used	the	
continuous	model	 to	 include	 these	variable	parameters	by	allowing	
the	rate	of	stem	cell	differentiation	to	depend	on	the	size	of	the	stem	
cell	population.	Equally,	we	could	have	chosen	 the	 feedback	 to	act	
through	the	rates	of	death	or	renewal	instead.

Let	us	replace	a2	by	the	variable	differentiation	rate	R	=	R(N0	),	
and	note	that	the	rates	of	stem	cell	death	and	renewal	remain	fixed	
throughout.	 If	 the	 stem	cell	number	N0	 becomes	 too	 large	 then	R	
will	 increase	 so	 that	 more	 stem	 cells	 differentiate	 than	 renew.	 In	
practice	this	might	be	achieved	by	producing	more	transit	cells	and	
fewer	 stem	 cells,	 either	 by	 changing	 the	 proportion	 of	 symmetric	
divisions,	or	by	changing	the	cell	cycle	time	of	the	symmetric	divi-
sions.	Alternatively,	if	the	number	of	stem	cells	drops	too	low	then	R	
will	decrease	and	symmetric	divisions	will	produce	more	stem	cells.	
In	order	to	achieve	both	these	effects,	R(N0	)	must	be	an	increasing	
function	of	N0.	Many	functions	R(N0	)	could	be	chosen	that	would	
have	this	property,	but	the	different	functional	forms	could	produce	
different	qualitative	effects	on	the	system.

In	 our	 paper,5	 we	 proposed	 feedback	 in	 the	 differentiation	 rate	
of	the	form

	 (8)

where	 R(N0	)	 replaces	 a2	 in	 (6),	 and	 k0	 and	 m0	 are	 nonnegative	
constants.	The	parameter	 k0	 is	measured	 in	hours-1	 and	 represents	
the	speed	of	response	of	the	feedback	with	large	(small)	k0	inducing	
a	fast	(slow)	feedback	response	from	the	system.	The	parameter	m0	is	
dimensionless	and	represents	feedback	saturation.

When	m0	>	0,	 the	differentiation	rate	cannot	 increase	beyond	a	
maximum	size	a2	+	k0	/	m0,	and	there	is	a	nonzero	stem-cell	steady	
state	of	the	form

	 (9)

as	long	as	the	net	per-capita	growth	rate	a	=	a3	--	a1	--	a2	is	in	the	
range	0	<	a	<	k0	/	m0.	If	the	growth	rate	exceeds	this	value,	then	the	
stem	cell	population	grows	without	bound.	This	is	a	saturating feed-saturating	feed-
back	because the population dependence in the differentiation ratebecause	 the	population	dependence	 in	 the	differentiation	rate	
will	regulate	the	population	size	if	the	growth	rate	is	low	enough,	but	
once	the	growth	rate	passes	its	saturation	limit	a	steady	state	can	no	
longer	be	achieved.

When	 m0	 =	 0,	 the	 feedback	 reduces	 to	 a	 linear form and thelinear	 form and theform	 and	 the	
saturation	 is	 switched	off.	This	means	 that	 any	 increase	 in	 the	 size	
of	N0	will	be	matched	by	an	equivalent	increase	in	R,	and	there	is	a	
nonzero	stable	steady	state

	
	 (10)

as	 long	 as	 the	net	 per-capita	 growth	 rate	 a	 is positive, i.e., as longis	 positive,	 i.e.,	 as	 long	
as	 cells	 are	 not	 removed	 faster	 than	 they	 are	 produced.	This	 is	 the	
same	 form	as	 the	 feedback	chosen	by	Wodarz,8	who	used	a	 logistic	
form	with	 the	un-mutated	 rate	of	 change	of	 stem	cells	 taken	 to	be	
aN0(1	 -	 N0/K)	with	 a	 stem-cell	 carrying	 capacity	K	=	a	 /	 k0.	The	
linear	 feedback	 controls	 the	 population	 growth	 to	 the	 extent	 that	
unbounded	 growth	 is	 not	 permitted	 for	 any	 positive	 parameter	
values.

Which	 of	 these	 two	 forms	 is	 more	 appropriate	 for	 describing	
the	 cell	 population	 dynamics	 in	 the	 crypt?	 Both	 forms	 capture	
homeostatic	 regulation	 of	 stem	 cells	 and	 produce	 models	 that	 are	
structurally	 stable.	 However,	 in	 a	 system	 with	 the	 linear	 form,	
unbounded	growth	can	only	be	achieved	by	removing	the	feedback	
completely	(by	setting	the	speed	of	feedback	response	k0	to	zero),	but	
with	the	saturating	form	unbounded	growth	can	also	be	achieved	by	
overwhelming	the	feedback.	Therefore,	only	the	saturating	form	can	
describe	both	homeostasis	 and	unbounded	growth	of	 cell	numbers	
without	removing	the	feedback.	There	are	two	possibilities	for	how	
the	saturating	feedback	might	occur.	The	stem	and	transit	populations	
might	both	be	subject	to	saturating	feedback,	and	consequently	both	
populations	 would	 be	 able	 to	 initiate	 tumorigenesis.	 Alternatively,	
the	 stem	 cells	 may	 be	 subject	 to	 linear	 feedback	 which	 maintains	
equilibrium,	with	the	transit	cells	subject	to	saturating	feedback	and	
possible	tumorigenesis.	We	conclude	this	section	by	discussing	both	
possibilities	and	giving	examples	of	each.

Figure 3. Regions of stability in the (a, b) parameter space for the system with 
saturating feedback in both stem and transit cell populations. If a < 0 and 
b < k1 / m1 (Region I), then the stem cells cannot sustain their number and 
the crypt becomes extinct. If 0 < a < k0 / m0 and b < k1 / m1 (Region II), 
a healthy stable crypt is achieved. In all other regions the growth saturation 
limit is exceeded and the cell populations grow without bound. In Region III 
(a > k0 / m0 and b < k1 / m1) the cancer stem cell driving the unbounded 
growth is a tissue stem cell, whereas in Region IV (b > k1 / m1 withwith 
a < k0 / m0) the cancer stem cell derives from a transit‑amplifying cell. In 
Region V (a > k0 / m0 and b > k1 / m1) cancer stem cells originate from both 
tissue stem cells and transit cells.
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Firstly,	 we	 consider	 the	 case	 of	 both	 the	 stem	 and	 transit	
cell	 populations	 being	 subject	 to	 saturating	 feedback.	 We	
choose	 the	 same	 form	 of	 feedback	 for	 the	 transit	 cells	 as	 for	 the	
stem	 cells,	 replacing	 the	 transit	 cell	 differentiation	 rate	 b2	 by	
b2	+	k1N1	/	 (1	+	m1N1).	 	Since	 the	 fully-differentiated	cells	do	not	
divide	and	are	only	removed	from	the	system	at	a	rate	g,	there	is	no	
need	 to	 include	 feedback	 in	 that	 population.	The	 ODEs	 and	 cell	
population	steady	states	for	this	system	are	shown	in	the	Appendix.	
The	stability	of	the	replenishing	cycle	in	the	crypt	is	dependent	on	
just	two	parameters:	the	net	per-capita	growth	rates	a	=	a3	-	a1	-	a2	
and	b	=	b3	-	b1	-	b2	for	the	stem	and	transit	cell	populations	respec-
tively.	This	stability	is	summarized	in	Figure	3	for	a	range	of	values	
of	the	parameters	a	and	b.	If	a	<	0	and	b	<	k1	/	m1	(Region	I),	the	
stem	cells	 cannot	 sustain	 their	number	and	consequently	 the	crypt	
dies	out.	If	0	<	a	<	k0	/	m0	and	b	<	k1	/	m1	(Region	II),	the	crypt	will	
be	in	a	normal	equilibrium.	If	either	a	>	k0	/	m0	or	b	>	k1	/	m1	(or	
both)	there	is	unregulated	cell	population	growth	in	the	system.	For	
a	>	k0	/	m0	and	b	<	k1	/	m1	(Region	III),	the	cancer	stem	cells	driving	
tumorigenesis	are	the	tissue	stem	cells,	whereas	for	a	<	k0	/	m0	and	
b	>	k1	/	m1	(Region	IV),	the	cancer	stem	cells	are	derived	from	transit	
cells	and	the	stem	cell	population	either	remains	fixed	(a	>	0) or dies)	or	dies	
out	(a	<	0). Finally, if both).	Finally,	if	both	a	>	k0	/	m0	and	b	>	k1	/	m1	(Region	V),	
unbounded	growth	is	driven	by	cancer	stem	cells	derived	from	both	
tissue	stem	cells	and	transit	cells.	So,	in	summary,	the	crypt	will	only	
maintain	a	healthy	balance	of	proliferation,	differentiation	and	death	
if	the	growth	rates	satisfy	0	<	a	<	k0	/	m0	and	b	<	k1	/	m1.

Secondly,	we	consider	the	case	where	the	stem	cells	are	now	subject	
to	 linear	 feedback	and	 the	 transit	 cells	 are	 again	 regulated	by	 satu-
rating	feedback.	The	same	form	of	feedback	is	chosen	for	the	transit	
cells	as	in	the	last	case,	and	the	steady	states	for	this	system	are	shown	
in	 the	Appendix.	The	 stability	 of	 the	population	numbers	 is	 again	
dependent	on	the	two	net	per-capita	growth	rates	a	=	a3	-	a1	-	a2	

and	b	=	b3	-	b1	-	b2,	which	is	summarized	in	Figure	4.	If	a	<	0 and0 and	and	
b	<	k1	/	m1	(Region	I),	the	stem	cells	cannot	sustain	their	number	and	
consequently	the	crypt	dies	out.	If	a	>	0	and	b	<	k1	/	m1	(Region	II),	
the	crypt	will	be	in	a	healthy	equilibrium.	If	b	>	k1	/	m1	(Region	III),	
the	tissue	stem	cells	will	either	remain	fixed	(a	>	0)	or	die	out	(a	<	0),	
and	unbounded	growth	is	 initiated	from	a	cancer	stem	cell	derived	
from	the	transit	cell	population.	Here,	unbounded	growth	can	only	
be	driven	by	transit	cells	and	not	tissue	stem	cells.

It	 is	assumed	that	a	mutation	gives	a	cell	a	 selective	advantage,4	
which	would	change	the	parameters	associated	with	that	cell	and	its	
feedback.	This	parameter	change	will	increase	the	size	of	the	steady	
states	unless	all	the	parameters	change	in	combination	such	that	the	
steady	state	is	unaltered	and	the	mutation	is	neutral.	This	increase	in	
steady	state	could	be	interpreted	as	the	first	stage	in	the	process	trans-
forming	a	normal	crypt	via	an	adenomatous	polyp	to	a	carcinoma.

It	is	observed	that	tumors	grow	to	a	certain	size	and	then	plateau	
until	another	growth	spurt	occurs.	There	are	several	long	lag	phases	
between	periods	of	 tumor	growth,	before	 the	cancer	 finally	 sets	 in.	
Our	feedback	model	can	capture	this	behavior,	with	each	mutation	
leading	 to	a	parameter	change	and	consequently	an	 increase	 in	 the	
steady	state	size.	 If	any	of	 these	mutations	result	 in	a	>	k0	/	m0	or	
b	 >	k1	/	m1,	 then	 the	 saturating	 feedback	 is	 overcome,	 there	 is	 no	
steady	state,	and	exponential	growth	is	initiated.

We	 illustrate	 this	mutational	process	with	 two	numerical	 exam-
ples.	 For	 this	 purpose,	 we	 make	 the	 simplifying	 assumption	 that	
once	a	mutation	occurs	its	selective	advantage	is	instantly	conferred	
to	all	the	other	cells.	Firstly,	we	consider	the	system	with	saturating	
feedback	 in	 both	 stem	 and	 transit	 cells,	 with	 the	 initial	 parameter	
set	a1	=	0.1,	a2	=	0.3,,	a3	=	0.69,,	b1	=	0.1,,	b2	=	0.3,,	b3	=	0.397,	
g	=	0.139,,	k0	=	m0	=	0.1,	k1	=	0.0003	and	m1	=	0.0004,	which	gives	
a	 =	 0.286,	 b	=	 -0.0027	 and	 produces	 critical	 saturation	 threshold	
values	of	a	=	k0	/	m0	=	1	and	b	=	k1	/	m1	=	0.75.	Therefore	the	popu-
lation	is	stable	with	N0

*	= 4,=	4,,	N1
*	= 85 and=	85 and	and	N2

*	= 200 in Region II of=	200 in Region II of	in	Region	II	of	
Figure	3.	If	a	mutation	occurs	(in	either	b1	or	b3)	that	increases	b	to	
0.1,	then	the	stem	cells	remain	at	N0

*	= 4 and the other population=	4 and the other population	and	the	other	population	
steady	states	 increase	to	N1

*	=	410	and	N2
*	=	1,197.	Now	suppose	

a	 second	 mutation	 raises	 b	 to	 0.2,	 which	 further	 raises	 the	 steady	
states	to	N1

*	=	925 and	and	N2
*	=	3,344. Finally, a third mutation raises.	Finally,	a	third	mutation	raises	

b	to	0.8	which	is	larger	than	the	critical	threshold	and	lies	in	Region	
IV	of	Figure	3.	Consequently	there	can	no	longer	be	a	steady	state,	
resulting	 in	 unregulated	 growth	 in	 the	 cell	 populations.	 Note	 that	
the	initiating	mutation	for	each	of	these	changes	may	have	occurred	
in	 stem	 cells	 but	 a	 selective	 advantage	 is	 only	 expressed	 in	 transit	
cells.	The	effect	of	this	series	of	mutations	is	illustrated	in	Figure	5,	
where	the	different	parameter	regimes	corresponding	to	each	phase	
of	growth	are	labeled	(1),	(2),	(3)	and	(4)	respectively,	and	these	are	
also	marked	on	the	(a,	b)	parameter	space	in	Figure	3.

For	the	second	numerical	example	of	a	sequence	of	mutations,	we	
consider	the	system	with	linear	feedback	in	stem	cells	and	saturating	
feedback	in	transit	cells.	The	initial	parameter	set	is	a1	=	0.1,	a2	=	0.3,	
a3	=	0.69,	b1	=	0.1,	b2	=	0.3,	b3	=	0.388,	g	=	0.1345,	k0	=	0.07,	
k1	=	0.0002	and	m1	=	0.0004,	which	gives	a	=	0.286,	b	=	-0.0117	
and	produces	 the	 critical	 saturation	 threshold	 b	 =	k1	 /	m1	 =	0.75.	
Therefore	 the	 population	 is	 stable	 with	 N0

*	 =	 4,,	 N1
*	 =	 85 and	 and	

N2
*	=	200 in Region II of Figure 4. If a mutation occurs (in either	in	Region	II	of	Figure	4.	If	a	mutation	occurs	(in	either	b1	

or	b3)	that	increases	b	to	0.1,	then	the	stem	cells	remain	at	N0
*	=	4	

and	 the	 other	 population	 steady	 states	 increase	 to	 N1
*	 =	 654	 andand	

N2
*	 =	 1,962. Now suppose a second mutation raises.	 Now	 suppose	 a	 second	 mutation	 raises	 a	 to	 0.42,	

which	further	increases	the	steady	states	to	N0
*	=	6,,	N1

*	=	676 and	and	
N2

*	=	2,042. Finally, a third mutation raises.	Finally,	a	third	mutation	raises	b	to	1	which	is	larger	than	

Figure 4. Regions of stability in the (a, b) parameter space for the system 
with linear feedback for stem cells and saturating feedback for transit cells. 
If a < 0 and b < k1 / m1 (Region I), then the stem cells cannot sustain their 
number and the crypt becomes extinct. If a > 0 and b < k1 / m1 (Region II), 
a healthy stable crypt is achieved. If b > k1 / m1 (Region III) unbounded 
growth occurs, and is driven by a cancer stem cell derived from the transit 
cell population.
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the	critical	threshold	and	lies	in	Region	III	of	Figure	4.	Consequently	
there	can	no	longer	be	a	steady	state	resulting	in	unregulated	growth	
in	the	cell	populations.	These	different	regions	of	the	parameter	space	
are	labeled	(1),	(2),	(3)	and	(4)	respectively	in	Figure	4.

ExAMPlE 3: WhiCh PArAMEtErS ArE MoSt iMPortAnt?
Which	parameters	are	the	most	influential	in	a	system?	This	is	an	

important	question	that	mathematical	modeling	can	help	to	address	
by	using	a	sensitivity	analysis.	If	it	can	be	shown	that	some	param-
eters	have	a	strong	influence	while	others	have	little	or	no	effect,	then	
experiments	need	only	focus	(at	least	initially)	on	the	most	influential	
processes.	In	this	section,	we	discuss	sensitivity	coefficients,	and	how	
they	can	be	used	to	ascertain	key	parameters.

By	way	of	example,	let	us	consider	the	effect	that	changes	in	the	
net	per-capita	growth	rate	a	have	on	the	stem	cell	steady	state	N0

*.	
Suppose	we	change	a	by	a	small	amount	Da,	and	assume	that	this	
induces	a	small	change	in	N0

*	of	DN0
*.	The	 sensitivity	coefficient	of	

N0
*	 with respect towith	 respect	 to	 a	 is	 defined	 to	 be	 the	 relative	 change	 in	 N0

*	
divided	by	the	relative	change	in	a

	
	
	 (11)

In	the	limit	as	Da	tends	to	zero,	this	can	be	
expressed	in	terms	of	the	derivative

	 (12)

If	S	is	independent	of	a	then	we	are	effec-
tively	finding	S	such	that	N0

*	∝	aS,	but	in	
general	S	will	be	a	function	of	all	the	param-
eters	 in	the	system,	so	this	relation	 is	only	
true	 at	 the	 particular	 point	 in	 the	 param-
eter	 space	 at	which	S	 has	 been	 calculated..	
If	 S	 >	 1, a percentage change in,	 a	 percentage	 change	 in	 a	 will	
produce	a	larger	percentage	change	in	N0

*;	
if	S	=	1,	a	percentage	change	in	a	causes ancauses	an	
equal	percentage	change	in	N0

*;	if	0	<	S	<	
1,	then	a	percentage	change	in	a	producesproduces	
a	smaller	percentage	change	in	N0

*;	if	S	=	0,	
a	change	in	a	has no effect onhas	no	effect	on	N0

*;	and	if	S	
<	0,	then	an	increase	(decrease)	in	a	causescauses	
a	decrease	(increase)	in	N0

*.
Applying	 formula	 (12)	 to	 the	 stem	cell	

steady	state	with	saturating	feedback	given	
in	 equation	 (9),	 the	 sensitivity	 coefficient	
of	 N0

*	 with	 respect	 to	 a	 is	 SN0
*,a =	 1	 +	

m0N0
*.	Since	both	N0

*	and	m0	are	positive,	
SN0

*,a > 1	which	means	that	an	increase	in	
a	will	produce	a	greater	percentage	change	
in	N0

*.	Evaluating	the	sensitivity	coefficient	
using	 parameter	 values	 a	 =	 0.286	 and	
k0	 =	 m0	 =	 0.1	 gives	 SN0

*,a	 =	 1.4.	
Alternatively,	 if	 a	 =	 0.8,	 then	 SN0

*,a	 =	 5	 and	 the	 dependence	
of	N0

*	on	a	is	much	stronger.	This	illustrates	how	the	dependence	on	
a	can	vary	at	different	points	in	the	parameter	space.

Now	 let	 us	 consider	 the	 sensitivity	 coefficient	 of	 the	 stem	 cell	
steady	state	to	the	parameter	m0,	denoted	by	SN0

*,m0
.	It can be shownIt	can	be	shown	

that	SN0
*,m0	=	SN0

*,a –1. Since the sensitivity coefficient.	Since the sensitivity coefficientSince	the	sensitivity	coefficient	SN0
*,m0	will	

always	be	less	than	SN0
*,a,	we	can	say	that	the	stem	cell	steady	state	

is	more	sensitive	to	a	than	it	is	to	m0.
By	performing	this	analysis	for	each	parameter	to	find	the	effect	

on	each	steady	state,	it	can	be	shown	that	changes	in	the	parameters	
a	or	k0	have	the	largest	effect	on	the	stem	cell	number,	changes	in	
b	or	k1	have	the	greatest	effect	on	the	semi-differentiated	cell	popu-
lation,	 and	 changes	 in	 b,	 g	 or	 k1	 cause	 the	 biggest	 changes	 in	 the	
fully-differentiated	 cell	 population.	 Changes	 in	 m0	 or	 m1	 produce	
a	 less	 significant	 change	 in	 the	 steady	 states.	 However,	 we	 must	
remember	 that	 m0	 and	 m1	 are	 crucial	 in	 determining	 the	 stability	
boundaries	in	Figures	3	and	4.

DiSCuSSion
The	power	of	mathematical	modeling	is	that	it	can	provide	insight	

into	the	behavior	of	complex	interacting	processes.	In	this	Extra	View	
we	have	outlined	some	of	the	relevant	techniques	that	can	be	used	to	
model	the	cell	population	dynamics	in	the	colonic	crypt,	and	we	have	
illustrated	these	techniques	with	three	examples.

Firstly,	 we	 discussed	 discrete,	 age-structured	 and	 continuous	
modeling	 approaches,	 why	 age-structured	 modeling	 is	 necessary	
to	 capture	 the	dynamics	of	more	 than	one	population	dividing	on	

Figure 5. An illustrative sequence of mutations that occur every 100 days. The initial parameters are 
taken to be a1 = 0.1, a2 = 0.3, a3 = 0.69, b1 = 0.1, b2 = 0.3, b3 = 0.397, g = 0.139, k0 = m0 = 0.1, 
k1 = 0.0003 and m1 = 0.0004, which gives a = 0.286, b = ‑0.0027. All the parameters are measured 
in hours‑1 apart from m0 and m1 which are dimensionless. The mutations cause, successively, b = 0.1, 
b = 0.2 and finally b = 0.8. After the last mutation, b > k1 / m1 which means there is no steady state 
and the cell populations grow without bound. The numbers 1–4 correspond to the different points in the 
parameter space marked on Figure 3.
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different	timescales,	and	how	continuum	modeling	is	a	more	acces-
sible	tool.

Secondly,	we	explained	how	both	homeostasis	and	tumorigenesis	
can	 be	 modeled	 by	 adopting	 a	 saturating	 form	 of	 feedback.5	 We	
presented	a	scenario	for	the	progression	to	cancer	through	a	succession	
of	mutations	that	lead	to	steady	states	with	greater	numbers	of	cells,	
until	one	mutation	causes	the	net	per-capita	growth	rate	of	stem	or	
transit	cells	to	exceed	a	critical	value	and	unregulated	cell	population	
growth	begins.	 In	doing	 this,	we	made	 the	 simplifying	assumption	
that	 the	 selective	 advantage	 gained	by	 a	mutation	will	 be	 instantly	
conferred	to	the	whole	population,	but	a	more	detailed	model	might	
track	the	progress	of	healthy	and	mutant	cells	separately.

Finally,	 we	 discussed	 how	 a	 sensitivity	 analysis	 can	 be	 used	 to	
highlight	 the	 key	 parameters	 in	 a	 model.	 Modeling	 can	 prioritize	
the	 list	 of	 parameters	 that	 is	 to	 be	 measured.	 Results	 suggest	 that	
the	key	parameters	are	 the	net	per-capita	growth	rates	of	 stem	and	
transit	cells,	the	speed	of	response	of	stem	and	transit	cells	to	changes	
in	 their	 number	 and	 the	 rate	 at	 which	 fully-differentiated	 cells	
are	 removed/die.	 We	 have	 shown	 how	 by	 incorporating	 the	 more	
stringent	linear	feedback	into	the	stem	cells,	but	not	the	transit	cell	
compartment,	 it	 is	 then	only	 the	 transit	 cells	 that	 can	become	 the	
cancer	stem	cells.	This	may	well	be	the	best	reflection	of	the	actual	
situation	in	the	large	colorectal	crypt.

As	 modeling	 and	 experiments	 become	 ever	 more	 intertwined,	
and	increasing	levels	of	system	complexity	are	found,	we	believe	that	
mathematical	modeling	will	play	a	significant	part	in	future	research	
developments.

APPEnDix
Saturating feedback in the stem and transit cells.	The	 system	

of	ODEs	describing	the	change	of	the	cell	populations	in	the	crypt,	
with	 saturating	 feedback	 in	 the	 differentiation	 rates	 of	 stem	 and	
transit	cells,	is

	

	 (13)
	

	 (14)
	

	 	
	 	

	
	 (15)

which	gives	steady	states
	
	 (16)	
	

	 (17)
	 	

	 	 	
	 	

	
	 (18)

where	D	=	a2N0
*	+	k0N0

*2	/(1+m0N0
*)	=	(a3	-	a1)N0

*	is	the	stem-cell	
differentiation	rate.

Linear feedback in the stem cells and saturating feedback in the 
transit cells. When	the	stem	cells	are	subject	to	linear	feedback	and	
there	is	saturating	feedback	governing	the	transit	cells,	the	system	of	
ODEs	 (13)–(15)	 and	 the	 steady	 states	 (16)–(18)	 remain	 the	 same,	
except	now	the	stem	cell	saturation	is	switched	off	(m0	=	0).
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