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Abstract Tumour tissue characteristically experiences fluctuations in substrate
supply. This unstable microenvironment drives constitutive metabolic changes within
cellular populations and, ultimately, leads to a more aggressive phenotype. Previously,
variations in substrate levels were assumed to occur through oscillations in the hæmo-
dynamics of nearby and distant blood vessels. In this paper we examine an alternative
hypothesis, that cycles of metabolite concentrations are also driven by cycles of cellular
quiescence and proliferation. Using a mathematical modelling approach, we show that
the interdependence between cell cycle and the microenvironment will induce typical
cycles with the period of order hours in tumour acidity and oxygenation. As a corollary,
this means that the standard assumption of metabolites entering diffusive equilibrium
around the tumour is not valid; instead temporal dynamics must be considered.

This research was partially funded by EPSRC grant GR/R96149/01 “The Oxford University Life Sciences
Interface Doctoral Training Centre” and BBSRC grant BB/C008219/1 “The Manchester Centre for
Integrative Systems Biology (MCISB)”.We thank the referees for their suggestions during
the preparation of the final manuscript.

K. Smallbone (B)
Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre,
131 Princess Street, Manchester, M1 7DN, UK
e-mail: kieran.smallbone@manchester.ac.uk

D. J. Gavaghan
Oxford University Computing Laboratory, Parks Road, Oxford, OX1 3QD, UK

P. K. Maini
Centre for Mathematical Biology, Mathematical Institute, University of Oxford,
24-29 St Giles’, Oxford, OX1 3LB, UK

J. M. Brady
Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK

123



768 K. Smallbone et al.

Keywords Acidity · Hypoxia · Delay differential equations

Mathematics Subject Classification (2000) 92B99 · 35K57

1 Introduction

Many aggressive tumours show increased reliance on glycolysis to produce energy,
even in the presence of sufficient oxygen [26]. Subsequent investigations have shown
that this characteristic, known as aerobic glycolysis, may play a critical role in the
transition from benign to malignant growth [8,23,24]. A key factor in the adoption of
aerobic glycolysis by tumour cell populations is their exposure to an unstable microen-
vironment, experiencing oscillations in substrate supply. For example, normoxic–
hypoxic cycles in tumours have been measured to occur with periodicities of
minutes [14], hours [12] and days [9]. From a bioenergetic perspective, those cells in
which aerobic glycolysis is constitutively upregulated will be better placed to respond
to these periods of hypoxia, and thus positively selected by somatic evolutionary pres-
sures.

Using a magnetic resonance imaging (MRI) technique that is sensitive to oxy-
gen levels, oscillations in signal intensity (oxygenation) have been shown to occur
with periodicities of both one and twenty cycles per hour [1]. Contrastingly, using
microelectrodes, oxygenation cycles have been measured with periodicities of 1–2
per min [2]. These discrepancies may be explained because MRI is relatively insensi-
tive to rapid fluctuations, whilst instabilities in microelectrodes mean this modality is
insensitive to slower changes [8].

Each of the studies mentioned above shows that tumour cells experience consid-
erable changes in oxygen delivery. The primary explanation put forward for transient
hypoxia and reoxygenation is oscillations in the hæmodynamics, or blood delivery,
of nearby and distant vessels [8,13]. Rapid normoxic–hypoxic cycles are thought to
occur due to fluctuations in haematocrit, the concentration of red cells in the blood [5],
or through vasomotion, rhythmic oscillations in vessel diameter [25]. Longer cycles,
occurring over days, are likely to be due to vascular remodelling, the active process
of altering the structure and arrangement of blood vessels [13,19]. Vascular remod-
elling is driven by cycles of angiogenesis promoted by hypoxia-induced expression of
vascular endothelial growth factor (VEGF), an induction and survival factor for new
blood vessels [9].

In this paper, we examine an alternative mechanism for the observed substrate
oscillations in tumour tissue, namely cellular quiescence. High levels of acidity can
induce cells to cease proliferation, i.e. become quiescent [4]. Specifically, acidosis pro-
motes the production of hypoxia inducible factor 1 (HIF-1); via a cyclin-dependent
kinase inhibitor, p27, HIF-1 acts to inhibit the cell-cycle [10,18]. Quiescent cells are
essentially metabolically inactive, producing significantly less acid than their prolif-
erating counterparts. Thus the level of acidity will decrease, allowing cells to resume
proliferation. We demonstrate that this simple feedback mechanism may produce the
observed cycles in tumour substrate levels. Whilst our focus is on growth inhibitors
produced by tumour tissue, such as lactic acid, the analysis is equally valid for growth
promoters consumed by tumour tissue, such as oxygen.
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Quiescence as a mechanism for cyclical hypoxia and acidosis 769

2 Model development

We model the tumour as a sphere of radius RM and assume that spherical symmetry
prevails at all times. We consider first the dynamics of acidity in and around the tumour,
though later we shall show that the analysis holds for the dynamics of other substrates,
such as oxygen.

Let H denote the extracellular concentration of excess hydrogen ions, where excess
means above its normal level of 10−7.25M ≡ pH 7.25. We assume that there exists a
sharp acidity threshold HQ above which tumour cells cease proliferation. Define the
acid production rate rH = φQ per unit volume for quiescent cells and rH = φA for
active cells, where φQ � φA as quiescent cells are relatively inactive. The vascular
density is taken to be V = VM within the tumour, and V = VN elsewhere. We allow
for a lag time t0 between extracellular acid levels changing, and cells mounting the
appropriate response of quiescence or proliferation. Under these assumptions, we have

∂H

∂t
− DH ∇2 H := Ht − DH (HR R + 2HR/R)

=
{[
(φA − φQ)θ(HQ − H(t − t0))+ φQ

]
KM − rV VM H 0 < R < RM

−rV VN H RM < R,

(1)

where KM denotes the tumour cell density, rV the acid removal rate, DH the acid
diffusion coefficient and θ the Heaviside (or unit step) function defined by

θ(x) =
{

0 x < 0
1 x ≥ 0.

(2)

The bracketed term in the second line of Eq. (1) simply represents cells producing
acid at rate φA if H(t − t0) < HQ , and φQ otherwise.

Taking p = √
rV VM/DH , H0 = φA KM/rV VM and T = (rV VM )

−1, and provided
the vascular density within the tumour is non-zero (i.e. VM > 0), we may non-
dimensionalize Eq. (1) with r = pR, h = H/H0 and τ = t/T to obtain

hτ − (hrr + 2hr/r) =
{
(1 − ε)θ(hQ − h(τ − τ0))+ ε − h 0 < r < rM

−ψ2h rM < r,
(3)

where ε = φQ/φA � 1, τ0 = t0/T , hQ = HQ/H0, ψ = √
VN/VM and rM = pRM ,

subject to continuity of h and hr at r = rM and limr→∞ h(r) = 0.
Equation (3) can be applied to describe a number of different growth factors besides

acidity. Consider, for example, the dynamics of oxygen—from this perspective a pos-
itive growth factor consumed by both normal and tumour tissue. Let C denote the
extracellular concentration of oxygen, and suppose that tumour cells cease prolifer-
ation when oxygen drops below a threshold concentration CQ . Let φ̄A, φ̄Q and φ̄N

be the rates of oxygen consumption by active tumour, quiescent tumour and normal
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cells, respectively. We assume that oxygen is supplied through blood vessels at a rate
r̄V , proportional to the difference between the extracellular oxygen and serum oxygen
concentration CS . Then we find

Ct − DC (CR R + 2CR/R)

=
⎧⎨
⎩−

(
(φ̄A−φ̄Q)θ(C(t−t0)−CQ)+φ̄Q

)
KM +r̄V VM (CS −C) 0 < R < RM

−φ̄N KN + r̄V VN (CS − C) RM < R,

(4)

where DC is the oxygen diffusion coefficient, and KN the normal tissue density. Now
using the transformations h = (CX − C)/C0, r = p̄R and τ = t/T̄ where

CX = CS − φ̄N KN

r̄V VN
, C0 = (φ̄A − φ0)KM

r̄V VM
, p̄ =

√
r̄V VM

DC
,

T̄ = 1

r̄V VM
, ε = φ̄Q − φ0

φ̄A − φ0
, φ0 = φ̄N KN

ψ2 KM
, τ0 = t0

T̄
,

hQ = CX − CQ

C0
, ψ =

√
VN

VM
, rM = p̄RM , (5)

we may recover Eq. (3). Note that this model only makes sense if φ̄A > φ0, or
equivalently φ̄A KM/VM > φ̄N KN/VN . If this effective rate of active tumour cell
oxygen consumption is smaller than the corresponding normal rate, the tumour will
receive sufficient oxygen supply, and no regions of hypoxia will occur. One minor
difference between the two models is that for acid-induced quiescence we require
ε ≥ 0, whilst for hypoxia-induced quiescence no such restriction is in place.

Through the remainder of this paper, we shall investigate the delay partial differ-
ential equation (3). This analysis will allow us to understand the effects of cellular
quiescence on cyclical acidosis within tumour tissue.

3 Spatial homogeneity

We first consider the dynamics of Eq. (3) in the absence of diffusion. Assuming spatial
homogeneity, within the tumour (r < rM ) we have

ḣ = (1 − ε)θ(hQ − h(τ − τ0))+ ε − h, (6)

where the dot denotes the derivative with respect to τ . If there is no lag time, i.e. τ0 = 0,
then this equation reduces to

ḣ = (1 − ε)θ(hQ − h)+ ε − h. (7)
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Quiescence as a mechanism for cyclical hypoxia and acidosis 771

Looking for steady state solutions to Eq. (7), we see differing behaviours dependent
on the value of hQ . If hQ > 1, then the unique steady state is given by h = 1, whilst
if hQ < ε this steady state is given by h = ε. However, if hQ ∈ (ε, 1), Eq. (7) has no
steady state solution. hτ > 0 for h < hQ and hτ < 0 for h > hQ , and thus h globally
converges to hQ , even though it is not strictly a steady state solution.

We move on to consider Eq. (6) with a non-zero lag time τ0. Given experimentally
determined parameter values of p = 4.7 cm−1, H0 = 10−2 mM and DH = 1.08 ×
10−5 cm2 s−1 [7,15,20], we may calculate T = 4.2 × 103 s, meaning that each time
unit is equivalent to approximately 1 h. We take ε = 0.01 � 1, as quiescent cells
are essentially metabolically inactive, and hQ = 0.04 ≡ pH 6.4 [20]. A change in
cellular metabolism in response to a change in extracellular acidity is likely to be
mediated by gene transcription and expression. Thus the lag time is likely to be on a
similar timescale to that of gene transcription; as such we take τ0 = 0.5, equivalent to
a lag of t0 ≈ 30 min. Notice that with this parameter set we find hQ ∈ (ε, 1), and thus
from the analysis above there is no steady state and we would expect non-equilibrium
dynamics.

For hQ ∈ (ε, 1), Eq. (6) has analytical solution

h =
{

1 − (1 − hQ)e−τ h increasing

ε + (hQ − ε)e−τ h decreasing,
(8)

where τ is shifted such that τ = 0 corresponds to h = hQ . The maximum and
minimum acid levels are given, respectively, by substituting τ = τ0 above.

In Fig. 1 we present results for the spatially homogeneous model of tumour acidity,
using the typical parameter values above. Cycles of acidosis are observed; the acid
levels vary between their maximum level of h ≈ 0.42 ≡ pH 5.4 to their minimum
level of h ≈ 0.028 ≡ pH 6.5.

The time from minimum acidity to hQ (A → B in Fig. 1) is given by

τ1 = log

(
1 − ε − (hQ − ε)e−τ0

1 − hQ

)
≈ 0.01, (9)

whilst the time from maximum acidity to hQ (C → D) is given by

τ2 = log

(
1 − ε − (1 − hQ)e−τ0

hQ − ε

)
≈ 2.6. (10)

The total cycle time is

τc = 2τ0 + τ1 + τ2 = log

[(
eτ0

1 − ε

hQ − ε
− 1

)(
eτ0

1 − ε

1 − hQ
− 1

)]
≈ 3.6, (11)

equivalent to approximately 4 h.
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Fig. 1 Results from Eq. (8). Predicted cyclical acidosis for the spatially homogeneous model, using typical
parameter values hQ = 0.04, ε = 0.01 and τ0 = 0.5 and initial conditions h(t) = hQ for τ ∈ [−τ0, 0].
The acid level cycles around hQ (dotted line), between its maximum value of h ≈ 0.42 and minimum value
of h ≈ 0.028. The time for each of the steps A → B → C → D → A is given by τ1 ≈ 0.01, τ0, τ2 ≈ 2.6
and τ0, respectively. The total cycle time is approximately 3.6 non-dimensional units

4 Temporal homogeneity

Typically, the first step we take when investigating the role of a specific metabolite in
tumour development is to look for temporally-homogeneous solutions to the metabo-
lite evolution equation. The justification for this is that the timescale of metabolite
diffusion (∼ minutes) is much less than the timescale of, for example, tumour growth
(∼ days), and hence the metabolite can be assumed to be in diffusive equilibrium. This
removes the need for both the metabolite evolution term ∂h/∂τ and the lag term τ0.

Assuming temporal homogeneity, Eq. (3) reduces to

r2h′′ + 2rh′ =
{

r2h − (
(1 − ε)θ(hQ − h)+ ε

)
r2 0 < r < rM

ψ2r2h rM < r,
(12)

where the primes denote the derivative with respect to r .
We may solve Eq. (12) for rM < r ; applying continuity of h and its derivative at

rM we find that within the tumour

r2h′′ + 2rh′ = r2h − (
(1 − ε)θ(hQ − h)+ ε

)
r2 0 < r < rM , (13)

subject to the boundary conditions

h′(0) = 0, h′(rM ) = −h(rM )
1 + ψrM

rM
. (14)
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The second boundary condition arises from the solution h = Ae−ψr/r , for some
constant A, in the outer region rM < r .

We will now move on to show that, if hQ ∈ (ε, 1) and rM is sufficiently large,
Eq. (13) has no solution. Consider first a tumour in which all cells are active. Then,
from Eqs. (13) and (14)

r2h′′ + 2rh′ − r2h + r2 = 0, (15)

which, subject to the boundary conditions in Eq. (14) has solution

h(r) = 1 − k1
sinh r

r
, (16)

where

k1 = 1 + ψrM

cosh rM + ψ sinh rM
. (17)

In particular

h(0) = 1 − k1 → 0 as rM → 0, h(0) → 1 as rM → ∞. (18)

Thus, if hQ < 1, at some radius rM = r�, h(0) = hQ and the cells at the tumour centre
will become quiescent. This radius r� may be found numerically from the expression
above for h(0), i.e. through solution of

ψr� = (1 − hQ)(cosh r� + ψ sinh r�)− 1. (19)

For typical parameter values hQ = 0.04 and ψ = 1, we find r� = 0.31, equivalent to
the first quiescent cells appearing when the tumour has radius R ≈ 0.7 mm.

Assuming that rM > r�, some of the tumour cells must be quiescent. Suppose
hQ ∈ (ε, 1) and consider a region (r1, r2) containing only quiescent cells, i.e. a region
where h > hQ everywhere. Then, from Eq. (13) within this region

r2h′′ + 2rh′ − r2h + εr2 = 0. (20)

The edges of the region r1 and r2 must either be a tumour boundary (0 or rM ) and
satisfy the appropriate condition in Eq. (14) or they must satisfy h(ri ) = hQ . We
consider each case separately below.

Case 1: r1 = 0, r2 = rM .
Consider the case where all the cells in the tumour are quiescent. Then, applying

the boundary conditions in Eq. (14),

h(r) = ε

(
1 − k1

sinh r

r

)
, (21)

where, in particular
h(0) = ε(1 − k1) < max(ε, 0) < hQ . (22)

This contradicts the fact that the whole tumour is quiescent.
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Case 2: r1 = 0, h(r2) = hQ .
Consider now the case where the quiescent cells are limited to the tumour centre.

Then in (0, r2)

h(r) = ε +
[
(hQ − ε)

r2

sinh r2

] sinh r

r
, (23)

where, in particular

h(0) = ε + (hQ − ε)
r2

sinh r2
< hQ, (24)

as r2/ sinh r2 ∈ (0, 1), again contradicting the fact that cells at the tumour centre are
quiescent.

Case 3: h(r1) = hQ .
Suppose finally that the cells in the tumour centre (0, r1) are active (h < hQ) and

surrounded by quiescent cells. Then h(r1) = hQ and, in (0, r1),

h(r) = 1 −
[
(1 − hQ)

r1

sinh r1

] sinh r

r
, (25)

where, in particular

h(0) = 1 − (1 − hQ)
r1

sinh r1
> hQ, (26)

contradicting the fact that the cells at the tumour centre are active.
The analysis presented above has shown that, when rM > r� and h ∈ (ε, 1), Eq. (12)

has no solution. As such, the standard assumption of temporal homogeneity is not
valid; instead we must consider the temporal dynamics of the system. In the previous
section we showed that when h ∈ (ε, 1), the assumption of spatial homogeneity leads
to cyclical solutions. Given this evidence, for the full model defined in Eq. (3), we
expect cyclical behaviour to occur whenever rM > r� and h ∈ (ε, 1). This behaviour
is analysed in the next section.

5 Full model analysis

We move on to analyse the full model, including both temporal and spatial dynamics.
The model is defined by Eq. (3), which we reiterate here

hτ − (hrr + 2hr/r) =
{
(1 − ε)θ(hQ − h(τ − τ0))+ ε − h 0 < r < rM

−ψ2h rM < r,
(27)

subject to the boundary conditions hr (0, τ ) = 0, continuity of h and hr at r = rM and
limr→∞ h(r, τ ) = 0, and initial conditions h(r, τ ) = 0 for τ ∈ [−τ0, 0].

The method of lines [17] is a technique that may be applied to numerically solve
parabolic equations, involving discretizing in all but one dimension, and then integrat-
ing the semi-discrete problem as a system of ordinary differential equations (ODEs).
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The method allows us to take advantage of the sophisticated tools available for nu-
merical solution of ODEs and, in this case, delay (ordinary) differential equations
(DDEs).

We discretize Eq. (27) with respect to the variable r using finite differences, in
particular using the approximations

hr (r, τ ) ≈ h(r +�, τ)− h(r −�, τ)

2� (28)
hrr (r, τ ) ≈ h(r +�, τ)+ h(r −�, τ)− 2h(r, τ )

�2 ,

for small �.
To use the discretization above, we first approximate the infinite domain [0,∞)

as a finite domain [0, r∞], where r∞ = krM for some integer k > 1. The boundary
condition at r = ∞ is then replaced by the condition h(r∞, τ ) = 0. We then choose
a uniform grid r j , j = 1, . . . , k N with spacing � = r∞/k N = rM/N such that
r j = j�. This allows us to define h j (τ ) = h(r j , τ ) to be the value of h at each of
these grid points.

The Dirichlet boundary condition h(r∞, τ ) = 0 is handled easily by defining
hk N (τ ) = 0. The Neumann boundary condition hr (0, τ ) = 0 requires more care. We
first apply l’Hôpital’s rule to obtain

lim
r→0

hr (r, τ )

r
= lim

r→0

[hr (r, τ )]r
[r ]r = hrr (0, τ ). (29)

To handle this second order difference, imagine the problem is instead being solved
on the domain [−r∞, r∞], with the tumour tissue confined to [−rM , rM ] and the same
boundary conditions at r = ±r∞. The Neumann boundary condition then implies that
the solution will be symmetric with respect to r for all time. Thus h(−�, τ) = h(�, τ),
so h−1(τ ) = h1(τ ).

The system of (k N + 1) DDEs in the variable τ is then given by

h′
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

6
[
h1 − h0

]
�−2 + f0 j = 0[

(1 + j−1)h j+1 + (1 − j−1)h j−1 − 2h j

]
�−2 + f j j = 1, . . . , N[

(1 + j−1)h j+1+(1 − j−1)h j−1−2h j

]
�−2−ψ2h j j = N +1, . . . , k N −1

0 j = k N ,
(30)

where
f j (τ ) = (1 − ε)θ(hQ − h j (τ − τ0))+ ε − h j (τ ). (31)

The system of DDEs in Eq. (30) is solved using the MATLAB� integrator dde23
[22]. Preliminary tests showed that k = 5 was a suitable choice—integrating over
domains larger than [0, 5 rM ] had a negligible effect on the system solution.
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Fig. 2 Results from Eq. (30). Cycles of acidity observed at the tumour centre (solid line) and tumour edge
(dashed line) for the full model, using typical parameter values hQ = 0.04, ε = 0.01, ψ = 1, τ0 = 0.5
and rM = 1. The domain of integration used is [0, 5 rM ], divided into 251 grid points. The acidity levels
cycle around the quiescence threshold hQ (dotted line), with cycle time of approximately 1.4 units
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Fig. 3 Changing acid profiles in and around the tumour during the acidosis cycle as depicted in Fig. 2.
Notice that for some of this cycle, acidity is higher at the tumour edge than centre. Parameter values used are
as in Fig. 2. The dotted lines represent the tumour radius (rM = 1) and quiescence threshold (hQ = 0.04)

Typical model solutions are shown in Figs. 2 and 3. Given typical parameter values
of hQ = 0.04 and ψ = 1, we may calculate from Eq. (19) r� = 0.31, the tumour
radius at which quiescence first occurs. Choosing rM = 1 > r� and ε = 0.01, we
have hQ ∈ (ε, 1), and thus, from previous analyses, we would expect cyclical acidosis
to occur.
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Figure 2 shows cyclical acidity at the tumour centre and tumour edge using these
parameter values. The cells at the tumour centre cycle between their maximum level
of h ≈ 0.23 ≡ pH 5.6 and their minimum level h ≈ 0.016 ≡ pH 6.7. The cells
at the tumour edge also experience cyclical acidity about the quiescence threshold,
though their maximum acidity h ≈ 0.11 ≡ pH 5.9 is less than the cells at the centre.
The cycle time is τc ≈ 1.4, equivalent to 100 min.

This may be compared to the spatially homogeneous model presented in Fig. 1.
Addition of diffusion to the model acts to smooth the spatial profile of the dynamics,
reducing the maximum acidity levels seen and in turn decreasing the acid cycle time.
Intuitive understanding of the reasons for the reduction in cycle time may be gained
through approximation of peritumoural acid diffusion and removal as a simple damp-
ing effect on the spatially homogeneous system. Including this in Eq. (6), we have

ḣ = (1 − ε)θ(hQ − h(τ − τ0))+ ε − h − κh, (32)

where the term −κh represents the additional role of diffusion. Through a suitable
transformation, we may recover Eq. (6), and hence an analogous definition for cycle
time, valid if hQ(1 + κ) ∈ (ε, 1)

τc = 1

1 + κ
log

[(
eτ0(1+κ) 1 − ε

hQ(1 + κ)− ε
− 1

)(
eτ0(1+κ) 1 − ε

1 − hQ(1 + κ)
− 1

)]
.

(33)

At our default parameter values, ∂τc/∂κ < 0 at κ = 0, and thus damping acts to
reduce cycle time. By equating Eq. (33) with our known cycle time of τc = 1.4 in the
presence of diffusion, we find an effective damping coefficient of κ ≈ 3.6.

In Fig. 3 we investigate how acidity levels vary through the tumour during each
cycle. Initially, all the cells within the tumour are below the quiescence threshold.
Cycles of acidity are out of phase for different sections of the tumour and an increase
in acidity is first seen at the tumour edge (r = 1). Acidity then increases at the tumour
centre (r = 0), before reaching its maximum level. This figure demonstrates that,
whilst acid levels are on average higher in the tumour centre than the tumour edge,
this property does not hold for all points in the acid cycle. The point is reinforced
in Fig. 4, which shows how the metabolic characteristics of tumour cells vary during
each cycle. The first cells to become quiescent due to high extracellular acidity are not
at the tumour centre, rather this occurs at r ≈ 0.81 near the edge of the tumour.

6 Discussion

Fluctuations in metabolite levels are known to occur within tumours with discrete
periodicities of hours, minutes and days. Cells that are best suited to respond to these
periods of cellular stress, such as through constitutive upregulation of aerobic gly-
colysis, will be positively selected by somatic evolutionary forces. These cycles are
assumed to occur due to hæmodynamic variations such as changes in the local con-
centration of red blood cells or structural rearrangement of blood vessels. In this paper
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Fig. 4 Changing metabolic characteristics during the acidosis cycle as depicted in Figs. 2 and 3. The first
cells to become quiescent are located at r ≈ 0.81, whilst the first cells to resume proliferation are at the
tumour edge, r = 1. For the majority of the cycle, the whole of the tumour is in the same metabolic state,
with all cells either active or quiescent. Parameter values used are as in Fig. 2

we have investigated a further hypothesis, namely that quiescence in response to cel-
lular stress, and the corresponding drop in metabolism, provides a negative feedback
mechanism capable of reproducing such metabolite cycles.

A simple reaction–diffusion system is used to describe the evolution of the metabo-
lite of interest. Whilst we focus on the dynamics of acidity within the tumour, the
model is equally valid for any growth inhibitor produced by tumour cells or any
growth promoter consumed by tumour cells.

Many existing models of both in vitro and in vivo tumour growth [3,6,16,21],
essentially extensions of the original model of Greenspan [11], describe the evolu-
tion of the tumour outer boundary in response to vital nutrients and growth factors.
These models vary greatly in their complexity and application, including viscosity,
migration or cell cycle considerations, for example. Despite this diversity, each model
has in common the assumption that, over the timescale of interest such as cellular
proliferation, the metabolites in the system will be in diffusive equilibrium. Here we
have shown, for a biologically realistic range of parameter values (rM > r� and
hQ ∈ (ε, 1)), that this standard assumption is not valid. Rather, when investigating the
distribution of metabolites around a vascularised tumour in which cellular quiescence
occurs, temporal dynamics must be considered.

We first investigate a spatially homogeneous model, and find that cycles of acidity
due to cellular quiescence occur with a periodicity of around 4 h. Inclusion of spatial
aspects and diffusion reduces this cycle time to between 1 and 2 h, consistent with
experimental evidence [12]. Within the parameter regime used here we find the acid
levels at the tumour centre will oscillate between pH 5.6 and 6.7.

Given the importance of acidic and hypoxic cycles in mediating the evolution of
cancer cell metabolism and resistance to acidity, further experimental verification of
the role of quiescence in inducing metabolic cycles will be of considerable interest.
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