|f E}EC AT

Seventh International Workshop on
Information Processing in Cells and Tissues

29'"-31% August 2007

Proceedings of the Seventh International
Workshop on Information Processing in Cells
and Tissues

Nigel Crook and Tjeerd olde Scheper
(editors)

August 2007

OXFORD

BROOKES

UNIVERSITY

IPCAT 2007

7.2 Pomitaxis: Computing with a Bacterial-Inspired Algorithm

Dan Nicolau' and Philip Maini?
! Centre for Mathematical Biology, University of Oxford, United Kingdom
2 Oxford Centre for Integrative Systems Biology, University of Oxford, United Kingdom

nicolau@maths.ox.ac.uk

We present a general-purpose optimisation algorithm inspired by “run-and-tumble’, the biased random
walk chemotactic swimming strategy used by the bacterium E coli to locate regions of high nutrient con-
centration The method uses particles (corresponding to bacteria) that swim through the variable space
(corresponding to the attractant concentration profile). By constantly performing temporal comparisons,
the particles drift towards the minimum or maximum of the function of interest. We illustrate the use
of our method with three simple examples. We also present a discrete version of the algorithm. The
new algorithm is expected to be useful in combinatorial optimisation problems involving many variables,
where the functional landscape is apparently stochastic and has local minima, but preserves some
derivative structure at the mesoscale.

Presentation Thursday 30'™" August 2007, 16.00

246 Dan Nicolau and Philip Maini

————_—J

IPCAT 2007

‘Pomitaxis’: Computing with a
Bacterial-Inspired Algorithm

Dan V. Nicolau, Jr.", Philip K. Maini'?2

'Centre for Mathematical Biology, Mathematical Institute
University of Oxford, Oxford OX1 3LB, United Kingdom

*Oxford Centre for Integrative Systems Biology,
University of Oxford, Oxford OX13LB, United Kingdom

Abstract

We present a general-purpose optimisation algorithm inspired by “run-and-
tumble”, the biased random walk chemotactic swimming strategy used by the bacterium
E coli to locate regions of high nutrient concentration The method uses particles
(corresponding to bacteria) that swim through the variable space (corresponding to the
attractant concentration profile). By constantly performing temporal comparisons, the
particles drift towards the minimum or maximum of the function of interest. We illustrate
the use of our method with three simple examples. We also present a discrete version of
the algorithm. The new algorithm is expected to be useful in combinatorial optimisation
problems involving many variables, where the functional landscape is apparently
stochastic and has local minima, but preserves some derivative structure at the mesoscale.

Introduction

The correspondence between living systems and computers has been stressed 1n
recent years (e.g. Bray, 1995, Nicolau and Nicolau, 2006). Biologjcal processes can be
thought of as processes of constrained optimization. Therefore, the mechanism OF
mechanisms used by a biological system to carry out a function is analogous to an
algorithm or set of algorithms; the biological system is then an unconventional computer;
and an instance of such a process taking place is analogous to g computational run. Of
course, there are enormous differences between ‘biological computing’ and ‘classical
computing’. Biological processes are massively parallel, feature a large degree of
stochasticity and noise (which, aside from being unavoidable, also plays a direct role in
the computation) and, rather than being able to compute individual functions with high
precision, deal instead with problems of a ‘systems engineering’ flavour, such as the
control of very large systems, in the presence of non-linear constraints.

Because living systems are adapted to the environments in which they exist and
therefore to the computational tasks required for survival, these natural computing
paradigms are expected to be successful for dealing with problems similar to those
confronting biosystems (Nicolau and Nicolau, 2006). An increasing number of
algorithms are based on or inspired by biological strategies, These include neural

Dan Nicolau and Philip Maini 247

IPCAT 2007

networks (Basheer and Hajmeer, 2000), evolutionary computing (Eiben and Smith,
2003), DNA computing (Adleman, 1994), particle swarm optimization (Call et al., 2007),
computing with bio-agents (Nicolau et al., 2007), ant optimization algorithms (Dorigo
and Blum, 2005) and others. Increasingly these methods have been successfully applied
to a spectrum of problems ranging from pattern identification and matching to
aerodynamics engineering problems (Obayashi, 1997). |

Chemotaxis, the process by which organisms direct their movements according to
certain chemicals in their environment, is crucial for many biological functions. Bacteria
such as E. coli use chemotaxis to find food (for example, glucose) by swimming towards
the highest concentration of food molecules, or to flee from poisons (for example,
phenol). In multicellular organisms, chemotaxis is critical to development as well as
normal function (Wadhams and Armitage, 2004). By analogy with the process of finding
the maximum of a function (represented by the attractant concentration profile in space),
chemotaxis is a algorithm for optimisation. This computational facet of chemotaxis has
already been noted by several authors (Bremermann, 1974, Muller et al., 2002). Recently,
Vergassola et al. proposed a chemotaxis-inspired search method in the absence of
gradients (Vergassola et al., 2007).

In this paper, we present a biocomputation approach that is based on the “run-and-
tumble” chemotactic mechanism of the bacterium E coli. This method is essentially a
general-purpose search algorithm that can be used to optimize a function or set of
functions. The method bears some resemblance to Particle Swarm Optimisation (PSO) in
that the potential solutions (the particles) move through the function space. However,
unlike PSO or e.g. ant colony optimization, it does not use inter-particle communication
and does not bias the trajectories based on the best solutions found over time, relying
instead completely on the chemotactic drift property of bacteria to converge locally (not
as a swarm) to solutions. We illustrate the potential of the method by applying it to three

simple and representative optimisation problems. We also present a discrete version of
the algorithm.

Methods

We begin by briefly describing the chemotactic swimming pattern of Escherichia
coli, on which our algorithm is based. E coli is a common intestinal bacterium,
cylindrical in shape and roughly 2 um long and 1 um wide. Each cell is equipped with
approximately 6 flagella, each with a rotary motor at its base, embedded in the cell wall.
The flagella are randomly distributed on the cell membrane. The rotary motor can turn
clockwise and counter-clockwise at different times and is reversible. When all the motors
turn in concert in a counter-clockwise direction, the flagella form a bundle that propels
the cell forward in a “run”. Runs are not perfectly rectilinear due to rotational Brownian

motion that perturbs the cell direction by roughly 0.5/t , where 1 is in seconds. If one or
more of the motors reverse direction and turn clock-wise, the bundle becomes unstable
and the cell turns in place (“tumbles”) in a random fashion and with negligible
displacement. This serves to reorient the cell; the orientation is not perfect and there is
some persistence of direction after a tumble (the mean angle between the direction before

248 Dan Nicolau and Philip Maini

ﬁ_‘

IPCAT 2007

and after a tumble is 63°) (Locsei, 2007). We omit this property in the present work,
assuming that the reorientation is perfect.

E coli cells use the system of motors and flagella to execute chemotactic
swimming towards regions of high nutrient concentration (or away from toxins) as
follows. Because the cell is too small and the environment too stochastic to accurately
measure a gradient across the cell body, a simple biochemical memory mechanism is
used to perform temporal comparisons. As it is swimming, the bacterium monitors the
concentration of chemoattractant (e.g. serine or aspartate) in the environment, comparing
the average concentration measured over the last second with that measured over the
previous 3 seconds. If the comparison indicates that the attractant concentration has
increased, the cell is more likely to continue a straight-line run, while if it indicates that
conditions have deteriorated, it is more likely to reorient by performing a tumble. In this
way the bacterium performs a biased random walk, leading it (in a stochastic fashion) up
a chemoattractant gradient. In the absence of any such gradient, both the run and tumble
times are exponentially distributed with means of 1.0 and 0.1 seconds, respectively
(Locsei, 2007).

We propose to use an analogous strategy to locate regions in a multi-dimensional
space where a continuous (and respectively discrete) function takes a global maximum
(or minimum) value. We define such a “bacterial optimiser” B as a set of n particles (by,
ba, ..., b,) , each possessing an m-dimensional position vector function p;(f) and a
velocity vector function v(z) such that p; e R™, v;e R™, i=1, ...,nand r € N. This is the
continuous version of the algorithm (a discrete version is described below). Let f: R" —
R be the objective function and let X, = max x, (r) and g =max f(x,),i=1, ..,n. The

7 > X

algorithm proceeds as follows (the parameters are explained below):

(1) Initialise p; and v; for all i. A simple choice is p; = Ula;, bj], j=1, ..., mand vi =r,
where ry is a mx1 vector each of whose entries r;; = U[-1,1]. a; and b; are the
limits of the search domain in each dimension.

(2) g=min f(x,),i=1,..,n

(3) While not converged:

Forl1<i<n:
X, & X, +@v, + fr,, wherer, isamx1 vector,

each of whose entriesr, ; = N(0,1)

If f(x)2f(8):

g & X,

Pr(tumble) = T(Ai(t))

Dan Nicolau and Philip Maini 249

&—_

IPCAT 2007

If r < Pr(tumble), where r = U[0,1]:
Vi = Frumbles Where Fruonpe 18 @ mx1 vector

each of whose entries Fumpre; =€ U[-1,1].
End If

End For
te—t+1
End While

Convergence can be decided either by setting an upper limit on the number of
iterations fm. Or by setting an acceptable value for f(g).
The tumbling probability function T is calculated as follows:

.pw,Ai{I)<O
~ 1
T(t,i) {pb,Ai(f)zo ’ W
where
min(w, +w,.r)
A= D f-0)M@) (2)
=0

and M: R — R is a memory comparison function, which can take any number of forms
but which we define for simplicity here as:

w,, 0O<z<w,
M(t)=q-l/w,, w,<T<w,, 3)

0, otherwise

The meaning of each of the parameters is as follows. @ is a speed factor for the
particles in the functional search space, since the elements of v; are bounded by -1 and 1.
B is a strictly positive parameter that if greater than O ensures that the runs are not
perfectly straight and simulates rotational Brownian motion during a run. p,, and p, are
probabilities of tumbling if conditions have improved (A(t) > 0) and deteriorated (A(t) <
0), respectively. In practice, the probability of tumbling must be larger if conditions have
deteriorated, so we have p,, > pp. w, and wy are the number of iterations (window lengths)
over which the recent and distant past are averaged, respectively. A balance must be
struck between accuracy (using longer window lengths) and fast response time to
improving or deteriorating conditions (leading to the use of shorter window lengths).
Because E. coli compares (roughly speaking) the last second of its life with the previous
3 during chemotactic swimming (Strong et al., 1998), this would suggest as simple rule
that ws = 3w, but in our algorithm this is likely to be sensitive to the properties of the
function being optimized.

250 Dan Nicolau and Philip Maini

#

IPCAT 2007

It is also possible to modify our algorithm so that it can be applied to discrete
fe problems. The key change is to restrict the elements of the velocity vector v; to positive
values smaller than 1 and to treat these as probabilities of the entries in x; changing. For
example, for a problem in which the variables can only take binary values (0 or 1), an
element of v; equal to 0.1 means a 10% probability that the corresponding element of x;
will change state at the next iteration of the algorithm. Additionally, the speed @ shall be
set.to 1 in order for the probabilities to be guaranteed to be between 0 and 1. In problems
where the variables can take a number of discrete values (for example where they can
take any positive integer value), each element of x; could, of course, be incremented by 1
or decremented by 1; therefore, the “direction” of the increment should be chosen at
random. Finally, it may be desirable to use increments greater than 1 (this would
correspond to using a larger speed in the continuous version). If this is done, then in order
to avoid equal-sized increments at each point where a variable changes (and thus miss
intermediate values), the size of the jump should be sampled from a suitable probability
distribution with a mean of & where £is the average increment size.

One issue if using this discrete version of the algorithm is that a non-trivial fitness
function may need to be used. In the continuous version, the fitness is evaluated simply
as the value of the function at the point in m-dimensional space represented by the
position vector. However, in the case of a discrete function, if the number of values that
the function can assume is small or if these values are not consecutive (or both), this may
not be appropriate. This is because the algorithm relies on “tumbles” being more likely
when the fitness is relatively inferior and less likely when it is close to the desired value.
Therefore using the value of the function as the fitness function may result in completely
stochastic behaviour. We illustrate the issue using a simple (NP-complete) problem:
Boolean satisfiability. Here it is required to determine, for a Boolean expression in n
variables, what set of values for the variables (if any) makes the expression TRUE. Using
a fitness function that simply takes the values 1 (for true) and 0 (for false) would not be
advantageous in this case, reducing effectively to a random search through the function

space (which would require exponential time proportional to 2"). A more appropriate
choice of fitness function may be:

f(x)=12ﬁXC(z)—C(xJ 4)

where c(x) is the number of clauses in the Boolean expression that evaluate to 0. In this
way, the algorithm would favour position vectors x that result in a smaller number of
such clauses evaluating to 0, thus in some sense being closer to finding a combination of
variables that will cause the Boolean function to evaluate to TRUE. Of course, other
possible fitness functions exist and in general, for discrete functions, it is to be expected
that the choice of fitness function would vary with the problem.

Results

We implemented our algorithm using MATLAB and applied it to three different
optimization problems. The first of these is trivial: finding the maximum of a two-
dimensional Gaussian function. The second is finding the global minimum of a difficult

Dan Nicolau and Philip Maini 251

b

IPCAT 2007

two-dimensional function with many local minima. The third is concerned with how n
particles should be distributed on a sphere so as to minimize the potential energy of the
system.

Finding the maximum of a Gaussian function

In order to demonstrate the operation of our algorithm, we first applied it to the
Gaussian function:

_Lrmxg) 4y=yg)’

I (5)

2no

fx,y)=

2

The Gaussian is an attractive first choice for a two reasons. Firstly, because the
fundamental solution of the diffusion equation is a Gaussian, we might expect naturally
occurring attractant gradients to take this form and therefore, due to adaptation, we might
expect bacterial chemotaxis to be efficient at finding the global maximum of such a
function (corresponding, in vivo, to, for example, finding the point of maximum nutrient
concentration in a local environment). Secondly, while being a non-trivial function, it
possesses a continuous and smooth gradient that is everywhere non-zero.

Figure 1 shows a typical simulation of the algorithm. A colony of 100 particles is
initially distributed at random points chosen from x,;; € [-3, 3] and yinir € [-3, 3]. We also
randomly choose xp € [-3, 3] and yy € [-3, 3]. The initial velocity vectors are also chosen
at random such that directions are uniformly distributed in [-w,] and the magnitude of
each direction vector is 0.02. We also set o= 1 for simplicity. The figure shows the first
500 consecutive iterations, with the maximum value found converging to the true
maximum at (xp, o).

Optimising a difficult two-dimensional function

We next applied our algorithm to Problem 4 of the 100-digit challenge (Trefethen,
2002). This problem asks for the minimum of the function

f=e"" " +5sin(60e”) + sin(70sin x) + sin(sin(80y)) —sin(10(x + y)) ++ (x* + y*) . (6)

It is made difficult by the presence of many local minima that are very close to the
global minimum - the latter is approximately f,;» = -3.30686864747523728 and occurs at
(x, y) = (-0.0244030796943785, 2.10612427155358). Figure 2A illustrates the difficulty,
with a graph of the function showing the behaviour near the global minimum.

252 Dan Nicolau and Philip Maini

M

IPCAT 2007

Figure 1. Finding the global maximum in a Gaussian gradient field. 500 consecutive

iterates of the colony centre (starting at the lower right) are shown in green; higher

values of the attractant are shown as shades of red. The circle indicates the point at
which the 250 particles are initialized.

With the bacterial algorithm, setting up the problem consists of placing a number
(250 in our computations) of particles at random in the two-dimensional function space
near the minimum (-5 < x <5, -5 <y < 5 are appropriate intervals) and randomising their
directions. Again, the behaviour of the algorithm is good - Figure 2B shows the
percentage difference of the algorithm’s best estimate from f,;,, over the course of a
computational run. The 2000 iterations require, for 250 particles, only 2-3 seconds of
computer time (on a | GHz desktop machine running MATLAB) to find the minimum
with 8-digit accuracy. In the simple implementation presented here, the memory function
and other parameters such as the particle velocity, directional persistence etc. have not
been optimized; this time would be reduced by some (unknown) factor if these steps were
taken.

Finding the minimum-energy configuration of particles on a sphere

Lastly, we applied our algorithm to a difficult n-body configuration problem: how
to distribute n particles on a sphere so as to minimise the potential energy

= 1
E = (7)
2‘"’ d, j)

where d(i, j) is the (great-circle) distance on the sphere between particles i and j. This
problem is computationally difficult because, similarly to the n-body problem and to
protein folding, the potential energy space to be searched grows very rapidly with the

Dan Nicolau and Philip Maini 253

IPCAT 2007

number of particles — at each iteration of a search algorithm, all pairwise distances must
be re-evaluated. Additionally, because a small difference in even a single distance can
make a large difference to the sum, a brute force search will fail due to the fine required
partition of the search space. Approximations to optimal configurations for this problem
are known (Hardin, Sloane & Smith, 1996) for various numbers of particles.

10°F

% error

10%F

0 200 400 600 BOO 1000 1200 1400 1600 1800 2000
lterations

Figure 2. A. A graph of the function in Eq. (6), showing the complex behaviour near the
global minimum. B. Finding the minimum of this function using taxis. The vertical axis
shows the percentage difference between the best estimate, f(g) and the (known) global

minimum.

254 Dan Nicolau and Philip Maini

B U -SSP AL

IPCAT 2007

! To apply the taxis algorithm to the problem, first we convert the coordinates of
5 the particles to spherical coordinates (latitude and longitude). For two particles i and j, let
¢ and ¢ be the latitudes and A; and 4, the longitudes. Then the great-circle distance on a
sphere of unit radius is:

a(i; j)= arccos{sin ¢, sin @, +cosg, cos, cos(/?.,. =4,)} (8)

Each bacterium in the computation represents one possible solution, i.e. one arrangement
of particles. The n-dimensional location vector of each computational agent i is then

P, =10, 2):(8,,1,)..(8,, 4,)} and the velocity vector is v, ={6,,8,,....,6,}, where 6 is

the bearing of the j" particle, with 6, € [-m 7). The location and velocity vectors are
initially chosen at random for each computational agent (we used 20 in our simulations).
Note that with this definition, a tumble corresponds to all the particles in one potential
solution reorienting.

At each step of the calculation, the optimum arrangement among the k agents (the
one with the smallest potential energy) is recorded and represents the best arrangement
found up to that point. Using larger values of k increases the probability of rapid
convergence and decreases the probability of the entire system becoming stuck in local
minima, but increases the running time in proportion to k. Table 1 presents the results of
this algorithm (left column) compared with the values given by Hardin, Sloane and Smith
(1996). Remarkably, ‘taxis’ seems to find more optimal arrangements than those
previously known. Figure 3 shows the convergence of the system to these values for
different numbers of particles (in all results shown, the computations were stopped after
50,000 iterations).

1[] T T o T - T ‘:
b
107 EY, .
> L =]
g e !
= b M n=1%5 1
LT ol ———]
) A E
a — 3
g D n=10]
.E l
c i
2 1
10'} "
n=54]
i}
10 i L4 s il i L aaul i i i aaaal i ioa aaaaal i N
10° 10' 10° 10° 10° 10°

lterations

Figure 3. The convergence of a system of agents to the lowest potential-energy
arrangement of n particles on a sphere.

Dan Nicolau and Philip Maini 255

IPCAT 2007

Number of particles Lowest Energy:
Hardin, Sloane & Smith, 1996 ‘Taxis’ Algorithm
5 6.4746915 6.3395412
10 32.7169495 30.2804821
15 80.6702441 77.9961307
20 150.8815683 142.582206
25 243.8127603 238.313036
30 359.6039459 351.460535

Table 1. Lowest-energy particle arrangements found with ‘taxis’ compared with
previously published values.

Discussion

We have so far presented three simple examples of problems that can be tackled
with our method. Clearly, the performance of the algorithm, as is the case with any
optimization algorithm, would depend strongly on the nature of the problem under
consideration. Why might we, in general, expect computing with taxis to perform well at
optimizing certain difficult functions? We can speculate on an answer to this question.
Because bacteria are the oldest motile organisms and because the environments in which
they live are complex at different scales of space and time, it might be expected that they
be very efficient at solving optimization problems, including through chemotaxis. Recent
work (Nicolau et al., 2007) suggests that run-and-tumble is evolutionarily optimal and
that, remarkably, this simple algorithm can for example (as a conservative estimate)
locate on average more than 92% of the total available nutrient in a Gaussian field.
Furthermore, other natural algorithms and biocomputation methods such as neural
networks, evolutionary computing, DNA computing and (most similar to taxis
computing), particle swarm optimization have been successful. Therefore, there are
general reasons to be optimistic about the potential of taxis computing for global
optimisation.

The question can also be asked in the opposite direction: for what types of
functions would the method be expected to perform well? Functions that are difficult to
optimize because of the presence of many local extrema are good candidates because
they resemble in some sense the natural environments of bacteria. If we think of the
presence of many such extrema as an “apparent stochasticity” in the function (from the
point of view of a particle walking the functional landscape) then we can draw an
analogy between noise in biological environment and the presence of many local minima
on this landscape. In other words, local fluctuations in the derivative of a function are
analogous to noise in a natural environment, in this sense.

On the other hand, run-and-tumble relies on the presence of gradients to produce a
drift towards favourable environments. If the functional landscape is either extremely
stochastic or discontinuous, no gradient will be reliably detected and, in the limit, the
method reduces to a diffusion-like random local search at a number of random points

256 Dan Nicolau and Philip Maini

—

IPCAT 2007

(equal to the number of bacteria in the system) on the landscape. This may not always be
disadvantageous — for example, one can imagine funnel-like landscapes (similar to the
postulated energy landscapes of folding protein) that possess smooth gradients on the
whole but become very stochastic near the global minimum. In these cases a combination
of gradient-induced global drift and noise-induced random local search may perform
well. Nonetheless, taking these ideas together, we expect the type of function on which
taxis computing will perform well relative to other methods to possess local gradients on
scales larger than the characteristic velocity of the moving particles.

As mentioned, taxis computing bears some resemblance to particle swarm
optimization. Both exhibit some attributes of evolutionary computing: each particle
represents a potential solution, these solutions are initially randomly chosen, and the
algorithm proceeds by evolving the solutions from iteration to iteration, with each
iteration being based on the last. Of course, both methods are based on the concept of a
set of particles moving through the problem space.

Two essential differences are that (a) in PSO the particles share information about
the best solutions found up to each point in the computational run and (b) in PSO the
velocity of each particle in the swarm is changing smoothly while in the model we
propose here, the direction of each particle is constant during a run and is randomized by
a tumble. The first of these is particularly essential because it means the swarm as a
whole may become trapped in local minima. In PSO, at each step the velocity of particle
is re-evaluated according to the equation (Call et al., 2007):

Va =wVy, +Ci‘r|(bp —xy)+c,nb —x,), €))

where Vi, is the velocity of the particle, x4 is the position of the particle, b, is the position
of the best solution seen by the swarm as a whole and b; is the position of the best
solution found by the particle. r; and r; are random numbers and c¢;, ¢; and w are positive
real numbers representing the “weights” of the three terms. Because the particles (a)
cooperate amongst themselves and (b) remember and factor in their best solution to date,
a sufficiently good local minimum, once found, may trap the particle and in some cases
the whole swarm. This cannot happen in taxis computing because these features are not
present; instead, each particle relies on the structure of the local environment combined
with random reorientations to explore the search space. Although it is possible (though
not equally likely as in PSO) that an individual bacterium may become trapped in a local
minimum for a time, this cannot happen at the level of the colony. Furthermore, because
of the stochastic nature of run-and-tumble, its escape probability from this region will be
non-zero and hence the residence time will be finite. Of course, the cooperation property
of PSO is often valuable because the swarm as a whole can converge towards a
favourable region of the problem space, which can then be searched more efficiently;
nonetheless, the reinforcement of solutions already found at both swarm level and
individual level means the algorithm has a higher probability of missing the global
minimum of functions with properties similar to those described above.

Investigations of the performance of the discrete version of the algorithm will
form the subject of future work. One can speculate, however, on the prospects of this
method. On the one hand, because chemotaxis relies on the presence of gradients — in the
context of computing, a direct and well-behaved relationship between position in n-space

Dan Nicolau and Philip Maini 257

IPCAT 2007

and fitness, we do not expect the method to perform as well or as consistently for discrete
functions, for which there is little or no such correlation. For example, the difficulty in
solving Boolean satisfiability stems from the property that a change in the state of one
single variable (possibly among hundreds or thousands of such variables) will be the
difference between the expression evaluating as TRUE or FALSE. On the other hand, a
discrete version of PSO (Yang et al., 2004) has been successfully used to solve various
discrete problems such as the capacitated vehicle routing problem (CVRP) (Ai-ling et al.,
2006). Although in the worst case, taxis computing for discrete problems may reduce to a
stochastic random search through the functional landscape (if tumble probability is
uncorrelated with changes in the fitness function, or if these changes are very rare), in
many cases the method may work well. This is expected to be the case, for example,
when the position vector (i.e. the independent variables) is simply restricted to integer
entries, as might happen for an integer optimization problem.

In the numerical results presented here, we have used a memory function of the
form in Eq. 3 with w, = 3w,, because E coli compare roughly the last second of their lives
with the previous 3 (Strong et al., 1998), and for simplicity. However, the form of the
memory function used by a live bacterium is believed to be more complicated (Segall et
al., 1986). Even more importantly, the optimal form of the memory function in the
context of biocomputation is likely to be (a) different and (b) sensitive to problem or
class of problems under consideration. Therefore, future work will explore different
memory functions and their performances for different problems. A promising avenue is
to “evolve” the memory function in silico for a particular class of problems. For example,
in recent work we evolved the memory function of a chemotactic bacterium-like
organism on a computer, in the presence of a Gaussian attractant distribution, finding that
the evolved function resembles the biphasic shape believed to be at work in the
chemotactic mechanism of E coli. Presumably, when exposed to different functional
landscapes, a “species” of digital organisms equipped with the ability to evolve the
memory function will adapt to the function in question, developing an optimal or near-
optimal response.

It was mentioned above that in PSO, the swarm converges to the best solution
found to date and that this strategy, while running the risk of missing the global optimum,
means that local searches near the best solution found are more efficient — because they
are carried out by more particles. In an attempt to introduce this feature into our model by
mimicking the natural behaviour of bacteria, one possible variation on the algorithm
presented above would also allow the agents to divide (produce offspring) when in a
favourable region of the functional landscape. This would maintain the advantage of not
swarming to a local minimum while increasing the efficiency of local searches (and, if
the agents can also die, reducing the proportion of computational time dedicated to
unpromising regions). Finally, future work will also focus on comparing this method with
other methods, both of a natural computing flavour and also more classical methods such
as steepest descent, random search etc.

258 Dan Nicolau and Philip Maini

l IPCAT 2007

Acknowledgements

D.V.N. would like the acknowledge financial support from the Clarendon Fund, the UK
Overseas Research Student Award Scheme and the Devorguilla Scholarship from Balliol
College, University of Oxford. The authors would like to thank Kevin Burrage for
suggestions that have improved the manuscript.

References

1. Adleman, L.M., (1994), "Molecular Computation Of Solutions To Combinatorial
Problems", Science 266(11): 1021-1024.

2. Ai-ling, C, Gen-ke, Y., Zhi-ming, W., (2006), Hybrid discrete particle swarm
optimization algorithm for capacitated vehicle routing problem, J Zhejiang Univ
Science A, 7(4): 607-614.

1. Basheer, ILA., Hajmeer, M., (2000), “Artificial neural networks: fundamentals,
computing, design, and application”, J Microbiol Meth 43 (1): 3-31

2. Bray, D., (1995), “Protein molecules as computational elements in living cells”,
Nature 376: 307 - 312.

3. H. J. Bremermann, (1974), “Chemotaxis and optimization”, J Franklin Inst, 297:
397404,

4. Call, S.T., Zubarev, D.Y., Boldyrev, A.L, (2007), “Global Minimum Structure
Searches via Particle Swarm Optimization”,] Comput Chem 28: 1177-1186.

5. Dorigo M., Blum C., (2005), “Ant colony optimization theory: A survey”, Theor
Comp Sci 344(2-3): 243-278.

6. Eiben, A.E., Smith, J.E., (2003), “Introduction to Evolutionary Computing”, New
York: Springer.

7. Hardin, R.H., Sloane, N.J.A., Smith, W. D., (1997), “Spherical coverings” (in
preparation), Available at http://www.research.att.com/njas/coverings/index.html.

8. Locsei, J.T., (2007), “Persistence of direction increases the drift velocity of run
and tumble chemotaxis”, J Math Biol, in press

9. Muller, S., Marchetto, J., Airaghi, S., Koumoutsakos, P., (2002), “Optimization
based on Bacterial Chemotaxis”, IEEE Trans Evol Comput 6(1): 16-29.

10. Nicolau, D.V., Armitage, J.P., Maini, P.K., (2007), “In Silico Evolution of
Chemotactic Swimming”, in submission.

11. Nicolau, D.V., Nicolau, D.V., (2006), “Biocomputation”, in the Wiley
Encyclopaedia of Biomedical Engineering, New York: Wiley.

12. Obayashi, S., (1997), “Pareto genetic algorithm for aerodynamic design using the
Navier-Stokes equations,” in Genetic Algorithms in Engineering and Computer
Science, New York: Wiley.

13. Segall, J.E., Block, S.M., Berg, H.C., (1986), “Temporal comparisons in bacterial
chemotaxis”, Proc Natl Acad Sci U S A. 83(23): 8987-8991.

] Dan Nicolau and Philip Maini 259

e

IPCAT 2007

14. Strang, G., (2005), “The SIAM 100-digit challenge - A study in high-
accuracy”, Science 307(5709): 521-522.

I5. Strong, S. P., Freedman, B., Bialek, W. & Koberle, R., (1998), “Adaptation and
optimal chemotactic strategy for E. coli”, Phys Rev E 57: 4604-4617.

16. Trefethen, N., (2002), "A Hundred-Dollar, Hundred-Digit Challenge.", SIAM 1'
News 35(1).

17. Vergassola, M., Villermaux, E., Shraiman, B.L., (2007), “Infotaxis' as a strategy
for searching without gradients”, Nature 445: 406-409.

18. Wadhams, G.H., Armitage, J.P., (2004), “Making sense of it all: bacterial
chemotaxis”, Nat Rev Mol Cell Biol 5:1024-1037.

260 Dan Nicolau and Philip Maini

—

The Informatlon Processmg in Cells and Tlssues (IPCAT) workshop =

series brings together a multidisciplinary group of scientists working o

in fields related to modelhng information processing in biosystems.

_The workshops are concerned with the nature of biological informa- .
tion and the ways in which_ it is processed |n both biologlcal and' G

artificial cells and tissues.

A key ___rnotlvation is to prowde common ground for a dlalogue be—

tween scnentlsts from a range of d:scuplmes without emphams on any’-f_-‘_ o

\.-The_best solutlon for your prlntlng
wherever you arel i

