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This paper presents a critical review of selected topics related to the modelling of cancer
onset, evolution and growth, with the aim of illustrating, to a wide applied mathematical
readership, some of the novel mathematical problems in the field. This review attempts
to capture, from the appropriate literature, the main issues involved in the modelling
of phenomena related to cancer dynamics at all scales which characterise this highly
complex system: from the molecular scale up to that of tissue. The last part of the
paper discusses the challenge of developing a mathematical biological theory of tumour
onset and evolution.
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1. Introduction

The scientific community is becoming increasingly aware that the great revolution
of this century is going to be the mathematical formalisation of phenomena in the
Life Sciences, much as the revolution of the past two centuries was the development
of the above approach in the Physical Sciences.

To quote J. E. Cohen:

— Mathematics is Biology’s next microscope, only better; Biology is Mathematics’
next Physics, only better.
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This endeavour is an enormous challenge that will require the intellectual energy
of scientists working in the field of mathematics and physics collaborating closely
with biologists and clinicians. This essentially means that the heuristic experimen-
tal approach, which is the traditional investigative method in the Biological Sci-
ences, should be complemented by the mathematical modelling approach. The latter
can be used as a hypothesis-testing and indeed, hypothesis-generating, tool which
can help to direct experimental research, while the results of experiments help to
refine the modelling. The goal of this research is that, by iterating back and forth
between experiment and theory, eventually a deeper conceptual understanding is
reached of how the highly nonlinear processes in biology interact. The ultimate
goal in the clinical setting is to use mathematical models to help design therapeutic
strategies.

The analysis of complex biological systems by a mathematical approach is moti-
vated by top level biologists and is documented in several recent papers appear-
ing in journals dedicated to the life sciences. Among others, Antia, Ganusov, and
Ahmed17 analyse the role of mathematical models in biology, while May137 analyses
relatively more general aspects of the use of mathematics in the biological sciences.
This interesting paper looks for an equilibrium between a naive enthusiastic atti-
tude and unreasonable scepticism. The beginning of the above cited paper captures
the main conceptual ideas:

— In the physical sciences, mathematical theory and experimental investigation have
always marched together. Mathematics has been less intrusive in the life sciences,
possibly because they have been until recently descriptive, lacking the invariance
principles and fundamental natural constants of physics.

Moreover, the same author also reports the sentiments of the great Charles
Darwin:

I have deeply regretted that I did not proceed far enough at least to understand
something of the great leading principles of mathematics; for men thus endowed
seem to have an extra sense.

Key comments on interdisciplinary approaches can be found in various papers
authored by scientists operating in the field of molecular and cellular biology. The
paper by Hartwell et al.,103 for example, deeply analyses the conceptual differences
between the difficulties in dealing with inert and living matter. Living systems are
characterised by specific features absent in classical mechanics: such as, for example,
reproduction, competition, cell cycle, and the ability to communicate with other
entities.

Also in this case, it is pertinent to quote from the above article:

Biological systems are very different from the physical or chemical systems analysed
by statistical mechanics or hydrodynamics. Statistical mechanics typically deals with
systems containing many copies of a few interacting components, whereas cells con-
tain from millions to a few copies of each of thousands of different components,
each with very specific interactions.
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Although living systems obey the laws of physics and chemistry, the notion of
function or purpose differentiates biology from other natural sciences.

Moreover:

More important, what really distinguishes biology from physics are survival and
reproduction, and the concomitant notion of function.

It is worth stressing that essentially analogous concepts are proposed in the
paper by Reed168 according to the viewpoint of applied mathematicians. Once
more, the author comments on the crucial difference between dealing with living
matter and inert matter: essentially the lack of background models to support the
derivation of mathematical equations.

Furthermore, along with environmental factors, survival or reproduction in liv-
ing matter is determined by gene expression and resulting phenotypic character-
istics. Genetic instability causing random gene mutations can alter phenotypic
expression, which may increase viability or proliferation in certain environmen-
tal circumstances, thus causing the expansion of the mutation in the population.
The expansion of a particular phenotype may alter the environment, which in turn
affects evolutionary selection, and so on. Therefore, a particular challenge to math-
ematical modellers is to properly include this dynamic genetic and evolutionary
component in any theoretical framework.

Cancer modelling has, over the years, grown immensely as one of the challenging
topics involving applied mathematicians working with researchers active in the
biological sciences. The motivation is not only scientific as in the industrial nations
cancer has now moved from seventh to second place in the league table of fatal
diseases, being surpassed only by cardiovascular diseases. Indeed, the World Health
Organisation estimates that at present, cancer kills approximately six million people
annually. Furthermore, as the population in western countries ages, for instance in
the near future there will be more people in Europe over 60 than under 20, age-
related illnesses, such as cancer, will become even more of a problem. For these
reasons the fight against cancer is of major importance for public health (and also
economic resources) throughout the world. Technical data and websites are reported
in Sec. 1 of the paper by Roose, Chapman and Maini.170

The importance of examining the genetic mutations in cancer development
is emphasised in Hanahan and Weinberg’s landmark paper,102 The Hallmarks of
Cancer. In this paper, they identify six critical changes in cell physiology that char-
acterise malignant cancer growth. These six changes — self-sufficiency in growth
signals, insensitivity to anti-growth signals, evading apoptosis, limitless replicative
potential, sustained angiogenesis, and tissue invasion and metastasis, all incorporate
some aspect of genetic mutation and evolutionary selection leading to malignant
progression. Although preliminary work on cancer modelling has included one or
more of these hallmarks, few theoretical papers have addressed the mutations and
selection which lead to the outward expression of these characteristics. Indeed, it
is well accepted that the onset of cancer occurs through a sequence of genetic
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mutations and evolutionary selection leading to malignancy, a concept not yet well
addressed through mathematical modelling.

Thusfar, mathematical models have mainly concentrated on only two of Hana-
han and Weinberg’s hallmarks: angiogenesis and invasion. Some models have incor-
porated other hallmarks (such as limitless replicative potential), without actually
examining the mutations or environments leading to such phenotypes. As such,
although the current models provide a solid foundation for the study of these cel-
lular processes, given that these processes interact, the next step is to develop an
integrated model which can then be used to investigate fully the effects of manip-
ulating various components. Although a greater understanding of the biological
pathways that lead to these physiological changes will help to create more realis-
tic models, there are still many general questions that can be examined through
modelling. Integrated, multiscale models that address each of the hallmarks of can-
cer, and provide mechanistic explanations for observed behaviour, could potentially
provide breakthroughs in understanding cancer and improving treatment.

Modelling and simulation of tumour growth is certainly one of the challeng-
ing frontiers of applied mathematics which could have a great impact both on the
quality of life and the development of the mathematical sciences. It is true that
mathematics alone cannot solve the problem of cancer. However, applied math-
ematics may be able to provide a framework in which experimental results can
be interpreted, and a quantitative analysis of external actions to control neoplas-
tic growth can be developed. Specifically, models and simulations can reduce the
amount of experimentation necessary for drug and therapy development. Moreover,
the mathematical theory developed might not only provide a detailed description
of the spatiotemporal evolution of the system, but may also help us understand and
manipulate aspects of the process that are difficult to access experimentally.

Research perspectives in this specific field are analysed by Gatenby and Maini,93

who suggest the development of a research line which may be called mathematical
oncology. Indeed, applied mathematicians are becoming more and more involved in
the above challenging research field. This activity is documented in a large number
of mathematical research and review papers and in the collection of surveys in
books1,167,25 or special issues of journals.30–32

It is interesting to observe that the aforementioned cited paper93 suggests the
development of a new game theory as a fundamental paradigm to deal with the
above topic. Several scientists propose this type of reasoning on the modelling of
evolutionary games, as documented in the papers by Nowak and Sigmund149 and
Gatenby et al.96 This topic will be more fully analysed in Sec. 5 as it may act as
a fundamental paradigm towards the development of a bio-mathematical theory
of cancer, that is the very final aim of the interaction between the biological and
mathematical sciences in the research field under consideration.

This paper presents a review and critical analysis of some selected issues related
to the mathematical approach to the modelling of phenomena in cancer, to offer to
applied mathematicians suitable research perspectives with particular focus on the
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following key issues:

• Multiscale aspects of the biological phenomena and of the related mathematical
approaches.

• Strategies to select the correct mathematical framework to deal with modelling
at each scale, being aware that the existing mathematical approaches have not
yet reached the identification of a uniquely defined approach.

• Development of methods to link models at the scale selected with those at the
corresponding lower and higher scales. In the case of this paper, models at the
cellular scale are supplemented by models at the molecular (genetic) scale and
generate models at the higher, tissue level, scale.

• Looking for paradigms for the development of a mathematical biological the-
ory related to the complex system we are dealing with. In other words, it is
worth understanding how far scientists are from the development of a mathe-
matical theory analogous to physical mathematical theories developed in the past
century.

It is worth stressing that we do not aim to cover the whole variety of issues
and the vast literature in the field, but simply to capture, out of the essential
bibliography on the above selected topics, the main issues related to the modelling
of cancerous phenomena with special focus on multiscale aspects. Therefore, while
we do not claim to carry out a complete review, we hope to cover sufficient material
to motivate more applied mathematicians to develop a research activity in the field
which, as we will point out, also includes highly challenging analytic problems.

We have attempted to describe problems (rather than write equations) to iden-
tify the mathematical structure of the various classes of models. The reader inter-
ested in details is guided to the specific literature by citations attempting to cover
the various issues dealt with in the paper. Moreover, we do not claim completeness
of bibliographical citations which have been limited to 200 titles. It is a selection
out of a large and rapidly growing bibliography in the field.

After the above preliminaries, the contents of this paper, which is organised into
six sections, are as follows:

— Section 2 deals with a phenomenological description of the aspects of the biol-
ogy which are the subject of the various mathematical modelling approaches
reviewed in the sections which follow. The contents focus on two main issues:
the observation and representation scales and the implications for the mathe-
matical approaches due to the fact that we are dealing with a living system. As
we shall see, both aspects play a crucial role in the selection of the mathematical
structures to be used for modelling.

— Section 3 deals with modelling at the microscopic scale, describing the evolution
of cells organised into several cell populations each characterised by different
biological functions and activities. Specifically, the analysis refers to two classes
of models: models where all cells are equivalent, with internal structure which
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may evolve in time; and models in which characteristics of the cells are allowed
to vary from cell to cell and are modified by cellular interactions and signalling.

— Section 4 deals with modelling at the macroscopic scale when tumour cells are
organised into solid tissues with growing and invasive competence. The appropri-
ate modelling approach, using continuum or individual based models, depends
on the system of interest. Continuum models use systems of partial differential
equations corresponding to different cell populations or chemical substances.
Different approaches, which are generated by different modes of closing conser-
vation equations by phenomenological models describing the material behaviour
of the system, are detailed. A fundamental problem of continuum modelling is
that it tracks the average behaviour of cells, while the driving macroscopic or
malignant behaviour may originate away from the average behaviour. In this
case, the utilisation of discrete, cell-based models can be more appropriate.
This section also reports on the link between the microscopic and macroscopic
scales, through the derivation of macroscopic equations from the underlying
microscopic description developed at the cellular scale.

— Section 5 reports the existing literature on the passage from the molecular to
the cellular scale, i.e. from genotypic to phenotypic distributions. Then, starting
from this overview, some perspective ideas are proposed in view of the last part
of the paper to develop a mathematical theory for multicellular systems which
include genetic mutations, onset of neoplastic cells, and growth, if not suppressed
by the immune system or specific therapeutical actions.

— Section 6 presents an overview of complexity analysis related to modelling the
overall system and provides a review of some recent approaches to multiscale
modelling. This is a challenging and still open mathematical problem.

— Section 7 proposes a critical analysis on the background, however difficult, objec-
tive of developing a proper mathematical theory of biological systems: not simply
models, but a self-consistent mathematical description, where the parameters
of the models are derived from appropriate experimental data.

This paper aims to provide not only a review of the existing literature, but also
a critical analysis addressed to indicate, and hopefully to provide direction on, new
theoretical research perspectives. We are convinced that the complexity of the sys-
tem we are dealing with requires the invention of new mathematical methods, or at
least new ideas, to place into a mathematical context the above-mentioned complex-
ity. Indeed, the above topics generate interesting and very challenging mathemat-
ical problems. Although their analysis may not, in some cases, have an immediate
impact on biology, mathematicians are however attracted by them.

This is an additional aspect of the interplay between mathematics and biology:
in this case biologists may be disappointed by the attraction of mathematicians
towards challenging mathematical problems, even when the relevance to applica-
tions is not evident. On the other hand, mathematicians should not be blamed: at
least in some cases, this analysis leads to results which are useful for various different
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fields of the applied sciences and hopefully also to the progress of the mathematical
sciences. In this respect, mathematicians are no different from the biologists who
become engrossed in technical experimental detail and lose sight of the overall goal.
Indeed, one may argue that it is essential for researchers in each discipline to do
exactly that, while it is the responsibility (and the art) of interdisciplinary research
to see how different techniques from different disciplines may be used to answer the
overarching scientific questions.

2. Multiscale Aspects of Cancer Modelling

The complex biological system dealt with in this paper needs, as already mentioned,
a multiscale mathematical approach. However, scaling190 is not the only problem
as modelling also needs a deep understanding of the different functions expressed at
the different scales: from genes to biological tissues. This section is devoted to a brief
preliminary analysis of some biological phenomena related to the aforementioned
scales.

While the description we provide may not be satisfactory from the viewpoint
of biology, it attempts to extract some interpretations of reality to set the essential
background for the mathematical approach reviewed in what follows. The reader,
interested in a deeper understanding of the biology of cancer, will find the book by
Weinberg197 a highly valuable reference.

The first event to be considered is the generation of a neoplastic cell through
phenotypic alterations resulting from genetic mutations occurring through genetic
instability and environmental interactions. After the onset of neoplasia, various
complex phenomena occur which are related to different scales. The characterisa-
tion of the system suggests the identification of three natural scales which are also
connected to different stages of the disease: processes on the cellular scale are trig-
gered by signals stemming from the sub-cellular level and have an impact on the
macroscopic scale, i.e. on the organism, when tumours grow and spread. In detail:

The sub-cellular scale: The evolution of a cell is regulated by the genes contained in
its nucleus. Receptors on the cell surface can receive signals which are then trans-
mitted to the cell nucleus, where the aforementioned genes can be activated or
suppressed. In extreme situations, particular signals can induce uncontrolled cell
proliferation, or cell death- so-called apoptosis or programmed cell death. Unreg-
ulated proliferation may activate interactions between tumour cells and host cells,
which occur at the cellular level but are mediated by subcellular processes, such
as through signal cascades and receptor expression. These interactions can result
in temporary, or even permanent, alterations in gene expression, which in turn can
affect a cell’s state, such as activation or inactivation of immune cells.

The cellular scale: On the microscopic level, models are proposed to simulate the
effects of cell–cell interactions. These interactions are key elements at all stages of
tumour formation, whether they are among tumour cells and host cells, or among
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tumour cells themselves. For example, early in tumour development, if the immune
system is active and able to recognise tumour cells, it may be able to develop a
destruction mechanism and induce cancer cell death; otherwise, the tumour may
evade apoptosis or co-opt the host cells, allowing progressive growth. During inva-
sion and metastasis, alterations in cell–cell adhesion between individual tumour cells
are key to driving the process. These and other cellular interactions are regulated
by signals emitted and received by cells through complex transduction processes.
Therefore, the connection to the aforementioned sub-cellular scale is evident. On
the other hand, the growth of tumour cells, if not cleared by the immune system,
will form a mass so that macroscopic features become important. However, even
after the formation of a tumour structure, interactions between individual cells
(signalling, migration or proliferation) are crucial to driving macroscopic processes
(such as blood vessel formation or invasion), underscoring the need to link these
multiple scales.

The macroscopic scale: The initial developing tumour can be characterised by three
zones: an external proliferating layer, an intermediate layer in which there are clus-
ters of quiescent tumour cells, and an inner zone with necrotic cells. Prior to vascular-
isation, these avascular tumours reach an equilibrium size of about 2 mm in diameter,
where their growth is limited by diffusion of nutrients until the onset of angiogenesis
(the process of formation of new blood vessels, induced by factors secreted by the
tumour, and vital for continued tumour growth). Although the angiogenic process
is often described macroscopically, it occurs through processes at the cellular scale,
such as migration, proliferation, and cell–cell signalling. These events are generated
at the gene level. The above description of tumour evolution can also occur with
different geometrical characteristics, for instance around cords or surfaces bounding
nutrient sources. In these cases, the proliferative zone will be (internal) next to the
nutrient supply and the necrotic zone will be the outermost layer.

After the initiation of the “angiogenic switch”, the tumour expands and becomes
a heterogenous tissue, where some of the previously mentioned “layers” may actu-
ally occur as “islands”, leading to a tumour comprised of multiple regions of necro-
sis, engulfed by tumour cells in a quiescent or proliferative state. Furthermore, these
zones vary through the course of tumour development, as nutrient delivery alters
via blood vessel collapse or formation, changing proliferating zones to necrotic and
vice versa. In each of these layers, interactions between tumour and normal cells
(such as immune cells and blood vessels) are crucial in determining growth and
malignant progression. Here, one has the overlap of phenomena at the cellular level
with typical macroscopic behaviour such as diffusion or, more generally, phenomena
that can be related to the mass balance or evolution of macroscopic variables such
as tumour size. Moreover, most transitions from one cellular state to another are
induced at the genetic level.

Different mathematical methods and structures correspond to the different
scales described above. For instance, models at the cellular scale are gener-
ally developed in terms of ordinary differential equations or Boolean networks,
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while multicellular systems are modelled by nonlinear integro-differential equations
similar to those of nonlinear kinetic theory (the Boltzmann equation), by individual-
based models which give rise to a large set of discrete equations, or by partial dif-
ferential equations for systems with internal structures. Macroscopic models lead to
systems of nonlinear partial differential equations or discrete modelling approaches.
Nonlinearity is an intrinsic feature of all models. However, the above introduction to
mathematical structures needs to be put into a detailed mathematical framework,
and this is the main focus of the sections which follow.

3. Modelling at the Cellular Scale

Section 2 illustrates that different scales are needed to represent crucial phenomena
occurring during tumour growth. Moreover, it may be that all scales are needed
to understand various biological phenomena. Hence, multiscale methods should be
developed and the following strategy is one possibility: identify the mathematical
structures needed to describe biological phenomena at each scale, then connect the
various structures to model the overall system, viewing it as a network of several
interconnected subsystems or modules with feed-back down and feed-forward up
scales.

This section is devoted to modelling at the cellular scale as the intermediate
between the molecular and the macroscopic scales. The passage from the lower to
the higher scale will be treated in Secs. 4 and 5.

Multicellular systems have been modelled by different approaches correspond-
ing to different levels of approximation of biological reality. Each approach needs
different mathematical structures as documented in the three subsections which fol-
low corresponding, respectively, to population dynamics, populations of cells with
internal structure, and kinetic theory for active particles. Then, in Sec. 4, a short
discussion and critique is given.

Concerning the aforementioned different modelling approaches, it is important
to comment on their ability to model heterogeneous phenomena, i.e. the non-
uniform distribution of the microscopic states (biological functions) of cells. A
schematic of heterogeneity is given in Fig. 1, representing different stages and distri-
butions of mutated cells which have lost their differentiation state and are progress-
ing towards metastatic competence. In this case the biological function expressed
by cells is called progression.100,150

The following review is limited to the indication of mathematical structures
which may act as general paradigms for the derivation of specific models to be cast
into these frameworks. Details on specific models can be obtained by reference to
the bibliography.

3.1. Population dynamics

Coupled ordinary differential equations can be used to model large systems of cell
populations, where each variable corresponds to a well-defined biological property
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Fig. 1. Heterogeneity and progression of tumour cells: Time evolution of the probability distri-
bution (f) over the variable (u) expressing the differentiation state of cells.

characteristic of all cells of the same population. These models are formulated by
averaging over the space variable and over the biological function expressed by each
population so that the state of the system is simply described by the number density
of cells within each population, while their structure is a technical development of
Lokta–Volterra type equations:

dni

dt
= ϕi(t,n), (3.1)

where n denotes the set {n1, . . . , nn} of the numeric densities of cells, for i =
1, . . . , n, for a system of n interacting populations.

The structure of the terms ϕi depends on the modelling approach related to
the specific system under consideration. The presence of time in the argument may
appear if the system is open to external time-dependent actions, e.g. chemotherapy.

The literature in the field is vast, developed from pioneering papers modelling
the onset of cancer and the temporal evolution of cell density supported by the
presence of nutrients, but limited by competition with the immune system. The
paper by Gyllenberg and Webb,101 to our knowledge, initiated a systematic devel-
opment of population dynamics models focused on cancer. This approach has been
developed by various authors as documented in the collection of surveys by Adam
and Bellomo1 and in the bibliography of the various papers published in special
issues of journals.109,117 The book by Perthame158 provides, in Chap. 1, a survey
of population models in biology, related to a vast bibliography documented in sev-
eral books, e.g. Edelstein-Keshet77 and Thieme.185 The review is completed by an
introduction to classical mathematical problems: stability analysis, bifurcation and
asymptotic behaviour.
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Various authors have used the above approach to model open systems sub-
ject to different therapies, e.g. Kirschner and Panetta,115 Nani and Freedman,148

d’Onofrio,71 De Pillis et al.,65,66,68 Arciero et al.,18 Moore and Li,147 Byrne et al.47

Tomlinson and Bodmer,187 d’Onofrio and Tomlinson,72 Johnston et al.112,113

deal with a deeper additional insight into cell dynamics modelling failure of pro-
grammed cell death and differentiation as causes of tumour growth. Smieja and
Swierniak179 develop models of chemotherapy based on gene amplification analysis.

A detailed report on the application of population dynamics models in immunol-
ogy is given in the review paper by Perelson and Weisbuch157 related to biological
theory in the field.39,75,87,156

Time delay is introduced by various authors, e.g. Foris and Bodmer,82,83 to
model how the delayed response of the immune system in identifying the presence
of tumour cells acts as a bifurcation parameter to separate two different outputs of
competition: blow-up of tumour cell density or its suppression due to the action of
the immune system.

The advantage of the above approach is that models are easily tractable, allow-
ing a relatively rapid identification of the parameters characterising the model
by suitable comparisons with experimental data. On the other hand, these sim-
plifications omit potentially important phenomena, such as spatial aspects, and
heterogeneity100 among cells of the same population. As we shall see, the latter
plays a potentially important role in the evolution of the system and the vari-
ous interactions and competitions between cells of different populations. Moreover,
the identification of parameters is definitely useful for application, but it is at the
macroscopic scale so that it cannot be easily related to specific biological functions
generally developed at the molecular and cellular scale.

Finally, it is worth discussing the concept of populations with reference to the
idea of functional modules proposed by Hartwell et al.103 After having observed
that biological systems may be characterised by an enormous number of copies,
while only a few copies generally characterise living systems, it is proposed103 to
reduce complexity by grouping different entities through looking at their collective
expression of biological functions related to the specific biological events under
observation. This suggestion is developed29 in a way that each population can be
regarded as a module.

3.2. Population dynamics with internal structure

Systems of partial differential equations can be used to model large systems of inter-
acting cells whose microscopic state includes internal variables related to biological
functions. This internal structure, generally a scalar variable, characterises specific
functions of the cell and can greatly influence the biological events under consider-
ation. For instance, the internal variable can be the age of the cell as determined
by the cell cycle, which has crucial influence on various biological phenomena such
as apoptosis, cell division, mutation, etc.
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A systematic introduction to cell population dynamics with internal structure
has been given by Webb,196 followed by several interesting books, e.g. Iannelli,110

Cushing,60 Dieckmann and Heesterbeck,69 Thieme,185 Perthame,158–160 Perthame
and Zubelli,162 Dyson et al.76 The bibliographies cited in these monographs cover
the existing literature in the field.

Age-structured models describe the evolution of cellular systems for times of
the same order of the cell cycle. Their structure is as follows:

∂tNi(t, a) + ∂aNi(t, a) = Qi(N)(t, a), (3.2)

where N denotes the set {N1, . . . , Nn} of the cell densities for i = 1, . . . , n, of a
system of n interacting populations of cells. The densities Ni depend on time and
on the age a. The terms Qi refer to interactions between populations. Note that
a further complication in these models is that if, for example, a is “age” taken as
progression through the cell cycle, then we also need to know how this evolves in
time, as this will alter the form of the above equation.

3.3. On the kinetic theory for active particles

Biological function is statistically distributed across cells. This biological phe-
nomenon generates the so-called heterogeneity related to progression and to immune
activation as documented, for example, in the papers by Greller, Tobin and Poste100

and Nowell.150 Models should have the ability to describe progression of cancer cells
and their competition with immune cells which express their antagonistic ability,
unless inhibited, to limit cancer cell density growth.

Particular pathologies may be thought of as an emergent property of the output
of various genetic mutations which generate new cells with increasing degree of
malignancy. After various genetic mutations, cells may acquire the ability to succeed
in escaping from the immune system despite the sentinel guards which, should,
in principle, limit cell growth. (See, for example, Lollini, Motta, Pappalardo and
Castiglione,130,124 Vogelstein and Kinzler,192 Blankenstein39).

Application of mathematical kinetic theory to model immune competition with
specific focus on cancer was initiated by Bellomo and Forni27 and subsequently
developed by various authors. Recent contributions are due to, among others,
Derbel,64 De Angelis and Jabin,61 Kolev,118 Kolev, Kozlowska and Lachowicz,119

Bellouquid and Delitala,33,34 Brazzoli and Chauviere.43 Several interesting results
are reported in the already cited book by Bellouquid and Delitala35 which, in par-
ticular, address a number of aspects of the above-mentioned competition.

Types of biological function differ from population to population, while the
overall representation of the multicellular (multi-population) system is statistically
described by the distribution functions:

fi = fi(t, u) : [0, T ]×Du → R+, i = 1, . . . , n, (3.3)

over the microscopic state u ∈ Du of cells of each population labelled by the sub-
script i.
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By definition, dni = fi(t, u) du denotes the number density of cells, regarded as
active particles, which, at time t, are in the element [u, u + du] of the space of the
microscopic state. Mathematical models should then describe the evolution in time
of the distribution functions fi. When these functions are obtained by solution of
the resultant equations gross averaged quantities can be computed. For instance, the
local number density of cells is calculated, under suitable integrability assumptions
on fi, as follows:

ni(t) =
∫

Du

fi(t, u) du, (3.4)

while the following quantities:

ai = a[fi](t) =
∫

Du

ufi(t, u) du (3.5)

and

Ai = A[fi](t) =
a[fi](t)
ni(t)

(3.6)

have been called,29 respectively, activation and the activation density. These quanti-
ties represent, respectively, the overall activity of the cells per unit volume and their
mean activity. Analogous calculations can be developed for higher order moments.

The formal structure, which describes the evolution of fi, is obtained by the
balance of particles in the elementary volume of the microscopic state. Only the case
of spatial homogeneity is reported in what follows. Indications will then be given
as to how to deal with models with spatial structure. The following interactions are
considered:

• External actions, either therapeutical actions or other external agents, which
modify the distribution function;

• Stochastic modification of the microscopic state of cells due to binary interactions
with other cells of the same or of different populations. These interactions are
called conservative as they do not modify the number density of the various
populations;

• Genetic alteration of cells which may either increase the progression of tumour
cells or even generate, by clonal selection, new cells in a new population of cancer
cells with higher level of malignancy;

• Proliferation or destruction of cells due to binary interactions with other cells of
the same or of different populations.

Consequently one has:

∂tfi(t, u) + Fi(t) ∂ufi(t, u) = Ji[f ](t, u) = Ci[f ](t, u) + Pi[f ](t, u) + Di[f ](t, u),

(3.7)

where the right-hand side models the flow, at time t, into the elementary volume
[u, u+du] of the state space of the ith population due to transport and interactions.
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In detail:

• Fi(t) models the external action over the ith population.
• Ci[f ](t, u) models the flow, at time t, into the elementary volume of the state

space of the ith population due to conservative interactions:

Ci[f ](t, u) =
n∑

j=1

ηij

∫

Du

∫

Du

Bij(u∗, u∗;u)fi(t, u∗)fj(t, u∗) du∗ du∗

− fi(t, u)
n∑

j=1

ηij

∫

Du

fj(t, u∗) du∗, (3.8)

where ηij is the encounter rate, namely, the encounters of a candidate particle,
with state u∗ in the ith population, with a field particle, with state u∗ in the jth
population. The probability that, as a result of this interaction, the particular
acquires the state u is given by the probability density function Bij(u∗, u∗; u).

• Pi[f ](t, u) models the flow, at time t, into the elementary volume of the state
space of the ith population due to proliferation:

Pi[f ](t, u) =
n∑

h=1

n∑

k=1

ηhk

∫

Du

∫

Du

µi
hk(u∗, u∗; u)fh(t, u∗)fk(t, u∗) du∗ du∗, (3.9)

where µi
hk(u∗, u∗;u) models the net proliferation into the ith population, due to

interactions, which occur with rate ηhk, of the candidate particle, with state u∗,
of the hth population and the field particle, with state u∗, of the kth population.

• Di[f ](t, u) models the net flow, at time t, into the elementary volume of the
state space of the ith population due to proliferative and destructive interactions
without transition of population:

Di[f ](t, u) =
n∑

j=1

ηij

∫

Du

µij(u∗, u∗, u)fi(t, u∗)fj(t, u∗) du∗ du∗, (3.10)

where µij(u∗, u∗, u) models net flux within the same population due to inter-
actions, which occur with rate ηij , of the test particle, with state u, of the ith
population and the field particle, with state u∗, of the jth population.

Substituting the above expression into (3.7), in the absence of external action,
yields:

∂

∂t
fi(t, u) =

n∑

j=1

ηij

∫

Du

∫

Du

Bij(u∗, u∗;u)fi(t, u∗)fj(t, u∗) du∗ du∗

− fi(t, u)
n∑

j=1

ηij

∫

Du

fj(t, u∗) du∗
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+
n∑

h=1

n∑

k=1

ηhk

∫

Du

∫

Du

µi
hk(u∗, u∗;u)fh(t, u∗)fk(t, u∗) du∗ du∗

+
n∑

j=1

ηij

∫

Du

µij(u∗, u∗, u)fi(t, u∗)fj(t, u∗) du∗ du∗. (3.11)

The above structure acts as a framework for the derivation of specific models,
obtained by a detailed consideration of microscopic interactions. The modelling
needs to be completed to generate well-defined expressions for the terms η, B and
µ. However, following the principle that we must try, where possible, to reduce com-
plexity, each population is identified only by its ability to perform one biological
function (activity).

Models of spatial dynamics can be developed by different approaches. For
instance Bellouquid and Delitala35 model cell–cell interactions by assuming they
depend on the distance between and microscopic states of the interacting pairs. A
relatively simpler approach has been proposed by Othmer and Hillen152 to derive
equations at tissue level from the underlying microscopic description. Models with
spatial structure are obtained by a random walk perturbation of spatially homoge-
neous models.

3.4. Summary

Various mathematical approaches to modelling multicellular systems at different
representation scales have been reviewed in this section. The advantages of each
approach with respect to the others have already been discussed. However, if we
wish to model at a certain scale, a priori, we have no indication of which other
scales we must take into account. In most cases, one probably has to consider many
scales. In reality, the choice will be determined by the question we are trying to
answer and the availability of data and biological insight.

Moreover, the above review does not cover the whole variety of methods. Among
others, one may consider individual-based models (Othmer, Dumbar and Alt,151

Stevens181) which deal with the dynamics of individual cells (see also Drasdo
et al.73 and Drasdo and Home74). Hybrid models can be developed by using cellular
automata or agent-based approaches,67 where the macroscopic flow is linked to the
microscopic biological state of cells. This type of framework appears more natural
for the inclusion of individual cell properties and therefore is conceptually more
straightforward. However, as the number of cells increases to biologically realistic
levels, it can become computationally intractable.

Hybrid approaches have been proposed53 based on population dynamics models
with stochastic coefficients arising from modelling kinetic type interactions at the
molecular level. These approaches, which are still in the early stages of investigation,
have the potential to reduce significantly the complexity of models of the kinetic
theory for active particles.
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The above reasoning shows that when a high level of accuracy of description is
reached, not only is computational complexity involved, but there is also the implicit
difficulty of determining the parameters of the model. Therefore, the problem of
selecting the most appropriate modelling approach is still open.

4. From Cellular to Macroscopic Tissue Models

A large body of literature has been devoted to models which link the cellular scale to
the macroscopic tissue scale. In this way, models can address how changes in cell–cell
interactions affect the macroscopic properties of the tumour. Once cells have formed
a tumour mass, features on the macroscopic level of the tumour environment must
be considered. For example, the availability of nutrients and transport of cytokine
signals has a profound impact on tumour progression. Conversely, the tumour cells
themselves can create areas of acidosis which in turn affect the properties of the
cellular and acellular components of the surrounding environment.

Models which address how cellular changes affect macroscopic distributions are
especially important when examining Hanahan and Weinberg’s last two hallmarks
of cancer: sustained angiogenesis, and tissue invasion and metastasis.102 Also, it is
important to note that although these macroscopic properties can be sufficiently
modelled at a single scale, they occur through genetic mutations and evolution-
ary selection. This link has not yet been fully modelled, and will be discussed
in Sec. 5.

Nevertheless, there has been much success in using macroscopic models to exam-
ine tumour malignancy. The two main types of models used are continuum, which
examine average behaviour of the densities of populations or components, and dis-
crete, which can track the behaviour of individual cells. These types of models
employ a wide variety of mathematical methods, as they can describe phenomeno-
logical interactions between cells or mechanical interactions based on measuring
stresses and strains of the system. All of these methods make some a priori assump-
tions about cell behaviour: for example, they either assume a cell moves through a
process like diffusion, or the cellular components act like an elastic fluid. There have
been some attempts at validating these assumptions mathematically, by building
cellular models and extrapolating movement behaviour at the macroscopic scale,
which we will also discuss in Sec. 4.3.

Figures 2 and 3 illustrate schematically some important points that must be
incorporated in a continuum description. Figure 2 illustrates tumour-generated
substances (angiogenic factors) which attract endothelial cells towards the tumour.
These cells form blood vessels so at the macroscopic level one sees capillary sprouts
moving towards the tumour to provide nutrient and allow further growth.

Figure 3 shows in more detail the structure of a tumour representing the inner
zone (dark) of necrotic cells, the intermediate one (light) of quiescent cells, and
the proliferative outer zone (grey). Chemoattractants are generated by the hypoxic
zone near the necrotic zone.



March 29, 2008 9:6 WSPC/103-M3AS 00279

Selected Topics on Cancer Modelling 609

Fig. 2. Schematic of tumour-induced angiogenesis. Upper panel: generation of chemical sub-
stances, (pentagons) by the tumour mass (on the right) attract blood vessels (lower panel), with
genesis of capillary sprouts from existing vasculature to feed the tumour and allow further growth.

Fig. 3. Schematic of growing tumour illustrating the different biological phases: necrotic, qui-
escent, and proliferative cells with generation of chemoattractants. Cells communicate among
themselves, and with the outer environment, by signalling and chemical factors (stars and circles)
that move (as shown by arrows) in the environment.
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4.1. Mathematical framework for continuum models

Continuum models at the macroscopic scale are generally stated in terms of par-
tial differential equations which describe the evolution in time and space of locally
averaged quantities related to the behaviour of cell populations. A large variety of
continuum models are derived using mass balance equations for the cellular com-
ponents and reaction–diffusion equations for the chemicals or nutrients. However,
different choices of the mathematical form of the cellular movement lead to very
different models, which we will explore presently.

The initial system is composed of mass balance equations for the cellular com-
ponents, extracellular matrix (ECM), and the extracellular fluid (ECF), Eq. (4.1)1,
coupled to a system of reaction-diffusion equations for the concentration of extra-
cellular chemicals, Eq. (4.1)2.





ρj

[
∂φj

∂t
+∇x · (φjvj)

]
= Γj(ρ, φ, c), j = 1, . . . , L,

∂ci

∂t
+∇x · (ci v`) = ∇x · (Qi(ρ, φ, c)∇ci) + Λi(ρ, φ, c), i = 1, . . . ,M,

(4.1)

where φj = φj(t,x) denotes the concentration of each component, e.g. cells, matrix,
or fluid, and ci = ci(t,x) denotes the concentrations of the chemicals and nutri-
ents. In Eq. (4.1)1, ρj are the mass densities of cellular components and vj is the
mass velocity of the jth population while v` is the velocity of the liquid. Moreover,
Γj(ρ, φ, c) is a source term for the particular component which might include, for
example, production and death terms. In Eq. (4.1)2, Qi(ρ, φ, c) is the diffusion coef-
ficient of the ith chemical factor, and vi is the velocity of the chemical component.
Λi(ρ, φ, c) is the source term for the particular nutrient or chemical, which might
similarly include, for example, production and uptake by the cells. Therefore, the
component equations are coupled to the chemical equations via the source terms,
Λi(ρ, φ, c) and Γj(ρ, φ, c). For example, blood vessels might be the source of oxygen,
which is consumed by the tumour cells and in turn alters the proliferation or death
rate of the tumour cells.

In some cases, the theory of mixtures is used to describe the tumour
tissue.13,50,48 The concept behind mixture theory is that at every point there is a
fraction of each constituent type, unlike a system where at each spatial point there
can only be one type of constituent at a time. The model then treats the tumour
as a multiphase material of cells, ECM and ECF. Hence, the components are rep-
resented as volume ratios, where φj represents the volume fraction of a particular
component. Sometimes the system is assumed to obey the no-voids condition, i.e.
the sum of the constituents equals 1.

It is crucial to note that the system (4.1) is not a closed or self-consistent sys-
tem, and therefore by itself it is not a sufficient model. Importantly, one needs
to determine an equation for the velocity vj in order to close the system. This
leads to two main classes of macroscopic models, each defined by the choice of
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movement term. These classes can be broadly defined as phenomenological mod-
els or mechanical models. Phenomenological models make an assumption about
movement ignoring mechanical effects, such that cells (or matrix components) do
not move, or that they move through any combination of diffusion, chemotaxis,
haptotaxis, etc. In contrast, mechanical models use force-balance or momentum-
balance interactions to determine how the cell, matrix and fluid components move
in response to the physical forces involved. These mechanistic models take into
account stresses and strains to track cellular and tissue deformation. However, these
models also make assumptions about cell movement through the choice of how to
model the tumour tissue, matrix and interstitial fluid (for example, treating the
tumour as an elastic fluid or porous medium). In reality, it is likely that a com-
bination of these models of motion is required, as the tumour cells probably use
active motility, such as chemotaxis,199 while at the same time responding to physical
forces.

4.1.1. Closure by phenomenological models

In general, most of the tumour growth models are closed by phenomenological
assumptions, and an explicit equation for the cellular velocity is written. These
models explicitly specify the nature of the cellular movement, either unbiased or
biased. Mathematical models using unbiased models often assume that cells move in
response to population density. For example, early work by Ward and King,194,195

and Bertuzzi et al.37 assumed cell populations moved as a result of a single convec-
tive velocity field created through cell proliferation and death driving local volume
changes.

One common example of a phenomenological closure is to assume cells move
down a gradient in cell density, which leads to some type of diffusion equation for
cell movement. Hence, vj = −Dj∇xφj where in most cases Dj is a positive constant,
hence the movement is simply linear diffusion. This type of approach has proven
useful in modelling the spatial spread of many types of populations. However, its
applicability for interacting constituents is not as clear. Therefore, recent work has
investigated the more general case of Dj = Dj(φ, c) leading to a nonlinear diffusion
term.176,186 In a paper by Sherratt,176 a nonlinear diffusion model is used for the
interactions between tumour cells and ECM. The model was able to suggest a
mechanism by which some types of tumours become “encapsulated” by a highly
dense ECM.

An interesting extension of this framework is used in Sherratt and Chaplain173

where they model movement by contact inhibition in avascular tumour growth.
Importantly, this model also exhibited the traditional avascular tumour structure
of a proliferating rim, quiescent band, and necrotic core in terms of continuous
cell densities instead of discrete bands of cell types. Previous models by Ward and
King,195 and Greenspan99 have imposed these layers a priori as bands of cell types
separated by moving boundaries.
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Alternatively, phenomenological models can specify biased movement such as
chemotaxis54 or haptotaxis.15,14 Future models will have the challenge of rigorously
proving whether, and in which situations, tumour cells move in a haptotactic or
alternate manner.

Using the above framework, numerous papers have been written to study the
cellular processes driving the macroscopic properties of angiogenesis and invasion.
For invasion models, travelling wave analysis is used to examine how the tumour
invades the surrounding normal tissue or ECM. Gatenby and Gawlinsky90 utilised
a spatially one-dimensional continuum reaction-diffusion population competition
model based on the observation that nearly all invasive tumours exhibit upregu-
lated glycolysis (a type of anaerobic respiration which produces lactic acid) even
in the presence of oxygen. They suggested that the tumour cells create an acidic
environment toxic to normal tissue, and that when the normal tissue dies from the
high acidity, it provides space for the tumour to proliferate and invade into the
surrounding tissue. Using a set of reaction–diffusion models, Gatenby and Gawlin-
sky were able to predict the presence of an acellular gap in certain circumstances,
which was later found experimentally.90,92

In contrast to the acid-invasion model, Perumpanani et al.164 suggested a combi-
nation of ECM degradation by proteases and tumour cell haptotaxis as a mechanism
for invasion. They performed a travelling wave analysis on a continuum 1-D ODE
model of invasive cells, ECM and protease. Perumpanani and Byrne163 extended
the model to use a combination of diffusion and haptotactic movement, and found
that ECM heterogeneity affects invasion.

Although these phenomenological models do an excellent job of approximating
cellular motion, they fail to take into account mechanical causes of cell movement.
As tumour cells proliferate, they push into the surrounding tissue, causing pressure
to build. This pressure, along with other mechanical interactions, can have a very
important effect on tumour growth and progression.

4.1.2. Closure in mechanical models

In contrast to the above modelling approaches, mechanical models close the sys-
tem by specifying cell movement based on physical forces. These models aim to
describe how the mechanical properties of the tumour and surrounding tissue influ-
ence tumour growth. In this framework, one would use the same mass-balance equa-
tions as in Eq. (4.1)1, and continue by writing the momentum balance equations

ρφj

(
∂vj

∂t
+ vj · ∇xvj

)
= Fj [φ,v], j = 1, . . . , L, (4.2)

for the constituents, where Fj [φ,v] is a term describing the forces on the constituent
j. For example, one might express Fj = ∇x ·Tj +φjfj +mj , where mj is the inter-
action force with the other constituents, Tj is the stress–tensor, and fj is the body
force acting on the jth constituent. As before, these equations are coupled to the
nutrients and chemicals in Eq. (4.1)2.
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The model above requires the specification of the constitutive equations relat-
ing the forces determining cell motion to the level of stress and compression. For
example, as a cell undergoes mitosis and divides into two cells, the daughter cells
generate a “pressure” which displaces the neighbouring cells, thus leading to an
increase in tumour size. Although it is possible, as a first approximation, to describe
the influence of stress on growth through continuum equations, it is clear that it is
preferential to use a multiscale approach because the perception of stress exerted
by a single cell and the initiation of mitosis or apoptosis occurs at a subcellular
scale.

In any case, when using a mechanical continuum description, there are several
different classes of mechanical models depending on whether the cells are assumed
to behave like a type of fluid or solid medium. If one assumes the cells behave as
a fluid, the simplest constitutive equation for the stress comes from assuming the
cells act like elastic liquids

Tj = −ΣjI, (4.3)

where Σj is the response of the cells to compression, driving them towards regions
of lower stresses. In practice, Σj may depend on φj .

In some special cases, the assumption of the cells moving as an elastic fluid
within a rigid ECM can lead to closure by Darcy’s law, where if, for example,
fj = 0,

vj = −K∇xΣj , (4.4)

where K is the permeability property of the matrix. This constitutive equation
has two interpretations: the first is that the system acts as an over-damped force
balance, the second is that the fluid-like cells flow through the rigid ECM akin to
porous media flow. See Refs. 63 and 55 with reference to the closure (4.4).

Alternatively, the cell-matrix milieu can be hypothesised to be like a viscous
fluid, where the stress depends on the viscosity, as in Breward, Byrne and Lewis,44

Byrne and Preziosi,50 and Byrne et al.,48 or can be modelled as a viscoelastic
fluid. Holmes and Sleeman108 developed a mechano-chemical model of angiogenesis,
modelling the ECM as a linear viscoelastic material, including chemotaxis and
haptotaxis of endothelial cells. Their model was able to examine the mechanical
effects of the ECM on endothelial cell migration, as well as the effects of cellular
traction on the ECM deformation and resulting patterns.

Another class of models views the tumour tissue as a mixture of cells living in
a porous medium made of ECM and filled with extracellular liquid, see Graziano
and Preziosi.98 Therefore, Darcy’s law can be used to model both fluid flow and
cell motion, considering the latter as a granular material flowing in the porous
ECM scaffold. For example, one can write mass and momentum balance for the
tumour cells (j = T ) and ECF with chemicals and nutrients within it (j = `).
If, for example, the mixture has no voids, so that φT + φ` = 1, then by looking
at mass and momentum balances for the whole mixture, the following conditions
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must hold:

ΓT + Γ` = 0, (4.5)

mσ
T + ΓT vT + mσ

` + Γ`v` = 0, (4.6)

where mσ
T and mσ

` are the forces on the tumour and on the extracellular liquid,
respectively, due to their interaction with other constituents.

The equation for composite velocity, ξ, is then

∇x · ξ = ∇x · (φT vT + φ`v`) = 0. (4.7)

If the densities of the constituents are equal, then the composite velocity is
equal to the mass average velocity and the momentum equation for the mixture
simplifies to

ρ

(
∂ξ

∂t
+ ξ · ∇xξ

)
= ∇x ·Tm + φT fT + φ`f`, (4.8)

where Tm is the stress–tensor of the mixture.
In this example, as the tissue is treated as a porous medium filled with extra-

cellular liquid, one can assume Darcy’s law for the fluid flow through the tumour

φ`(v` − vT ) = −K(∇xP − f`), (4.9)

where K is the permeability, divided by the viscosity of the fluid, of the tissue
interstitial space and P is the local interstitial fluid pressure. Neglecting inertial
terms and assuming the constitutive equation

Tm = −[P + ΣT ]I, (4.10)

with ΣT positive in compression, the momentum equation for the mixture implies

∇xP = −Σ′T∇xφT + φT fT + φ`f`, (4.11)

where Σ′T = dΣT /dφT .
On the other hand,

v` = vT − K

(1− φT )
(∇xP − f`) = vT +

K

(1− φT )
[Σ′T∇xφT +φT (f`− fT )], (4.12)

which can be substituted back into the composite velocity equation to yield

∇x · {vT + K[Σ′T∇xφT + φT (f` − fT )]} = 0. (4.13)

For example, the case of a multicell spheroid as a growing poro-elastic medium
can thus be written using the mass balance equation Eq. (4.1)1, the momen-
tum equation (4.11), the composite velocity equation (4.13), along with suitable
reaction–diffusion nutrient equations from Eq. (4.1)2.

This framework has been used by Ambrosi and Mollica,12 Roose et al.169

together with experimental data to show how tumour cell size is reduced by solid
stress inside tumour spheroids. Ambrosi and Preziosi,13 followed by Byrne and
Preziosi,50 modelled avascular tumour as a deformable porous medium in which
the solid skeleton was assumed to be comprised of deformable cells bathed in
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extracellular liquid containing nutrients, and included in the mass exchange between
the solid and liquid constituents. It also included the viscous effects of cellular
motion. This model was able to determine the stress distribution within the tumour,
and how the stresses affected proliferation rates and tumour size.

In general, continuous models are able to exhibit the general behaviour
of tumour growth, angiogenesis and invasion. However, all of these continuum
approaches model average behaviour at a population level, and fail to examine
phenomena that occur at the single cell level. This makes detailed modelling of
processes such as angiogenesis difficult, as simply calculating average cell density
fails to include the specific spatial structure of the vascular network. Furthermore, it
is unclear if processes such as invasion and metastasis are driven by “average” pop-
ulation behaviour, or instead by cells which deviate from the mean. It is certainly
possible that individual “rogue” cells drive the macroscopic processes of invasion
or metastasis, and their behaviour would not be captured in a continuum model.
In these cases, a discrete modelling approach must be taken in order to keep track
of each individual cell.

4.2. Discrete models

Unlike continuum models, discrete models have the ability to track the behaviour
of single cells. Due to biotechnological advances, there is an increasing amount of
data available on phenomena at a single cell level which merit inclusion in mathe-
matical models. These discrete approaches model single-cell scale phenomena and
use upscaling techniques to examine the effect on macroscopic properties of the
tumour.

Most discrete models utilise a combination of discrete cell-based models (such as
cellular automata,177,178,7,67 extended Potts,189 random walk,15,14 among others) to
represent the behaviour of single cells, and continuous equations to model chemical
gradients. Individual cells are then tracked on a lattice, where the cells of the lattice
correspond to biological cells (as in cellular automata and random walk models) or
each cell is made up of several lattice points (as in Potts models). The particular
choice of lattice can be extremely important, and care must be taken to ensure that
macroscopic properties are not driven by the specific structure of the lattice affecting
cell movement. Also, the “neighbourhood” used to determine cell proliferation and
movement (such as at which adjacent spaces a daughter cell can be placed) can affect
the model behaviour. For example, on a 2-D rectangular lattice, a von Neumann
neighbourhood includes the four spaces located north, south, east, and west of
a given cell, while the Moore neighbourhood uses eight adjacent cells. Usually,
a discrete model is comprised of a regular rectangular lattice for computational
simplicity, however alternative geometries can be chosen. Furthermore, the lattice
is usually fixed through time, but a free lattice can be constructed to move as a
result of cell proliferation.

All of the main discrete models consider the state of each cell or populations of
cells to be characterised by the vector variable w = {x,v,u}, where x is position,
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v is velocity, and u is a vector detailing the cell’s internal state, which might
include information such as age, point in cell cycle, phenotypic characteristics, etc.
This information would in turn affect the probability of a cell moving, proliferating,
or changing state. In some cases, continuous models for cell density are discretised,
usually using finite difference methods, providing transition rates for cells moving to
an adjacent site. This can allow for the inclusion of stochastic effects. As in contin-
uum models, assumptions regarding cell movement can be implemented, either by
using phenomenological models such as diffusion or haptotaxis, or mechanical mod-
els. Any mechanical interactions would depend on the cell’s position and velocity.

One advantage of this discrete method is the ease of embedding subcellular
processes within each biological cell (which usually corresponds to an automaton
cell). For example, the model can track each individual cell, and within each cell
the simulation can run continuous mathematical models of metabolism or cell cycle.
This potential for use as a multi-scale framework will be discussed in detail in Sec. 6.

In particular, a discrete approach is useful when modelling angiogenesis, as it
allows modelling at the individual cell and vessel level. In this way, mathemati-
cal models can examine how endothelial cells link together and form functional
blood vessels, and the precise structure of the vascular network. Anderson and
Chaplain15 began by simply examining endothelial sprout tips and the initiation of
branching. Levine et al.128,126 used reinforced random walks to examine angiogenic
signalling, ECM degradation and subsequent migration of endothelial cells towards
the tumour. Extensions of these models will be discussed further in Sec. 6.

Discrete models have also addressed the importance of visco-elastic effects and
cell adhesion, with a focus on tumour invasion. Although the basics of tumour
growth and movement into the surrounding tissue can be examined through contin-
uum models (and in particular travelling wave solutions176,133), advances in imaging
now allow us to visualise migration of individual cells and it has been suggested
that perhaps single cell behaviour, in contrast to mean cell behaviour, might be
driving invasion. Therefore, discrete modelling techniques are better suited to rep-
resent these aspects of tumour growth. In order to address these issues, Turner and
Sherratt189 used a discrete extended Potts model to investigate adhesion, prote-
olysis and haptotaxis using a thermodynamic approach of energy minimisation in
a model of tumour invasion. This model was able to examine the relative impor-
tance of cell–cell adhesion and cell–matrix adhesion. Furthermore, recent work by
Anderson et al.16 utilises a hybrid discrete model incorporating cell-adhesion, cell-
migration and phenotypic mutations, and suggests invasive “fingering” is driven by
environmental heterogeneity. This model is described in detail in Sec. 6.

4.3. From cellular to macroscopic models

The various models reviewed in the preceding sections have been derived accord-
ing to the classical approach of continuum mechanics, namely by using mass and
momentum conservation equations properly closed by phenomenological models
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corresponding to the material behaviour of the system. This approach is docu-
mented in the various chapters of the book,146 containing lectures on the derivation
of several models of biological tissues. Different models are obtained according to
the different ways chosen to close the conservation and equilibrium equations.

On the other hand, the macroscopic behaviour should be properly related to the
dynamics at the cellular level. In other words, macroscopic models should be derived
from the underlying cellular models by suitable asymptotic methods developed by
letting intercellular distances tend to those of the tissue level.

The above approach is widely studied in the case of classical particles by asymp-
totic methods developed in mathematical kinetic theory. In recent years, the anal-
ysis of the applicability of asymptotic methods has reached an important devel-
opment in the so-called parabolic and hyperbolic limits or equivalently low and
high field limits. The parabolic (low field) limit of kinetic equations leads to a
drift–diffusion type system (or reaction–diffusion system) in which the diffusion
processes dominate the behaviour of the solutions.

The specialised literature offers a number of recent contributions concerning
various limits for parabolic diffusive models and the hyperbolic (high field) limit
where the influence of the diffusion terms is of lower (or equal) order of magni-
tude in comparison with other convective or interaction terms. Therefore, different
macroscopic models are obtained corresponding to different scaling assumptions.
The literature in the field of asymptotic methods for classical particles is docu-
mented in the review papers by Villani,191 Perthame,161 Lachowicz124 and Bonilla
and Soler.42

The same methodological approach can be developed starting from multicellular
models obtained by methods of generalised kinetic theory. Although the literature
on this topic is not as vast as that for classical particles, a number of interesting
results are available. On the other hand, several technical difficulties arise from
the fact that particles are elements of inert matter, while cells are active particles
belonging to living matter. In particular:

(i) The microscopic state of an active particle is characterised not only by position
and velocity, but also by an additional microscopic state (we may call it activity)
which represents biological function at a cellular level.

(ii) Microscopic interactions not only modify the microscopic state, but may also
generate proliferative and/or destructive phenomena.

Technically, asymptotic methods amount to expanding the distribution function
in terms of a small dimensionless parameter related to the intermolecular distances
(the space-scale dimensionless parameter) that is equivalent to the connections
between the biological constants. The limit that we obtain is singular and the con-
vergence properties can be proved under suitable technical assumptions. In these
papers biological systems are considered for which interactions do not follow classi-
cal mechanical rules, and biological activity may play a relevant role in determining
the dynamics.
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The paper by Othmer, Dunbar and Alt151 is arguably the first one where
this topic was addressed. Subsequent contributions in this area are due to vari-
ous authors.20–24,56,57,70,78,79,125,152,153 The above-cited papers deal with a variety
of models of the kinetic theory of cellular systems corresponding to the modelling of
cell interactions that are relevant in the biological system under consideration. The
structure of the equations for tissue behaviour depends again on the predominance
of one of the three aspects of the biological dynamics, i.e. encounter rate between
cells, mutations, and proliferative/destructive events, with respect to the other two.
Moreover, the structure of the mathematical equations modelling tissues may evolve
in time due to the aforementioned dynamics. So far, the formal approach provides
a range of structurally different macroscopic equations whose specific form depends
on which of the above aspects of biological dynamics is assumed predominant.

Asymptotic methods have been applied to the following class of equations that
model the evolution of the distribution function defined in Sec. 3.3. Specifically,
mathematical results have been derived for models where the space dynamics is
obtained by adding to the spatially homogeneous model a stochastic perturbation
for the velocity.152 Referring to the class of equations reviewed in Sec. 3.3, the
model in absence of external action, can be written as follows:

∂tf(t,x,v, u) + v · ∇xfi(t,x,v, u)

= L[f ](t,x,v, u) + C[f ](t,x,v, u) + D[f ](t,x,v, u), (4.14)

where C[f ] and D[f ] correspond, respectively, to conservative and proliferative/
destructive interactions (in the absence of proliferation, due to genetic mutations,
into a population different from that of the interacting cells). Moreover,

L[f ] =
∫

Dv

[
T (v,v∗)f(t,x,v∗, u)− T (v∗,v)f(t,x,v, u)

]
dv∗ (4.15)

models a linear velocity-jump process, where ν is the turning rate or turning fre-
quency (hence τ = 1

ν is the mean run time) and T (v,v∗) is the probability kernel
for the new velocity v ∈ Dv assuming that the previous velocity was v∗. This cor-
responds to the assumption that cells choose any direction with bounded velocity.
Specifically, the set of possible velocities is denoted by Dv, where Dv ⊂ R3, and it is
assumed that Dv is bounded and spherically symmetric (i.e. v ∈ Dv ⇒ −v ∈ Dv).
Further, notation dv stands for integration over three-dimensional velocity space.

Let us first consider the hyperbolic scaling corresponding to:

t → ε t, x → εx ⇒ t ν =
1
ε
, (4.16)

and introduce the parameters

ν =
1
ε
, η = εq−1, µ = εδ, q ≥ 1, δ ≥ 0. (4.17)

Therefore, the scaled non-dimensional model takes the form:

(∂t + v · ∇x)fε =
1
ε
(L(fε) + εqC(fε, fε) + εq+δD(fε, fε)). (4.18)
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The approaches in the literature are limited to the above class of models, while
the case of proliferation related to genetic mutations has not yet been addressed.
The derivation needs the following assumptions:

Assumption 4.1. (Solvability conditions) The turning operator L satisfies, in the
whole physical space, the following solvability conditions:

∫

Dv

L(f)(v) dv = 0,

∫

Dv

vL(f)(v) dv = 0, (4.19)

where L(f) is the linear operator, corresponding to (4.15), acting on f (the argu-
ments t and x have been dropped to simplify notation), and integration is over the
whole velocity space.

Assumption 4.2. (Kernel of L) There exists a unique function Mρ,U ∈ L1(Dv, (1+
|v|) dv), for all ρ ∈ [0,+∞) and U ∈ Rn, such that

L(Mρ,U ) = 0,

∫

Dv

Mρ,U (v) dv = ρ,

∫

Dv

v Mρ,U (v) dv = ρU,

where ρ is the density and U is the mass velocity.

Let us now consider the equilibrium distribution given in the form f0 = Mρ,U

and look for the solution fε as a perturbation of this equilibrium in the follow-
ing way:

fε(t, x, v, u) = Mρ,U + ε g(t,x,v, u). (4.20)

The result of the paper24 shows that hyperbolic equations with different source
terms are obtained as follows:

Case 4.1. δ ≥ 0, and q > 1: First order moments with respect to ε generate the
hyperbolic system without source term:





∂tρ +∇x(ρU) = 0,

∂t(ρU) +∇x(ρU ⊗ U + p) = 0.
(4.21)

This corresponds to negligible biological (both conservative and proliferative/
destructive) activities.

Case 4.2. δ 6= 0, and q = 1: In this case, in first order with respect to ε, the
following hyperbolic system with a source term related to conservative interactions
is obtained:





∂tρ +∇x(ρU) =
∫

Dv

G(Mρ,U ,Mρ,U )(t,x,v) dv,

∂t(ρU) +∇x(ρU ⊗ U + p) =
∫

Dv

v G(Mρ,U ,Mρ,U )(t,x,v) dv.

(4.22)
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Case 4.3. δ = 0 and q = 1. In this case, in first order with respect to ε, the
following hyperbolic system with a source term related to both conservative and
proliferating interactions is obtained:





∂tρ +∇x(ρU) =
∫

Dv

G(Mρ,U ,Mρ,U )(t,x,v, u) dv

+
∫

Dv

I(Mρ,U ,Mρ,U )(t,x,v, u) dv,

∂t(ρU) +∇x(ρU ⊗ U + p) =
∫

Dv

vG(Mρ,U ,Mρ,U )(t,x,v) dv

+
∫

Dv

v I(Mρ,U ,Mρ,U )(t,x,v) dv.

(4.23)

It is worth remarking that the influence of the turning operator L on the macro-
scopic equation only comes into play through the equilibrium state Mρ,U in the
computation of the right-hand side and the pressure tensor.

A different scaling leads to diffusive models. Specifically, consider the following:

η = εq, µ = εδ, q, δ ≥ 0 and ν =
1
εp

, p > 0, (4.24)

where ε is a small parameter which will be allowed to tend to zero. In addition, the
slow time scale τ = εt is used so that the following scaled equation is obtained:

ε∂tfε + v · ∇xfε =
1
εp
Lfε + εqg(fε, fε) + εq+δI(fε, fε). (4.25)

The following assumption is needed:

Assumption 4.3. (Velocity distribution M(v)) There exists a bounded veloc-
ity distribution M(v), independent of t and x, such that the detailed balance
T (v∗,v)M(v) = T (v,v∗)M(v∗) holds with normalised flow:

∫

Dv

M(v) dv = 1,

∫

Dv

v M(v) dv = 0.

Moreover, the kernel T (v,v∗) is bounded and such that:

T (v,v∗) ≥ σ M, ∀v,v∗ ∈ Dv ×Dv,

for all times and in the whole spatial domain.

Let us now consider the local density nε(t,x) defined as follows:

nε(t,x) =
∫

Dv×R

fε(t,x,v, u) dv du

and the density n(t,x) given by

n(t,x) =
∫

Dv×R

f(t,x,v, u) dv du .
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It can be proved20 that the density nε converges weakly to n which is a solution
of (4.14).

Case 4.4. q = 1, δ 6= 0 or q > 1, δ ≥ 0

p = 1 : ∂tn−∇x · (D · ∇xn) = 0 (4.26)

and

p > 1 : ∂tn = 0, (4.27)

where D is the diffusion coefficient.

Case 4.5. q = 1, δ = 0

p = 1 : ∂tn−∇x · (D · ∇xn) = 〈M2〉vn2

and

p > 1 : ∂tn = 〈M2〉vn2, (4.28)

where 〈·〉v denotes average of the quantity · over velocity. Additional examples and
various applications are reported in Refs. 20, 21 and 23.

4.4. Moving boundary models

In the above, we have shown how the macroscopic description of biological tis-
sues can be obtained either by the classical approach of continuum mechanics or,
maybe more appropriately, by suitable hydrodynamic limits applied to the under-
lying microscopic description at the cellular level. Moreover, it has been shown that
different mathematical models, namely parabolic, hyperbolic, or simply evolution
equations, can be obtained corresponding either to different closures of the con-
servation equations in the continuum mechanical approach, or to different ratios
between the mechanical and biological timescales.

One of the most relevant applications of continuum models is the study of
moving boundary problems wherein it is assumed that growth of solid tumours
occurs in an environment where nutrients nurture their development in the face of
chemical factors that inhibit growth, while other agents, for example, the immune
system and macrophages, are also involved in growth arrest.

The above approach is documented in several papers.36,37,59,63,86,85,58,131,129

The essential concepts were first reported in the pioneering papers by Greenspan99

and Adam.2,54,4 Further references will be given in Sec. 7 in connection with the
review of some challenging mathematical problems generated by the study of mov-
ing boundary problems.

This subsection presents various aspects of the methodological approach. We
refer the reader to the paper by De Angelis and Preziosi63 for full technical details.
In particular, we focus on some critical conceptual difficulties that arise. Some of
these have already been addressed, as will be described in Sec. 6.
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The biological system is represented in Figures 2 and 3 schematically:

T is the inner zone of the solid tumour;
D is the domain of the outer environment;
∂T is the boundary separating T from D.

To make the model tractable, the geometry is simplified. For example, in the
simplest cases T is assumed to be spherical, cylindrical or even one-dimensional.

The second step consists of identifying the macroscopic variables that can pos-
sibly describe the state of the overall system viewed as a continuum and then
developing a strategy to reduce the complexity related to the large number of com-
ponents to a limited number of variables. For instance, still referring to the above
cited paper,63 the following variables are selected:

— the density u1 of living tumour cells;
— the density u2 of necrotic tumour cells;
— the concentration u3 of the factor that inhibits tumour growth;
— the concentration u4 of the factor that activates angiogenesis;
— the density u5 of endothelial cells;
— the concentration u6 of nutrient.

The above variables represent an overall system which is much more complex
with a greater number of components. Reduction is achieved by grouping in each
variable the collective behaviour of several cooperative actions. Specifically, the
variables u1 and u2 are defined in T , while u3, u4, u5 and u6 are defined in the
whole domain T ∪D.

The mathematical models in the domains T and D consist of systems of PDEs
derived according to the modelling of the following, briefly described, biological
phenomena:

Mitosis occurs only if tumour cells receive a sufficient quantity of nutrient, greater
than that needed for survival. On the other hand, division can be inhibited by
mitotic inhibitors. When the nutrient levels are too low, cells undergo necrosis.

Movement of cells occurs towards zones of lower cell density, while necrotic tumour
cells do not move and naturally disintegrate.

Endothelial cells proliferate with a rate dependent on the chemical factors emitted
by tumour cells to activate angiogenesis. Capillary sprouts further facilitate the
diffusion of nutrients.

Proteins, named angiostatins, have the ability to reduce the proliferation of
endothelial cells and hence reduce angiogenesis.

The aforementioned system of PDEs is coupled on the free boundary ∂Ω by suit-
able compatibility conditions generally described by ordinary differential equations.

The paper63 describes in detail how the above biological considerations are
converted into a specific mathematical model. Several papers, such as those cited
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in this subsection, report technical variations corresponding to different biological
situations, while mathematical problems generated by the applications of models
to the analysis of tumour progression are reviewed in Sec. 7 below.

5. From Genetic Mutations to Onset of Cancer Phenotype

As we have mentioned, to implement modelling at the cellular scale, we require
information on cell function that arises from the dynamics at the intracellular
(molecular) level. This information is also necessary for models at the macroscopic
scale because the whole system is driven, to some extent, by genetic mutations. (Of
course, this is a simplified view as it ignores feed-back down the spatial scales.) This
section deals with modelling approaches at the microscopic (genetic) scale focused
to extract, from the lower scale, the above-mentioned inputs to the higher scales.

The paper by Vogelstein and Kinzler192 is an essential reference to understand
how the over-expression and under-expression of certain genes can generate the
anomalous behaviour of cells leading to the onset of neoplasia followed by clonal
expansion. Quoting the above-cited paper

Alterations in three types of genes are responsible for tumourigenesis: oncogenes,
tumour-suppressor genes, and stability genes.

Oncogenes are mutated in ways that render the gene constitutively active or
active under conditions in which the wild-type gene is not. Oncogene activations
can result from chromosomal translocations, from gene amplifications or from subtle
intragenic mutations affecting crucial residues that regulate the activity of the gene
product.

Tumour-suppressor genes are targeted in the opposite way by genetic alterations:
mutations reduce the activity of the gene product. Such inactivations arise from
missense mutations at residues that are essential for its activity, from mutations
that result in a truncated protein, from deletions or insertions of various sizes, or
from epigenetic silencing.

A third class of cancer genes, called stability genes or caretakers, promotes
tumorigenesis in a completely different way when mutated. This class includes mis-
match repair, nucleotide-excision repair and base-excision repair genes responsible
for repairing subtle mistakes made during normal DNA replication or induced by
exposure to mutagens.

According to the above literature, it is well established that the onset of cancer
is caused by under- or over-expression of those genes which are responsible for
tumourigenesis. This can occur during DNA replication, when a cell does not have
sufficient ability to repair DNA corruption. It can also be caused by interaction
with other genes, or with the external environment. Stochastic events are typical
in the phenomena under consideration.97

The molecular biology literature on the above topic is vast. The interested reader
is referred to the review paper by Vogelstein and Kinzler,192 or to the book by
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Weinberg.197 The review by Baylin and Ohm19 reports on the role of gene activa-
tion and silencing in carcinogenesis, while the role of genetic therapies is reported
in the paper by Mezhir et al.142 (see also the review by Futreal et al.89). While
large strides have been made biologically, the mathematical approaches are still at
a preliminary stage.

Essentially, the mathematical literature has been devoted to modelling gene
interactions and their evolution. Although a systematic approach is not yet avail-
able, some interesting results have already appeared. Two mathematical approaches
are examined below: the first one is due to Komarova,120–122 while the second one
is by Gatenby et al.,95,96 both dealing with different aspects of the problem (see
also Tiuryn, Wójtowicz and Rudnicki188 and Michor, Iwasa and Nowak145). An
important reference is the recently published book by Frank.84

Komarova’s approach is focused on the stochastic dynamics of gene interac-
tion in cancer initiation and progression related to mutations which generate loss
and gain of function. She shows how cumulative mutations can lead to tumour
progression.

An interesting aspect of this approach is the development of some preliminary
ideas to relate some of the relevant functions of cells to the dynamics of genes. The
next step is to develop Komarova’s ideas to look for the link between the molecular
and cellular scales. The basic idea consists of developing a stochastic game theory93

as the essential tool to model the output of gene interaction. Technical developments
based on a deeper insight into stochastic dynamics of gene interactions are presented
in the paper by Tiuryn, Wójtowicz and Rudnicki.188

Relatively simpler models assume that cancer mutations can be described by a
deterministic description using ordinary differential equations.180 A deeper insight
into the dynamics at the molecular level is necessary to capture the essence of the
complexity of the system viewed as an evolutionary and ecological process.140

In general, the derivation of a model suitable for describing the time evolution
of gene activation and silencing, due to gene interaction and action from the micro-
environment, remains a challenging and fascinating open problem. A successful
approach should also lead to incorporating the subsequent influence on biological
functions expressed by cells as the natural input to models developed at the cellular
scale.

The mathematical approach proposed by Gatenby94–96,174,175 is essentially
based on the idea that the onset of tumourigenesis is an evolutionary process where
cells follow a Darwinian interaction of altered cellular genotypes with changing
micro-environment.16 Gatenby, Vincent and Gilies96 propose a population compe-
tition model where the “winners” are determined by their phenotypic fitness rela-
tive to other populations in the environment. Winners proliferate at the expense of
losers, while phenotypic properties are retained or lost depending on their contri-
bution to individual fitness. The model consists of a system of ordinary differential
equations where gain and loss terms are phenomenologically modelled according to
the above interaction dynamics.
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Various authors have proposed that evolutionary processes play a crucial role
in biological modifications at the cellular scale with a timescale much shorter than
the one needed for mutations at the species level. Nowak and Sigmund149 state:

evolutionary game theory is an essential component of a mathematical and compu-
tational approach to biology.

The above phenomenological description and theoretical approaches motivate
physicists to look at the use of generalisations of the classical methods of statistical
and quantum mechanics. The conjecture proposed in paper29 suggests developing
at the molecular scale some ideas already exploited at the cellular scale. In other
words, the conjecture is to use structures (3.7)–(3.11) to describe the dynamics
at the molecular scale and derive, out of this dynamics, the above main cellular
interaction terms.

In this case, the internal microscopic variable is gene expression, the overall
state of the system is described by the distribution function over this state, while
the gain and loss terms should refer both to interactions between genes and with
the external environment. Onset of instability, referred to as oncogenesis, then leads
to carcinogenesis.

6. Complexity Analysis and Multiscale Modelling

As already mentioned several times, tumourigenesis is a multiscale phenomenon.
Figure 4 is an attempt to capture, in a schematic representation, the essence of the
multiscale nature of the system under consideration, illustrating that cellular and
molecular events continue to play a crucial role in the temporal evolution of the
tumour throughout its development.

Fig. 4. Schematic multiscale representation of tumour growth: gene interactions (stochastic
games), cells (kinetic theory), tissues (continuum mechanics), mixed (hybrid models).
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Multiscale analysis involves various aspects of the modelling approach. In par-
ticular, mathematical models at a certain scale need to be consistent with the lower
and higher scales. In other words, models at the tissue level (macroscopic) have to
be obtained by suitable asymptotic methods from the underlying cellular (micro-
scopic) scale, while parameters of models at the cellular scale should be identified
from the lower molecular scale. Moreover, the overall system can be regarded as a
network of several interacting subsystems, each developed at a specific scale, while
interactions between contiguous systems need to deal with compatibility conditions
(in some cases boundary conditions) at each specific scale. The above issues will be
analysed later after an overview on the existing literature.

Although a systematic development of multiscale approaches is very recent,
some papers already anticipate the need for dealing with a modelling approach
suitable to account for different scales. For instance, the role of cellular dynamics
on the rough surface of solid tumours is studied in Refs. 45 and 46. Experimental
evidence shows that the dynamics at the cellular scale can play a relevant role on
the evolution of solid tumours (continuum mechanics). The paper by Levine, Slee-
man and Nilsen-Hamilton127 includes within a macroscopic approach a network of
several phenomena at the cellular level such as cellular penetration and formation of
capillary sprouts. Random walk methods141 are introduced to deal with two scales
of diffusion. The role of cell adhesion (cellular scale) on angiogenesis analysed at
the macroscopic scale is dealt with in Refs. 15 and 139. The coupling of models
at the cellular scale to identify the tissue properties of models at the macroscopic
scale is studied by Marchiniak-Cozchra and Kimmel134,136,139 in an analysis of the
early stages of tumour growth.

One of the first papers to introduce a systematic approach to a multiscale mod-
elling of the overall system viewed as a system of systems is arguably due to Alarcon,
Byrne and Maini7 for vascular tumours. This initial model has been extended con-
siderably in a subsequent series of papers.9,49,10 The focus of these papers is on
modelling vascular tumour growth, incorporating subcellular cell cycle processes,
cellular interactions, macroscopic properties of the vascular network and invasive
patterning.

In their earlier paper,7 Alarcon, Byrne and Maini used a cellular automaton to
model the effect of vascular dynamics on competition between normal and tumour
cells. They formulated a model of vascular adaptation based on hydrodynamic prin-
ciples and known features of vascular adaptation, such as change in vessel radius.
The model also included elements of blood rheology and haematocrit and incorpo-
rated the dependence of blood viscosity on haematocrit and vessel radius. At each
time step of the cellular automaton, the oxygen distribution and vascular network
properties were calculated, and then the states of the normal and tumour cells (such
as quiescent, proliferative, etc.) were determined based on local oxygen levels.

In subsequent papers, subcellular cell-cycle models were included, such that
inside each cell was a set of ODEs representing the progression through cell-
cycle phases due to nutrient availability and kinease activity.8 In this way, they
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formulated a multiscale model integrating the vascular, cellular and intracellular
levels: the vascular network responds to chemical stimuli produced at the cellu-
lar level and the nutrient distribution provided by the vasculature affects cellular
(apoptosis, quiescence, etc) and subcellular (production of VEGF, expression of
p53) processes. With each subsequent paper, they have been able to incorporate an
increasingly complex level of interaction and feedback between the various scales.
Figure 5, from the paper by Betteridge et al.,38 details one example of this type of
interacting network between the various spatial scales.

Very few multiscale models have attempted to include genetic mutations. Small-
bone et al.175 examined the development of ductal carcinoma in situ, and how
the micro-environment could effect the somatic evolution of cancer cells towards
glycolytic and acid-resistant phenotypes. Their model allowed reversible herita-
ble mutations which affect survival and proliferation (such as the ability to grow
away from the basement membrane, the ability to upregulate glycolysis in hypoxic
environments, and the ability to survive acidic regions). This model has made
experimentally verifiable predictions of nodular growth of constitutively upregu-
lated glycolytic populations.94

Another notable multiscale model using phenotypic mutations is due to Ander-
son et al.16 They also use a hybrid model, examining the interaction between cellular
and micro-environmental factors. Their model links the environment and nutrient
availability to phenotypic mutations which alter a single cell’s phenotypic traits
related to proliferation, cell–cell adhesion, oxygen consumption, movement, etc.
PDEs are used to represent the oxygen, matrix degradative enzymes and ECM.
Within this model, cells are allowed to evolve and change their phenotype through

Fig. 5. Multiscale interactions of vascular tumour growth (from Betteridge et al.39). See text
(and the original paper) for fuller details.
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heritable mutations gained or lost during proliferation. Two different mutation
schemes were used in the simulations, a linear scheme where the cells could mutate
to more and more aggressive phenotypes, and another random scheme where they
could “jump” randomly between 100 pre-selected phenotypes, ignoring the parent
phenotype. Interestingly, both mutation schemes yielded similar results, one where
the tumour evolves towards an increasingly aggressive phenotype, with higher pro-
liferation, lower cell–cell adhesion and higher matrix degradation.

The main focus of the Anderson et al. paper,16 however, was the importance
of the environment in tumour progression. By varying the environmental condi-
tions (such as manipulating oxygen concentration throughout the simulation or
changing the underlying matrix) the model predicted that a harsh tumour environ-
ment exerts a selective force which results in an invasive, fingering tumour which
is dominated by a few clones of the most aggressive phenotype. However, homo-
geneous, well-oxygenated environments produce more rounded tumours with less
fingering infiltration and selection of less aggressive phenotypes. The implications
for tumour treatment are clear: treatments which provide a hostile environment in
order to kill the tumour may, in fact, be creating a strong selection pressure towards
more aggressive, more invasive tumours.

An alternate multiscale modelling framework has been developed by Kim, Sto-
larska and Othmer116 in a recently published paper on in vitro tumour spheroid
growth. The previous approaches discussed16,7–9 have both used lattice-based dis-
crete models for the cells in the simulation. However, this quickly presents a serious
computational problem, as even a tumour spheroid with a diameter of 2 mm con-
tains approximately 2×106 cells. Multiscale models wherein each of these cells also
contains a system of ODEs modelling the cell cycle, and each of the cells mechan-
ically interacts with each other, very quickly become computationally intractable.
To address this computational problem, Kim et al.116 formulated a model which
only treats the rapidly proliferating rim region as discrete, while using a continuum
model to describe the remaining quiescent and necrotic regions, as well as the sur-
rounding gel or matrix. Their reasoning is that only the mechanical properties of the
quiescent, necrotic and gel regions are important to spheroid growth, hence these
regions can simply be described by continuum equations. Therefore, there are four
regions in the model: the necrotic core, the quiescent zone, the proliferating rim and
the surrounding gel or matrix. The continuum gel, quiescent, and necrotic regions
are assumed to be homogeneous materials, but with different mechanical proper-
ties. In the proliferating zone, variations in cell-cycle time, cell-size, metabolic state,
mobility, etc. are all crucial to tumour formation and therefore are described by a
discrete (individual-based) model. This novel hybrid model can still address single
cell–cell adhesion and invasive patterning in the proliferative zone, while simplify-
ing computationally the overall system, as the proliferating zone is only comprised
of a few hundred cells.

The forces on each particular cell in their model consist of the active force
exerted on neighbouring cells or substrate, the reactive force due to forces exerted



March 29, 2008 9:6 WSPC/103-M3AS 00279

Selected Topics on Cancer Modelling 629

from other cells on it, the static frictional force due to cell–cell or cell–matrix
adhesion, and the dynamic drag forces arising from breaking adhesive bonds with
neighbouring cells during movement. Individual proliferating cells are treated as
oriented ellipses which can grow and deform due to external forces. The cytoplasm
is modelled as an incompressible viscoelastic solid and the continuum regions are
treated as linear viscoelastic materials with different material properties.

The model is able to exhibit some experimentally observed behaviours, such
as the existence of a constant thickness proliferating rim (of about 100 microns),
independent of the stiffness of the gel. Furthermore, it accurately predicts that gel
stiffness affects tumour growth rate. Although in a preliminary stage, this approach
provides an excellent framework for a computationally tractable model of tumour
growth which includes mechanical forces and intracellular dynamics. The computa-
tional grid in the case of avascular tumour is represented in Fig. 6, from the paper
by Kim, Stolarska and Othmer.116

Other authors have followed a multiscale approach to model the overall system
as a network of several interacting subsystems corresponding to different biological
situations, e.g. avascular tumours.111,116 It is well known that applied mathemati-
cians are strongly attracted by the above approach, so that it is expected that
many variations on this theme will soon appear. A critique on the selection of
mathematical models to be used at each scale can be found in the survey paper.26

The above-cited papers9,49,10 have the merit of having defined the method-
ological aspects of multiscale modelling, where the overall system can be viewed
as a system of interacting subsystems, each of which is localised in a well-defined

Fig. 6. Computational grid for tumour spheroid growth, with a continuum necrotic core (N),
quiescent region (Q) and surrounding gel, along with a discrete proliferating cell region (white).
Here q0 is the boundary force between the gel and proliferating regions, q1 is the boundary force
between the proliferating and quiescent regions, and u is the displacement field.116
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domain. In some cases, two (or more) different systems occupy the same domain.
As can be seen, the above approach divides the modelling into four sub-processes:

6.1 The decomposition of the whole system into subsystems should be related to
the theory of modules,103 so that each subsystem is related to a well-defined main
biological function.

6.2 Each subsystem (module) has to be localised in a well-defined domain Di, in
contact with other domains within the overall domain D, where D = ∪m

i=1 Di. The
number of subsystems may be greater than the number of domains m as more than
one subsystem can be localised in the same domain.

6.3 A model of each subsystem can be derived at one of the three scales described in
Sec. 2. The space variable can, for some specific models, be characterised by discrete
directions as visualised on the right-hand side of Fig. 4. Models of each subsystem
may be developed, as documented in Ref. 7, by using a hybrid approach.67

6.4 The overall implementation of the model needs to be completed by modelling
interactions of subsystems within the same domain and by compatibility conditions,
in some cases to be regarded as boundary conditions, between models located in
two contiguous domains.

Some speculations are developed in what follows for each of the above issues.
The discussion is motivated both by the existing literature in the field and by the
various examples reported in the preceding sections.

6.1. Decomposition into subsystems as modules

The complexity of the system is such that all the components cannot be included
if we wish to develop practical models. One possible approach to deal with this
“curse of dimensionality” is the theory of modules proposed by Hartwell et al.,103

wherein each subsystem is regarded as a module, according to the specific biological
functions expressed by the cooperative action of various entities.

It is interesting to observe that the identification of the aforementioned functions
may depend, at least in some cases, on the particular phenomena that are under
study. Consequently, the decomposition of the system into modules is not unique,
but depends on the biological phenomena that are being analysed. The modular
approach is motivated in the brief note by Herrero,104 while it is related to Hartwell
et al.’s theory in various papers dealing with models at the cellular level.28,29

6.2. Localisation of modules

Localisation of modules is a necessary step for the statement of mathematical prob-
lems. Two specific cases generally appear:

(i) Each module Mi occupies a well defined domain Di, so that the number m of
modules is equal to the number of domains corresponding to the decomposition
of the whole domain;
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(ii) More than one module, say Mh
i and Mk

i , is localised in the domain Di. There-
fore, the number of modules is greater than the number of domains.

The mathematical models corresponding to each domain-module are generally
derived at a specific scale in each domain.

6.3. Scaling and hybrid systems

As already mentioned, models at different scales correspond to different modules.
For instance, the assembly of the entire model (in some cases, a network) can
be constituted by models at the molecular scale, interacting with models at the
cellular or macroscopic scale. Similarly, models at the cellular scale may interact
with models at the macroscopic scale.

While a systematic approach to scaling does not yet exist in the literature,
there are some particular applications that provide a useful background for its
development. Some specific examples are briefly described below and are critically
analysed in view of the statement of key mathematical problems.

6.4. Compatibility and boundary conditions

The well-posedness of mathematical problems for a system constituted by several
interacting modules requires the necessary initial and boundary conditions for each
model related to each module. This aspect has been dealt with in the various
applications reviewed above. The analysis of the difficulty of the problem and some
suggestions are now proposed in a general context.

6.4.1. Compatibility conditions on boundaries

The statement of boundary conditions on the surface of separation between two con-
tiguous domains needs to be related to the compatibility conditions that describe
the state in each domain. In some cases the relation may be nonlinear. One approach
to this problem has been addressed by Kim, Stolarska and Othmer et al.,116 who
consider compatibility conditions between the continuum tissue, discrete prolifer-
ating region, continuum quiescent and necrotic regions as shown in Fig. 3.

The variables describing the states of the systems may refer to different scales,
for instance macroscopic and cellular. Therefore, compatibility conditions between
boundaries may need to transfer the variable from one scale to the other. Specif-
ically, macroscopic information from the cellular scale is simply obtained by
moments, so that compatibility conditions refer to functions of moments. This
approach is sufficient going from the cellular to the macroscopic scales, while it
is not so for the reverse direction.

6.4.2. Compatibility conditions inside a module

Alternatively, variables describing different scales may exist within the same mod-
ule. These variables may need compatibility conditions which are different from
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those needed on the boundaries of the model, or between modules as described
above. Instead, compatibility conditions between scales within a single module may
involve taking asymptotic limits and finding matching conditions. For example, a
model of angiogenesis might have different equations describing the vascular net-
work at each scale (such as at the capillary, grid and tissue levels). Therefore, the
equations which describe single capillaries would need to have matching conditions
at the asymptotic limit to the equations describing those of the capillary network.
Again, in this case this approach is sufficient when moving “up” scale levels, such
that the asymptotic limit of the smaller scale matches the equation at the higher
scale.

6.5. Critical analysis

To develop a workable multiscale modelling framework, a number of challenges must
be overcome. These include:

• Analysing large interacting systems. One consequence of incorporating numerous
signalling pathways or interacting cytokines is a significant increase in system size
and complexity. Mathematicians need to develop ways of analysing large interacting
systems without sacrificing the amount of information that can be gained. How
much can one actually conclude from a huge system of equations with numerous
variables and parameters? What are the best ways to analyse these systems, and
is the added complexity actually helping us learn anything? What methods are
used to judge how good these models are at representing the system? Importantly,
none of the models previously mentioned truly model subcellular pathways from
genetic alterations to phenotypic changes. Although much of this is not yet known
biologically, techniques for accurately modelling these large interacting systems with
computationally tractable models need to be developed.

• Justification of coupling/decoupling. It is still unclear when it is appropriate to
decouple systems which are intrinsically coupled. For example, the traditional form
of Fickian diffusion decouples the chemistry from the mechanics of the system.
Future mathematicians need to develop methods to examine under what conditions
it is suitable to decouple an otherwise coupled system.

•Mechanistic models. Current research has failed to provide truly mechanistic mod-
els of angiogenesis and metastasis. In the case of angiogenesis, there is a lack of bio-
logically detailed modelling of branching, anastomosis, vascular normalisation and
the “brush border effect”. Recent work by McDougall, Anderson and Chaplain138

has attempted to address this problem by making branching at capillary tips depen-
dent on wall shear stress as well as chemical gradients. Also, theoreticians have com-
pletely ignored the processes of active cell migration to blood vessels, intravasation,
extravasation, and distant site colonisation in metastatic spread.

• Cell geometry. Few models account for changes in cell shape and deformation,
which is known to affect cell-cyle regulation, growth, proliferation and movement.
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• Modelling transport properly. Future modellers will have to consider the appropri-
ate way to model diffusion in these systems (if, indeed, diffusion is the correct way to
model transport). For example, what is the appropriate way to model complex non-
linear diffusion? Mathematicians dealing with porous media have utilised anomalous
(or fractional) diffusion to describe diffusion through heterogeneous media (Met-
zler and Klafter141). Future modellers should examine the various possible forms
for diffusion terms. How does diffusion depend on mechanics? How do stresses and
strains affect the diffusive process?

Modelling chemotaxis and haptotaxis properly. As with diffusion, alternate forms of
chemotaxis and haptotaxis should be studied. For example, how can biphasic hap-
totaxis be properly modelled? Othmer and Stevens153 investigated various mathe-
matical forms for the chemotaxis term at the macroscopic (tissue) level, based on
behaviour at the individual cell level. They examined the relative importance of
short versus long range signalling, and if the manner of detection and transduction
of the chemotactic signal affected cell movement. Further work such as this will
help clarify our understanding of what types of mathematical terms should be used
in different biological situations.

• Modelling invasion as an active, coordinated process. Future models will need to
address the growing body of literature indicating that invasion is an active process
involving various forms of cell motility and that metastasis to distant sites involves
coordination and signalling between different cell types (Friedl and Wolf,88 Kaplan
et al.123).

• Calculation of error. Although there are well established techniques for deter-
mining errors incurred in making simplifications at a single scale, there are few
techniques for integrated models which span several scales with complicated sig-
nalling. It is still unclear in such complex systems how errors and noise grow and
are propagated, an important future issue.

7. Speculations Towards a Mathematical Theory

We have focused on modelling aspects at the various scales that characterise the
system: molecular, cellular and tissue, as well as on the links between models at a
specific scale with those at the lower and higher scales.

Modelling at each scale is an essential passage to multiscale approaches. The
overall system is viewed as a network of several interacting subsystems each
described by different models at different scales. Indeed, it is well understood that
a multiscale description is essential to capture the complexity of biological systems
in general.

This final section is devoted to the ambitious aim of outlining the conceptual
paths towards the development of a mathematical theory related to the complex
system under consideration. The various concepts proposed in what follows are
essentially based on two key papers taken from the biological sciences which aim
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not only to model very specific aspects, but also to put complex biological systems
into a general mathematical framework.

The relevant objective of the mathematical research is analogous to that of
the past two centuries when mathematics produced the formalisation of several
phenomena in the science of physics. In other words, we aim to contribute to a
preliminary reasoning on the genesis of a biological mathematical theory using
paths followed, in the past, in the genesis of physical mathematical theories.

In detail we refer to the already cited papers by Hartwell et al.103 and Hana-
han and Weinberg.102 The first paper103 proposes the idea of a modular approach,
where the whole system is decomposed into subsystems (modules), such that the
identification of each module is related to the expression of specific biological func-
tions. The modular approach has been developed in various papers28,29,104; our
paper aims to indicate how the approach can be developed at a practical level.

The second paper102 is focused on the analysis of the effect of genetic evolution-
ary mutations on the onset and progressive development of cancer towards stages
with increasing malignancy.

The following subsections are devoted to identifying how the above two papers
can contribute to the development of a mathematical biological theory and, in
addition, how the analysis of mathematical problems, related to the application of
models to the study of real biological phenomena, can take them into account.

7.1. Perspective ideas for a mathematical biological theory

Hartwell’s theory indicates that we first need to identify the relevant biological
functions that are expressed during the evolution of the system. Consequently,
mathematical methods can provide the decomposition of the overall system into
modules corresponding to the above functions.

According to the analysis of the preceding sections, it is understood that:

(i) The notion of function or purpose differentiates living systems in biology from
those of inert matter. Biological functions have the ability to modify the con-
servation laws of classical mechanics and, in addition, can generate destructive
and/or proliferating events;

(ii) The modular approach is applied to decompose complex biological systems into
several modules that may, at least in some cases, be constituted by several ele-
ments which cooperatively express the above-mentioned biological functions;

(iii) Each module is related to a well-defined scale, namely to models that are
characterised by a different mathematical structure;

(iv) Systems in biology cannot be simply observed and interpreted at a macroscopic
level. A system constituted by millions of cells shows at the macroscopic level
only the output of cooperative and organised behaviours which may not, or
are not, singularly observed.

The paper by Hanahan and Weinberg,102 in the context of item (i), reports how
the relevant biological functions are related to genetic mutations, where undesired
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corruptions are often transferred into the expression of function. Section 4 critically
analysed various mathematical approaches to model the dynamics at the molecular
scale with the attempt to understand how it affects dynamics and evolution at the
higher scales.

As we have seen, biological events at the higher scale of cells and tissues depend
on the dynamics at the molecular scale. Transferring the information from genes
to cells is key to the derivation of a mathematical biological theory. This reasoning
can be made precise by referring to the cellular scale.

The mathematical structure reported in Sec. 3 can generate specific models if
the following parameters that, in general, depend on the microscopic states, are
properly identified:

the encounter rate ηhk;
the transition probability density Bhk;
the population transition terms µi

hk;
the proliferating/destructive terms µhk.

The physics of classical particles, whose dynamics is ruled by particle inter-
action models described by attractive–repulsive potentials, gives a useful analogy.
Newtonian mechanics provides the necessary mathematical background to describe
particle interactions by attraction–repulsion potentials of the interacting particles,
or by mechanical collisions which preserve mass, momentum and energy. A theoret-
ical description of the interaction potentials which govern pair interactions between
particles completes the theory. In the case of the system under consideration, biol-
ogy should contribute, by experiments and theoretical interpretations, to determine
the form the outcome of cellular interactions as described by the above-mentioned
interaction terms.

The mathematical models known in the literature have been obtained by assess-
ing the above-mentioned terms by a simple phenomenological interpretation of
physical reality and, in particular, of cellular interactions. A variety of models to
describe immune competition with cancer cells has been reported in the book.35

These models have shown the ability to describe several interesting phenomena
all related to the parameters of the model. These parameters have a well-defined
biological meaning.

As shown in Sec. 4, the structure of the equations used to describe tissue depends
on the predominance of one of the three aspects of the biological dynamics, i.e.
encounter rate between cells, mutations and proliferating/destructive events, with
respect to the other two. Moreover, the structure of the mathematical equations
modelling tissues may evolve in time due to the dynamics of genetic mutations.

Moreover, more than one scale is necessary to represent the system. A typical
example is the modelling of angiogenesis.80,81,132 Various modelling approaches can
be found in the literature (see for example Refs. 174, 165, 166, 200 and 155).
These papers offer interesting descriptions of particular biological phenomena and
indicate that rarely is one scale only sufficient to model even particular components
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of the system under consideration. A mathematical theory should identify for each
subsystem, regarded as a module, the correct mathematical structure suitable to
generate models. Such a structure may evolve in time, which is one of the main
difficulties inherent in generating a mathematical biological theory.

7.2. Mathematical problems

The application of models to the analysis of real biological phenomena generates
novel and challenging mathematical problems related to various issues, such as
qualitative and computational analysis of the solutions, development of asymptotic
methods to reach the higher scales from the lower ones, and so on.

The variety of mathematical problems is broad and covers several issues related
to qualitative and computational analysis of the solutions to problems. Let us con-
sider, to avoid over-generalisation, papers limited to the following classification:

(i) Free and moving boundary problems (that may also be related to thera-
peutical applications). See, for example, Cui and Friedman,59 Friedman and
Lolas,85 Friedman,86 Bertuzzi, Fasano and Gandolfi,36,37 Tan and Guo,182 Tao
et al.183,184 A general formulation of the problem can be found in the paper by
De Angelis and Preziosi.63

(ii) Qualitative analysis of initial value problems related to models at the cellular
scale. See, for example, De Angelis and Jabin,61,62 Derbel,64 Bellouquid and
Delitala,33,35 Micheler, Perthame and Ryzhik,144 and Michel.143

The above research fields do not cover the whole variety of mathematical prob-
lems that have engaged applied mathematicians in this area. Indeed, a comprehen-
sive review of all the problems in this area is beyond the scope of this paper. We
have chosen to focus on a few key topics in the hope that they are sufficient to
arouse the reader’s interest. To summarise briefly:

— The biological system under consideration modifies its structure in time due
to genetic mutations. Therefore, the mathematical structure of the model may
change and should, at least in principle, be coupled with an evolution equation
for genetic mutations.

— The system is made up of several interacting modules. Each module needs to be
fully understood and suitably reduced before being integrated into the whole. A
key problem here is to understand how noise and error propagate through the
integrated whole.

While we have stressed the need for inter-disciplinary collaboration, we should
not lose sight of the need for intra-disciplinary collaboration. For example, at a very
abstract level, what we are really trying to do is to understand the spatio-temporal
population dynamics of individuals with dynamically evolving internal states. This
is very similar to the problems addressed by mathematical epidemiologists. An
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intriguing future direction may be to use insights from that area to inform modelling
approaches in mathematical oncology.

Future research will definitely refine and improve the existing models, while the
analysis of the inherent mathematical problems will hopefully lead to new mathe-
matics, allowing us to tackle problems presently beyond our technical abilities.
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