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1 Bacterial chemotaxis

Chemotactic bacteria are some of the best studied systems in biology. Their behav-
iour on the single cell and population scale has been investigated for the past 30 plus
years both by experimentalists and theoreticians. Indeed work undertaken in this area
is a paradigm of the success of mathematical modelling in helping to understand bio-
logical systems, even before the advent of ‘systems biology’. However, although
we know much of the biochemistry and basic characteristics of the systems, there
remain a number of unanswered questions, both on the individual and collective
population scale, about chemotactic bacteria.

Bacteria such as E. coli and R. sphaeroides respond to changes in extracellular
attractant levels by changing the pattern of rotation of their flagella anchored across
the cell membrane (Eisenbach ez al., 2004). In the case of E. coli changes in attractant
concentration are detected by membrane-spanning methyl-accepting chemotaxis
proteins (MCPs) at the poles of the rod-like shaped bacteria. Through a number of
intracellular phosphotransfer biochemical reactions, these changes are communicated
to the FliM protein motors that switch the direction of flagellar rotation. In the case
of E. coli, the default setting of clockwise rotations in the absence of an attractant gra-
dient, interspersed with periodic switching to clockwise rotation, leads to a series of
run and tumbles. During such movement the individual four to six flagella rotate
together to form a bundle which leads to short bursts of directed motion, followed by
tumbling as a result of one or more flagella switching. Tumbling re-orientates the bac-
terium on a different directional heading each time. Considered over the order of
minutes this movement leads to three-dimensional random-walk-like behaviour.
When a change in the external concentration level of an attractant is detected by the
MCPs, the bacterial flagella rotate for longer in a counter-clockwise direction leading
to extended periods of runs up the attractant gradient resulting in chemotaxis.

If so much is known about bacterial chemotactic species, in particular E. coli, why
do we continue to study them? The answer lies in the intriguing behaviour and char-
acteristics these systems exhibit. For instance, E. coli are able to sense and respond to
only small changes in attractant concentration (experimentally observed as small as
the order of a few molecules; Segall et al., 1986). This ability to magnify the effect of
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attractant binding in order to initiate the biochemical cascade between the receptors
and the motors has been observed to be as high as 35 times the initial binding inten-
sity (Sourjik and Berg, 2002b). Such a magnification is commonly referred to as gain
and the mechanism for obtaining it has been of great interest to researchers for a
number of years. Bacteria are also able to detect changes in concentration levels across
five orders of magnitude, responding robustly in each case. Given the availability
of data, both on the individual and population scale, mathematical models can be
utilized to assist in explaining such observed characteristics.

Mathematical modelling has been particularly influential in the field of bacterial
chemotaxis. A wide range of mathematical approaches have been used to help under-
stand particular aspects of bacterial chemotactic systems, both on the individual and
population scale (Tindall et al., in press). Modelling work has often been undertaken
in conjunction with experiment as we detail in Section 3. Mathematical models have
been developed to explain experimental observations, verified against such observa-
tions and used to generate new hypotheses which are then experimentally tested. In
other cases purely hypothetically based models have been formulated to explain bio-
logically observed phenomena, for instance in the case of receptor—receptor interactions
(Bray et al., 1998).

In the work to be presented and discussed here we will focus specifically on the
role of intracellular signalling within E. coli. A mathematical model will be developed
to predict how the concentration of certain intracellular proteins affects the overall
receptor-to-motor response of a bacterium. Importantly our modelling technique dif-
fers from previous models in that it seeks to simultaneously account for the effects
that both spatial localization of the proteins and their predefined interactions have on
the overall behaviour of the network. Generally, work in this area has focused prima-
rily on modelling only the temporal dynamics, ignoring spatial aspects of the problem
(Tindall et al., in press). Our modelling technique will be compared with others to
demonstrate both its usefulness and shortcomings.

Before presenting our specific modelling example we detail the known biological
facts of the intracellular signalling pathway within E. coli in Section 2. Section 3 pro-
vides a brief overview of mathematical modelling in understanding various aspects of
bacterial chemotaxis systems. In Section 4 we present a spatio-temporal mathematical
model of the phosphotransfer pathway within E. coli specifically focusing on the pro-
teins responsible for signalling between the membrane receptors and flagellar motors.
Results from the model are presented and the effects of the outcomes discussed. The
results of our work and the application of mathematical modelling in this and other
fields of systems biology are discussed in Section 5.

2 Intracellular signalling within bacterial chemotaxis

Generally bacteria are too small in length (around 1-3 pm) to be able to detect spatial
changes in their external attractant concentration. Instead they rely on an internal
temporal system of biochemical signalling to communicate changes in the external
environment via their MCPs to the flagella motors (Wadhams and Armitage, 2004).
This internal intracellular network can range in complexity amongst various species
of bacteria (Porter et al., 2006; Rao et al., 2004). In the case of E. coli, the internal
phosphotransfer reaction is mediated by the activation of proteins associated with the
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MCPs, primarily chemotaxis protein A (CheA) and CheW. CheW is thought to bind
CheA to the cytoplasmic domain of the MCP receptor. In the absence of an attractant
gradient, CheA autophosphorylates. The resulting phosphoryl groups are then trans-
ferred from the phosphorylated CheA protein molecules (CheAy) to two proteins: CheB
and CheY. CheY is an abundant protein within the bacterial cytoplasm. Diffusing from
the receptors through the cytoplasm, phosphorylated CheY (CheYy) is then free to
interact with FliM protein motors which regulate the flagella switching. This interaction
leads to the clockwise rotation of the flagella causing random walk behaviour. The pro-
tein CheZ actively dephosphorylates CheY}, (CheY) also dephosphorylates naturally on
a slower timescale).

The phosphoryl transfer from CheAj to CheB activates the esterase activity of
CheB which demethylates the MCPs. This action of demethylation dynamically
counteracts constant methylation of the receptors by the transferase protein CheR.
Receptor methylation plays an important role in bacterial chemotaxis — it allows the
system time to adapt to changes in different concentrations of the extracellular nutri-
ent concentration. Whilst the initial change in motor bias is rapid (of the order of 100s
of milliseconds), adaptation of the bacterium is relatively slow (of the order of up to
60 seconds). This period of delayed adaptation allows the bacterium time to under-
take periods of extended runs and also attenuate its ability to detect new changes in
the attractant concentration. It is through a careful balance of methylation of the
receptors, which reduces sensitivity to bound attractant molecules, and demethyla-
tion, which increases sensitivity, that adaptation is achieved.

On detecting an increase in attractant concentration, through binding of attractant
molecules to the receptors, the autophosphorylation of CheA is inhibited, thus lead-
ing to a drop in CheYy levels and subsequent counter-clockwise rotation of the fla-
gella motors. Likewise CheBy, levels fall and methylation of the receptors follows as a
result of the constant activity of CheR. The increased methylation of the receptors
finally leads to reactivation of the autophosphorylation of CheA, thereby resetting
the system to its pre-stimulus levels. The details of the phosphotransfer process are
summarized in Figure 1 and each reaction is listed in Table 1.

3 Mathematical modelling and bacterial chemotaxis

Mathematical modelling is a useful and powerful tool for understanding and elucidat-
ing aspects of physical and biological systems. In order to build useful and informa-
tive models, certain aspects of the system must already be understood. A model
can then be formulated and the respective model outcomes used to predict the behav-
iour of the system. Model outcomes are initially tested against known experimental
results in order to verify the model. Certain attributes of the model (describing
physical characteristics of the system) can then be altered to understand how
they affect the outcomes, thus making predictions about the system’s behaviour.
Models can therefore be used to test experimental hypotheses and also direct future
experimental work.

We note here that applied mathematical modelling does not constitute statistics or
related fields such as bioinformatics, but instead focuses on understanding the
‘system’ by explaining its observed characteristics. Many aspects of such modelling
are inherent in what is now commonly termed systems biology.
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Figure 1. A schematic representation (not to scale) of a typical E. coli bacterium
(approximately 3 um long) showing the location of the membrane receptors and flagella.
CheW binds CheA to the cytoplasmic receptor domains. A decrease of attractant causes CheA
to autophosphorylate, the phosphorylated CheA, CheAp, passes the phosphoryl groups to both
CheY and CheB. The subsequently phosphorylated CheY diffuses (indicated schematically by
the dotted lines) to the flagellar motors where it causes them to rotate in a clockwise direction.
CheYp can be dephosphorylated by CheZ. The phosphotransfer to CheB ensures that it acts to
negate the methylating action of CheR, thus reducing the receptor methylation state. With the
addition of attractant, the rate of autophosphorylation of CheA is reduced and thus CheY
levels fall. The motors respond to the drop in CheYp by rotating counter-clockwise causing the
flagella to bundle together leading to runs. The dephosphorylation of CheBp allows CheR to
further methylate the receptors thus inducing further CheAp activity, thereby returning the
system to its pre-stimulus configuration.

Many elements of the bacterial chemotaxis system, both on the individual and popu-
lation scale, have been the subject of mathematical models for more than 40 years. The
original application of mathematical modelling was used to understand the experimental
assay work of Adler (Adler, 1966), who observed the migration of E. coli up gradients of
attractant within a capillary tube (Keller and Segel, 1971). The modelling work focused
on various different forms of the bacterial diffusion and chemotactic coefficients, thus
seeking, in a somewhat coarse-grain fashion, to understand how microscale individual
behaviour affected the macroscale population behaviour (Tindall ez 4l., in press).

Modelling of individual bacteria was motivated around the same time as the work
of Adler by the work of Berg and colleagues (Block et al., 1982, 1983), who observed
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Table 1. The autophosphorylation, phosphotransfer and dephosphorylation reactions

within E. coli.

Process Reaction Details

Autophosphorylation CheA — CheA,

Phosphotransfer CheAP+CheY:CheA+CheYP CheA, to CheY
CheA, +CheB : CheA +CheB, CheA; to CheB
Dephosphorylation CheY,, +CheZ : CheY +CheZ Dephosphorylation by CheZ
CheB, E) CheB Natural dephosphorylation
CheY, i CheY Natural dephosphorylation

the attractant response behaviour of individual bacteria. Their subsequent findings on
the interesting excitation and adaptation response of bacteria, and later work by Segall
et al. (1986) on the highly sensitive response of the system to only small changes in the
attractant concentration, has seen mathematical models used to understand particular
elements of the bacterial system. Adaptation, sensitivity, gain or flagella dynamics,
through to looking at the particular physical aspects of the bacterium, for example
receptor dynamics, the phosphotransfer pathway, protein-motor interactions, and so
on, have all been fertile areas. The growth in modelling sophistication has occurred in
parallel with the ever-increasing understanding of the underlying biology. For
instance, in the case of adaptation, early efforts focused on describing a number of
basic receptor state models which relied on receptors being either attractant-bound or
unbound, in either case moving between an inactive or active state (Goldbeter and
Koshland, 1982; Segel and Goldbeter, 1986). Such inactive or active states were pre-
cursors to the discovery of the role of methylation in changing receptor activity, and
later the proteins responsible for affecting this (CheR and CheBy). With increasing
understanding of the phosphotransfer pathway in the late 1980s and throughout the
1990s, the phosphotransfer pathway and role of CheR and CheBj; in affecting methy-
lation have been introduced to more recent models on adaptation and sensitivity
(Barkai and Leibler, 1997; Spiro et al., 1997).

The role of modelling has been particularly helpful in elucidating possible mecha-
nisms responsible for sensitivity. With the advent of modelling of the phosphotrans-
fer pathway within E. coli it was evident that a model of the pathway alone could not
provide the necessary sensitivity and gain observed experimentally (Bray et al., 1993;
Spiro et al., 1997). In using a discrete model in which receptors interact with one
another to magnify the initial response of only one activated receptor through attrac-
tant binding, Bray and colleagues (Bray et al., 1998) were able to show that this was a
plausible mechanism for explaining both sensitivity and gain. Subsequent research,
both experimental and theoretical, has focused on establishing the exact biochemical
and physical forms of these interactions.
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More recently, models of transport events within bacteria have focused on the role
that the spatial environment within bacteria plays in affecting the phosphotransfer
interaction between the receptors and flagellar motors (Lipkow et al., 2005; Lipkow,
2006). Here the effect of CheZ localization on the distribution of CheY, throughout
the cytoplasm of the cell has been considered. Lipkow et al. (2005) found that when
CheZ was allowed to diffuse throughout the cell, the CheY} concentration decreased
exponentially from the receptor poles to the motors. However, when CheZ was local-
ized to the membrane receptor regions of a cell, the concentration of CheY; was
approximately constant throughout the cell, a result which agreed with experimental
findings (Cantwell ez al., 2003; Liberman et al., 2004).

With the growth of computing power and the sophistication of models both on the
individual and population scale, the modelling of bacterial chemotaxis systems is heading
towards more sophisticated multi-scale modelling techniques — where models on the
individual scale are computed for a given population of cells (Bray et al., 2007, Emonet
et al., 2005; Erban and Othmer, 2004; Kreft et al., 1998). The motivation for such work
is to understand how individual cell behaviour affects the overall collective behaviour of
the population. Such work has clear benefits, for example, in helping to understand
biofilm behaviour, a consistent problem in medicine and the industrial world.

The more sophisticated a model on the individual cell level is, the more time it
takes to integrate the respective input and provide output, thus when this is multiplied
by the number of cells typical of a population the computational power required to
provide answers in a feasible period of time will be very large. We are therefore
faced with a ‘double-edged’ sword in that models must provide the relevant charac-
teristics observed on the individual scale, but not become so sophisticated that under-
standing behaviour on the population scale becomes infeasible — so called ‘model
reduction’. Such work continues to provide challenges for mathematical modellers
and experimentalists in seeking to understand bacterial chemotactic systems.

4 Developing a model of intracellular signalling

The focus of our work here is to understand how the spatio-temporal concentration
of CheY; within a cell is dynamically affected by the removal of attractant from the
bacterial receptors. What is the most appropriate mathematical modelling method for
tackling this problem? It is worth noting that given the richness of mathematical
theory and modelling approaches there are a number of choices. Should we consider
modelling each individual protein molecule and its kinetics? How are we to include
both the spatial and reaction processes simultaneously? Are stochastic effects impor-
tant? Will our model be computationally efficient, that is, can it be solved in a reason-
able period of time? How do we verify our model?

In order to develop an appropriate mathematical model we note that: (i) our
theory needs to describe both the spatial localization of the respective proteins in time
and a defined spatial region; and (i1) reaction rates and diffusion coefficients of the
respective proteins are known from iz vitro data (see Table 2). Given the reactions are
known and the copy number (concentration) of each protein within the cytoplasm is
high (see http://www.pdn.cam.ac.uk/groups/comp-cell/Rates.html for details), we
can adopt an averaging approach in modelling individual protein molecules (both in
space and time).
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Table 2. Dimensional and non-dimensional parameter values.

Rate Description Value Reference

k, Autophosphorylation of CheA 3457 Francis et al. (2002)
Shrout et al. (2003)
k, Phosphotransfer from CheA; to CheY 1x10%(Ms)™?  Stewart et al. (2000)

k, CheY;, dephosphorylation by CheZ 1.6 x10°(Ms)™"  Li and Hazelbauer (2004)
Sourjik and Berg (2002a)
ks CheY, natural dephosphorylation 85x107%s™  Smith et al. (2003)
Stewart and van Bruggen (2004)
D,  CheY; diffusion coefficient 10 um?s™ Elowitz et al. (1999)
Segall et al. (1985)
A;  Total CheA concentration in an E. coli cell 7.9 um Bray website data'
Yr  Total CheY concentration in an E. coli cell 9.7 pm Bray website data
Z Total CheZ concentration in an E. coli cell 3.8 pm Bray website data
k, Non-dimensional phosphotransfer 28.53 _
from CheAp to CheY. '
k, Non-dimensional CheYp 0.179 -
dephosphorylation by CheZ.
k Non-dimensional CheYp natural 2.5x107 )
dephosphorylation
o Ratio of total CheA to CheY 0.814 -
concentration
D,  Non-dimensional diffusion coefficient 1

! www.pdn.cam.ac.uk/groups/comp-cell/Rates.html

These points lead us to adopt the continuum mathematical theory of reaction-
diffusion equations (Murray, 1993). Our system of governing partial differential
equations (PDEs) will be of the form:

=D Viu+ f(u,v), (1)

¥¥¥

=D Viu+g(u,v). ()

Here u = u(x,t) and v = v(x,t) are the concentrations of two proteins at spatial points
x = (x,,z) and time #, where the functions f(#,v) and g(#,v) describe the reactions
between each protein. We have assumed the diffusion coefficients D, and D, are con-
stant and isotropic and in the case of three-dimensional geometry

02 02 02
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Figure 2. A schematic representation of our two-dimensional model of an E. coli cell. ©, and
£, represent the regions near the receptor clusters in which CheA and CheAp are generally
found. The outer boundary of the cell is denoted by 0, and the remaining cytoplasmic
region by Q,.

This term (along with the diffusion coefficient) represents diffusion of the respective
protein within the defined region of interest.

Given the symmetry of a cell along its length we only need to consider two-
dimensional slices of the cytoplasmic region. Such a model can be solved computa-
tionally in a realistic time and in some cases, analytical approximations of the way in
which the protein concentrations vary as a function of parameters within the model
can be found.

Our system of equations is solved on the model cell shown in Figure 2 based upon
the following assumptions. We consider only phosphotransfer between CheA; and
CheY) and the effect of CheZ. We neglect phosphotransfer to CheB given that it is
concerned with local methylation of the receptors and not receptor-to-motor sig-
nalling. The role of CheB; will be included in future work as discussed in Section 5.
We further assume that CheA, CheA; and CheZ are restricted to the two regions €,
and Q,. CheA and CheAj are immobile in each region and the concentration of CheZ
remains constant for all time. These regions are designed to represent the localization
of CheA and CheA} to receptor clusters within the cell membrane. CheY and CheY,
are free to diffuse throughout the full cytoplasmic region (2, LV, UQ,).

Invoking the law of mass-action (Murray, 1993) we can write down a set of reac-
tion-diffusion equations governing each of the relevant reactions detailed in 7Table 1

(neglecting CheB).
In the regions ©, and Q;:
%A =—kA+kAY, 3)
aY s
§=DYV Y-kAY +kY,Z+kY,, (5)
a7, )
SE=D, VY, +hAY -kY,Z-kY,, (6)

and in ©,
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%—?:DYVZY+k6YP, )
%: D, VY, -kY,. 8)

Here A = [CheA], Ap = [CheAy], Y =[CheY], Y, = [CheY;] and Z = [CheZ] and the
respective reaction rates and diffusion coefficients are detailed in 7able 2. The initial
distribution of CheA (see below) fills both €, and €,, and neither CheA nor CheA,
are assumed to diffuse within the respective regions (one is simply converted to the
other and vice-versa) or outside them. CheZ is also assumed to remain constant
within this region and thus we do not require an equation describing any changes in
its concentration, either spatially or dynamically. The diffusion coefficients for CheY
and CheY}, are assumed to be the same in each of the three regions. We note here that
given we are only considering a two-dimensional region:

V2= L + _a_z_
ox? ayz

In order to complete or close our system of equations we need to define a set of
initial and boundary conditions. Initial conditions define the initial protein concen-
tration at time ¢ = 0 in each region and boundary conditions detail the concentration
on the boundary of the region (denoted as 9€2; in Figure 2) for all time.

We assume initially that only CheA is present in each of the receptor regions ©,
and €2, and CheZ is constant throughout these regions. All other protein concentrations
are zero. These conditions can be defined mathematically as follows.

In o, we have

Y(x,0)=Y, and Y,(x,0)=0 9)
and in 2, and &
A(x,0)=A;, A,(x,0)=0, Y(x,0)=Y, and Y,(x,0)=0. (10)

Here A, is the initial concentration of CheA, Y, the initial concentration of CheY. For
computational reasons an appropriately smooth function is chosen to represent A,.

We assume no flux boundary conditions on dQ, which equates to neither CheY
nor CheY), being able to diffuse outside the cell wall boundary

n-VY(x,t)=0 and n-VY,(x,t)=0. (11)

Here 1 is a unit vector normal to the surface of the cell. The flux of CheY and CheY,
is taken to be continuous between each of the three regions 2, ©, and @,
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4.1 Non-dimensionalization

Before attempting to solve the model, the dimensions from the governing equations
are removed. Why do we do this? Non-dimensionalization refers to removing the
dimensions from our equations. This allows consideration to be given to the effect
that certain terms in our equations have in comparison to others. The relative magni-
tude of each can then be more clearly judged. Furthermore it reduces the number of
parameters in our model.

Our governing equations contain both a lengthscale and a timescale and the gov-
erning equations are rescaled with respect to these. Here we non-dimensionalize with
respect to the timescale of autophosphorylation of CheA (k) and the length scale
associated with the diffusion distance of CheY, through the cell

t=— and x=,|—2%. (12)

Here Tand X are the non-dimensional timescales and length scales, respectively. The
concentration of CheA, CheA,, CheY and CheY; are rescaled with respect to the
total phosphorylated and unphosphorylated CheA and CheY concentrations within
the cell, A; and Y, respectively

A

A=A A, A,=AA,,  Y=YYand Y,=Y,7, (13)

If we substitute these rescalings into Equations (3)—(8) then in region 2,

X B,k (14)
LA (15
and in regions Q, and Q,
%_mg,a,y, (16)
%z A-k4,7, (17)
%—);=Eyvzf—a/€2;1p)}+(:+/_e;) (18)
%Yra=vzf,,+ag,a,y_</;+a>y*,,, (19)
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are defined as the non-dimensional parameters. The number of parameters has been
reduced from nine (k,, k,, k,, kg, Dy, Dyp, Ap Yoy Z) to five (k,,k,,k,, D, ).
The initial and boundary conditions are also rescaled such that in @,

Y(%,0)=1 and  Y,(%,0)=0 (21)
and in Q, and Q,
A(%,0)=1, A,(%,0=0, Y(%,0)=1and Y,(%,0)=0 (22)

with the boundary conditions now given by:

A-VY(%,6)=0 and  #-VY,(,)=0. (23)

Here we have assumed that initially all of the CheY and CheA is unphosphorylated
such that Y,=Y;and A,= A

4.2 Parameterizing the model

To date we have formulated a spatio-temporal mathematical model of intracellular
signalling in a bacterial cell based upon certain assumptions. Each term in the equa-
tions represents a certain process, for instance the reaction or diffusion of certain pro-
teins. The parameters associated with each of these terms tell us (given their
magnitude) the relative importance of each process. In the case of our E. coli cell para-
meterizing the system is relatively straightforward, the respective dimensional and
corresponding non-dimensional parameters are listed in Table 2.

The non-dimensional parameters show that in terms of importance phosphotrans-
fer from CheA, to CheY is the dominant reaction process ( k,= 28.53), autophospory-
lation of CheA (our non-dimensionalization means this process is of order one),
followed by dephosphorylation of CheY;, by CheZ (k, =0.179) and finally the natural
dephosphorylation of CheY, (k=2.5x107).

4.3 Model solutions and results

We solve Equations (14)—(19), with their respective boundary and initial conditions,
using the computational package COMSOL (Stockholm, Sweden). COMSOL uses
the theory of finite elements to solve PDEs and allows dynamical behaviour to be
studied in detail. Figures 3A-D (see colour plate section) show the change in concen-
tration of CheY} at various time steps of the simulation. We note these results show
the diffusion of CheY} from the receptor poles, where it is created, towards the centre
of the cell. The CheY), diffuses through the cell at a rate dependent upon the magnitude
of its diffusion coefficient.
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5 Summary and future work

A spatio-temporal model of the phosphotransfer pathway within E. coli has been pro-
duced using the mathematical theory of reaction-diffusion equations. Solutions to the
model have allowed us to examine the way in which the concentration of CheY,
dynamically changes within the cell. The model results show the creation of CheYy at
the receptor clusters which then diffuses towards the centre of the cell.

The modelling approach here differs from that of Lipkow et al. (2005), who
undertook stochastic simulations involving each model protein. Lipkow et al. (2005)
also considered the interaction between CheY;, and the motor protein FliM, which we
have not included here. However, although our approach has differed we have been
able to reproduce the same findings in respect of the location of CheZ (results not
shown). The model developed here will be extended further in future research to
incorporate the CheB pathway. We will also use this approach to understand the
importance of spatial protein localization in the more complex signal transduction
system of Rhodobacter sphaeroides (Porter and Armitage, 2002).

This work demonstrates that although there are different approaches to modelling
a biological problem, each theoretical technique can tell us something about the
system that another may not be able to and wvice versa. This demonstrates the
strengths of theoretical models in being able to provide various insights into the bio-
logical system being analysed.

Although modelling approaches have been used to understand certain parts of the
bacterial chemotaxis system, there still remain a number of unanswered questions,
both on the individual and population scale. Of growing interest is how individual cell
behaviour affects the overall growth and development of a population. Such work
requires the use of multi-scale modelling (Tindall ez al., in press) which allows individ-
ual behaviour to be incorporated into population models. For instance, recent work by
Bray et al. (2007) has demonstrated the importance of adaptation on the accumulation
of bacteria in response to attractant gradients.

The application of mathematical models to problems in the biological sciences can
provide valuable insight into the system being studied. It is important that models are
based upon known biological evidence and are developed in strong collaborations
between theoreticians and experimentalists. This approach leads to models being used
to test certain hypotheses, helps direct future experimental work and thereby provide
insight to the biological problem at hand. In short these points are the real strengths
of systems biology.
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Chapter 8, Figure 3. The dynamic change in the non-dimensional concentration
of CheY} within an E. coli cell at (A) 2 ms, (B) 10 ms, (C) 20 ms, and (D) 40 ms.
Here the cell has been taken to be 3 um long and 1 pm wide.
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