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17.1 Introduction

Biological function arises from complex processes interacting over a large range
of spatial and temporal scales. For example, within vascularised tumours,
local oxygen levels, determined at the tissue scale by vascular density and
blood flow, influence subcellular processes that include progress through the
cell cycle and the expression of proteins such as vascular endothelial growth
factor (VEGF). Since VEGF is a potent angiogenic factor, its intracellular
production, release by the cells and transport through the extracellular space
stimulate vascular adaptation at the macroscale. This remodelling, in turn,
controls oxygen delivery to the tissue.

Over recent decades, remarkable technological advances within the life
sciences have led to the generation of an enormous amount of data relating
to phenomena that act at different scales. However, the impressive scientific
contributions contained within individual articles are often fragmented and
isolated due to the absence of comprehensive conceptual frameworks that
allow information to be organised and results integrated. Furthermore, intu-
itive, verbal reasoning approaches can be inadequate for dealing with such
complicated, non-linear dynamical systems. Nor can they keep pace with the
vast amount of information being generated. Experience within other areas of
science has taught us that quantitative methods are needed to develop com-
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prehensive theoretical models for interpretation, organisation and integration
of these data [GMO03].

The challenge for mathematical biology is two-fold: first to develop mean-
ingful mathematical models at each individual scale, then to integrate such
models into a computationally tractable multiscale model that allows us to
understand how individual processes (for example, binding of a drug to its
receptor) at the microscopic level affect the behaviour at the system (macro-
scopic) level (for example, the effect of a drug on a specific organ).

In addressing this challenge, modelling has two possible roles to play. First,
on those rare occasions for which the biological system of interest has been
well studied and characterised, it is possible to develop, with a fine degree of
accuracy, models capable of replicating the biological observations. Whereas
this is of little interest per se, exploiting the models to study the effect of
different interventions can greatly enhance our understanding of the system’s
properties and behaviour. Hence, in silico techniques provide tools to carry
out and iterate experiments that would otherwise be classified as unethical,
expensive, time consuming, or simply impossible. Second, most research in
biological systems is at a stage where it is impossible to develop accurate, de-
tailed mathematical models. In these cases, modelling also has a vital role to
play. Mathematical models essentially translate empirical biological hypothe-
ses into a concrete framework which allows us to compute the outcome of
these proposed interactions. By testing against data, this allows hypotheses
to be verified or rejected and new hypotheses to be generated. This contin-
ual interaction between theoretical and empirical efforts makes it possible to
refine the experimental procedure and leads to greater understanding of the
complex system. Additionally, it should reduce the need for experimentation.

To exploit the full potential of mathematical modelling in biology, there is
an urgent need to develop new theoretical tools for the analysis and synthesis
of detailed low-level information into comprehensive, integrative, and quanti-
tative descriptions that span a wide range of spatio-temporal scales. This new
research area is viewed as the next “grand challenge” in the life sciences, and
is often referred to as the Physiome Project,® encompassing the world-wide
effort to describe biological function, based on genomic and proteomic mecha-
nisms and their interaction, using qualitative and quantitative mathematical
models [Cram04]. The ultimate goal is to transform the wealth of data being
generated into a detailed understanding of biological function and, hence, of
the complex systems that together form the basis of living organisms.

Within this effort, there is a growing literature devoted to mathematical
modelling of different aspects of tumour growth (see, for example, the reviews
in [Ad96, AMcE, RCM07]). These models tend to concentrate on processes oc-
curring at one particular scale. Biologists now believe that the complexities of
cancer could be explained in terms of a small number of underlying principles,
namely, self-sufficiency in growth signals, insensitivity to anti-growth signals,

5 http://www.physiome.org/
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evasion of programmed cell death (apoptosis), limitless replication potential,
sustained angiogenesis, tissue invasion and metastasis [HWO00]. Our long-term
goal is to incorporate these features into a multiscale “virtual tumour” model
allowing us to organise existing data into an integrative theoretical framework
that can clarify the underlying dynamics governing invasive cancers, and lead
to the development of therapeutic strategies to combat tumour growth. How-
ever, in the shorter term, we can focus on certain aspects of cancer which
are already amenable to experimental manipulation with a view to develop-
ing clinical strategies to control the disease. Our approach is to develop a
multiscale model which can integrate existing models, extending them where
appropriate, and be consistently updated by new experimental information.
This requires the development of a theoretical framework into which models
can be slotted as modules. We anticipate that the resulting model will be sim-
ilar in scope to the heart models that have been developed by Noble, Hunter
and co-workers [Cram04, Nobl06].

By way of illustration we present below three examples of our recent work.
In Section 17.2, we present a model for carcinogenesis during the early (avascu-
lar) stages of ductal carcinoma in situ which focuses on aspects of metabolic
changes and somatic evolution. In Section 17.3, we introduce a multiscale
model for a vascularised tumour in which the dynamics of the tumour mass
are intimately related to those of the blood vessels supplying the tissue with
nutrients, and in Section 17.4 we present a model for early colorectal cancer.
The common theme underlying these models is the integration of processes
occurring on very different spatial and temporal scales. The chapter concludes
in Section 17.5 with a summary of our results, a review of related relevant
work and a discussion of the challenges that lie ahead for the further devel-
opment of multiscale models of solid tumour growth in particular and their
wider application in biology.

17.2 Metabolic Changes During Carcinogenesis

The pioneering work of Warburg [W30] revealed that tumour cells show an
abnormal metabolism, preferentially converting glucose to lactic acid, even in
the presence of sufficient oxygen. This is a paradox given that the aerobic glu-
cose metabolic pathway is substantially more energy efficient than anaerobic
metabolism, or glycolysis. It also has important clinical implications since a
direct correlation between the rate of glucose consumption and tumour aggres-
siveness has been observed [HSR91]. The reason for this metabolic transition
is as yet unclear. It has been proposed that, through factors such as cellu-
lar crowding, tumour cells may destroy the native vasculature, the primary
mode of oxygen delivery, leading to heterogeneous oxygen perfusion through
the tumour tissue. The resulting cyclical periods of hypoxia can initially cause
transient adoption of glycolysis. However, the universal adoption of increased
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glycolysis in human cancer, even under normal conditions, suggests that en-
vironmental factors other than hypoxia are involved.

We might expect that the increased acid production associated with the
glycolytic phenotype would give rise to a significantly lower intracellular pH.
However, magnetic resonance spectroscopy has shown that intracellular tu-
mour pH is higher than that in non-transformed cells [GLB94]. This is due
to upregulation of ion transporters which increase the flux of hydrogen ions
across the tumour cell membrane into the extracellular space [GRM89]. A
combination of this acid transport and the poor tumour vasculature for ex-
cess acid removal results in a tumour extracellular pH substantially lower
than that of normal tissue. This has led to the acid-mediated tumour invasion
hypothesis [GG96].

As the tumour microenvironment becomes more toxic, adaptation becomes
essential. Recently a hybrid cellular automaton model has been developed to
investigate the cell-microenvironmental interactions that mediate somatic evo-
lution of cancer cells [SGGMGO07] during the development of ductal carcinoma
in situ. We briefly describe the model here, and refer the interested reader to
the original paper for full details.

17.2.1 Model Framework

The model builds heavily on work by Gatenby and Gillies [GG04] who hypoth-
esise that evolution of glycolysis is due to environmental constraints imposed
by the morphology of the ducts. The blood supply is separated from the in-
terior of the ducts by the basement membrane, so as a pre-malignant lesion
grows away from the membrane into the duct it eventually experiences hy-
poxia. Gatenby and Gillies propose that this leads to an evolutionary sequence
consisting of adaptation to hypoxia by upregulation of glycolysis, acidification
of the environment (due to anaerobic respiration of glucose) and then cellular
adaptation to acid-induced cellular toxicity.

The hybrid cellular automaton model that is used is composed of an
(M x N) array of automaton elements (i,7) with a specific rule set govern-
ing their evolution. The distribution of the oxygen, glucose and H* fields is
also monitored, reaction-diffusion equations being used to characterise their
spatio-temporal dynamics. Each automaton element corresponds to a region
of size 25um Xx25um that is occupied by either a tumour cell or a vacant
space. Cells are initially placed as automaton units on the z-axis (the duct
membrane). As they divide and undergo genetic alterations, cells move into
the duct lumen. Nutrient levels are assumed to be in equilibrium, a reason-
able assumption given the time scales associated with cell division, diffusion
and their uptake by cells. Cells, in turn, metabolise nutrient into ATP. They
are assumed to die if the ATP levels are below a certain threshold; other-
wise they divide with a probability that depends on the “excess” amount of
ATP. At each division cells can mutate into a different state (i.e. hyperplas-
tic, glycolytic, acid-resistant) with a certain probability. During periods of
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hypoxia, cells revert to anaerobic metabolism, producing lactic acid which is
again modelled by a reaction-diffusion equation at equilibrium. This acid can
cause cell death, depending on its concentration and the evolutionary state of
the cell.

17.2.2 Simulation Results

Results from a typical simulation are presented in Fig. 17.1. The dynamics
are, broadly speaking, consistent with those predicted in the verbal model of
Gatenby and Gillies [GG04]. First, the hyperplastic cell type predominates,
allowing cells to move away from the basement membrane into the duct lumen.
Then, as hypoxia becomes important, the glycolytic cell type takes over, cre-
ating a highly acidic environment which eventually favours the acid-resistant
cell type. However, the model predicts an extra feature, namely the possibility
of long-lived transient islands of glycolytic cells surviving in a “sea” of acid-
resistant cells. Motivated by this prediction, recent experiments have been
carried out which do indeed verify this result [GS07]. The model is currently
being extended to include more detailed aspects of the glycolytic pathway, and
to investigate how the evolutionary process taking place within the duct may
affect the invasiveness of the cell population which eventually breaks through
the basement membrane.
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Fig. 17.1. The temporal evolution of a typical cellular automaton at (a) t = 0,
(b) t = 100, (c) t = 250 and (d) t = 300 generations. Shown are normal epithe-
lial (dark grey), hyperplastic (pink/grey), hyperplastic-glycolytic (green/grey) and
hyperplastic-glycolytic-acid resistant (yellow/light grey) cells (colour version online).

Cells with other phenotypic patterns are shown as black. Reproduced with permis-
sion from [SGGMGOT].
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17.3 Vascular Tumour Growth

Tumour tissue shares a complex relationship with vasculature. As a growing
solid tumour reaches the limits of nutrient diffusion it is believed to secrete
tumour angiogenesis factors (TAFs) to promote vascular growth towards and
within the tumour. The new vasculature acts as a nutrient supply source and
a (toxic) waste product disposal system, and provides access to distant parts
of the body via metastatic invasion. At the same time, it allows the host to
intensify its immunological response to the tumour cells through, for example,
macrophages and neutrophils. As the access to increased nutrient availability
allows the tumour to grow, the enhanced pressure of the tumour cells may
cause the immature tumour vasculature to collapse [Jain88]|, creating areas
of hypoxia which, in turn, stimulate the cells to secrete TAFs which widen
existing blood vessels and create more new vessels. As we illustrate below, an
understanding of such complex interactions can be facilitated by formulating,
analysing and exploiting multiscale mathematical models.

17.3.1 Model Framework

The modelling framework is outlined in Fig. 17.2 which shows the spatial scales
of interest (e.g. subcellular, cellular and tissue) and how the processes acting
at the different scales interact. As in the model discussed in Section 17.2, nu-
trients and chemical signals are modelled using reaction-diffusion equations,
and cells are modelled as automaton units. While cells can, as in the previ-
ous model, be considered as “black boxes” with prescribed parameters, cell
properties (e.g. proteins associated with the cell cycle) can now be determined
by ordinary differential equation (ODE) models operating on the intracellular
scale.

The key advances in this model are the consideration of blood flow and vas-
cular adaptation and their coupling to the dynamics of the tumour mass. It is
known that normal vasculature is highly dynamic, with vessel radii responding
to local mechanical stimuli such as wall shear stress, various biochemical stim-
uli and longer range stimuli. While this has been studied in great detail in the
rat mesentery by Pries, Secomb and co-workers (see, for example, [PSG98]),
only recently have similar models been advanced for tumours. In a series of
papers, McDougall and co-workers have developed a hybrid model for vascular
adaptation, blood flow and angiogenesis in which the tumour is viewed as a
fixed source of angiogenic factors that does not grow [MACS02, MACO06]. By
adapting an earlier discrete model of angiogenesis due to Anderson and Chap-
lain [AC98], endothelial cells within a capillary tip are assumed to perform
random walks, biased by chemotaxis in response to tumour-derived angio-
genic factors and haptotaxis in response to fibronectin gradients generated
in the extracellular matrix through which the endothelial cells migrate. Mc-
Dougall et al. used their model to highlight two important phenomena that
could be responsible for the failure of blood-borne chemotherapy. First, most
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Fig. 17.2. Schematic diagram showing the structure of our multiscale model of
vascular tumour growth.

of the drug may be diverted from the tumour by its highly interconnected
capillary network. Second, dilution effects as the drug disperses through the
vasculature may mean that the concentration reaching the tumour is too low
to be effective. Further simulations suggested that increasing the mean radius
of capillary vessels and/or decreasing the blood viscosity could substantially
increase drug uptake.

In the absence of a detailed flow model for tumour vasculature, we take
Pries et al.’s model and adapt it to tumours in a reasonable way. The model
takes the form

R(t +dt) = R(t) + R(t)U(¢) dt, (17.1)

where R(t) is the radius of a blood vessel at time ¢ and dt is the time step. The
remodelling function U(t) consists of a number of components, as described
above (for details, see [ABM05a, ABM05b, BAOMM)]).

For simplicity, we consider a vascular network composed of a regular hexag-
onal array, with one input and one output, and a pressure drop imposed across
it. We use the Poiseuille approximation and Kirchhoff’s laws to compute the
flow rates through and pressure drops across each vessel. Following [F93], we
assume that at branch points the haematocrit, the red blood cells carrying
oxygen, splits in proportion to the flow velocities in the daughter vessels.
In this way, we can, in a simple first pass, compute the wall shear stresses
and metabolic stimuli in each vessel and update their radii using equation
(17.1) [ABMO05b]. We assume that oxygen (nutrient) diffuses out of the vascu-
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lature into the tissue where it is available for metabolism by the normal and
cancerous cells that constitute the cellular automata. As in Section 17.2 we
use a reaction-diffusion equation to model the distribution of oxygen within
the tissue. The cells respond to nutrient levels by dividing, if the concentration
is sufficiently high. At lower oxygen concentrations, cancerous cells can sur-
vive for a certain period of time by becoming quiescent, but normal cells die.
We can phenomenologically take into account the effect of acid production as
a by-product of anaerobic metabolism by lowering the threshold of nutrient
concentration at which normal cells die if they are surrounded by cancerous
cells (an obvious refinement will be to include acid explicitly as a field variable
and to model the metabolic biochemistry in more detail [JPCF]).

The basic model can be extended in many ways. For example, we can
include, in each cell, equations that caricature the cell cycle [TNO01], such detail
being important if we wish to consider the effect of cell-cycle-dependent drugs.
We can also include the production of VEGF in hypoxic regions and use a
reaction-diffusion equation to model its spatio-temporal dynamics. The effect
of VEGF on the vasculature can then be included in equation (17.1) where we
assume it acts, through the remodelling function U(¢), to increase the vessel
radius (in effect we are modelling angiogenesis implicitly, an increase in the
simulated vessel radius being taken to represent an increase in the number of
vessels present in a particular tissue region).

Cell crowding can be included by associating with each element in the
automaton a carrying capacity whose value may depend on the number of
vessels, tumour cells and normal cells contained within a particular element,
to reflect the physical differences between vessels and cells, and the differ-
ent responses to contact inhibition from normal cells and tumour cells. Cell
movement is modelled as a stochastic process, with transition probabilities
depending on the space available at neighbouring sites [BAOMM].

17.3.2 Simulation Results

We now summarise some of the key results that we have obtained using our
multiscale model of vascular tumour growth.

Haematocrit distribution influences tumour growth

The simulations presented in Fig. 17.3 illustrate the importance of accurately
modelling blood flow through the tissue [ABMO5a]. In both cases the vascu-
lar dynamics are independent of the tumour, but the cellular dynamics are
influenced, via oxygen, by behaviour at the macroscale. The upper panels
correspond to a case for which the vessels undergo structural adaptation and,
hence, the haematocrit and oxygen are distributed non-uniformly across the
tissue. The lower panels show how the system evolves when the haematocrit is
distributed uniformly throughout the vessels (i.e. blood flow is identical in all
branches of the vasculature). We see that spatial heterogeneity has a signifi-
cant effect on the tumour’s dynamics and, in this case, actually reduces the
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tumour burden. We note also that when the oxygen distribution is heteroge-
neous the tumour develops “finger-like” protrusions similar to those observed
in invasive cancers. Here this structure arises because the nutrient distribution
is non-uniform.

0 20 40 60 80 100
# iterations

(b)

#cells
N
3
]
3

0 20 4 e 8 100
# iterations

(d)

Fig. 17.3. Series of images showing the spatial distribution of cells for growth
in inhomogeneous (panel a), and homogeneous environments (panel c). In panels
(a) and (c) cancer cells occupy white spaces and vessels occupy a hexagonal array
denoted by black spaces. The other black spaces denote empty spaces. Panels (b) and
(d) show the time evolution of the number of (cancer) cells for the heterogeneous
and homogeneous cases, respectively: squares denote the total number of cancer
cells (proliferating + quiescent); diamonds denote quiescent cells. Reproduced with
permission from [ABMO03].

VEGF-dependent remodelling may stimulate oscillatory tumour dynamics

The simulation presented in Figs. 17.4 through 17.6 shows how coupling in-
tracellular and macroscale phenomena can influence the dynamics of both the
vasculature and the tumour [BAOMM]. In contrast to the results depicted in
Fig. 17.3, where vessel adaptation was independent of VEGF, in Figs. 17.4
through 17.6 it is regulated by local VEGF levels. Figs. 17.4 and 17.5 show
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Fig. 17.4. Series of plots showing how a small tumour introduced into a vascular
tissue at t = 0 has evolved at t = 30 (dimensionless time unit). While the oxygen
and vessel profiles remain unchanged from their initial configurations, the tumour
has increased in size and now contains quiescent cells which produce trace amounts
of VEGF. Reproduced with permission from [BAOMM].

how the tumour’s spatial composition evolves while Fig. 17.6 summarises its
dynamics. Since there is a single inlet (outlet) to the vasculature located in the
bottom left (top right) hand corner of the tissue, the incoming blood flow and
haematocrit become diluted as they pass through the hexagonal lattice. This
creates a heterogeneous oxygen distribution across the domain, with oxygen
levels being highest near the inlet and outlet. Over time, the tumour cells pro-
liferate and spread through the tissue towards oxygen-rich regions. As they
increase in number, their demand for oxygen outstrips that available from the
vasculature, and quiescent regions form. Cells in the quiescent regions produce
VEGF which diffuses through the tissue (see Figs. 17.4 and 17.5), stimulating
vessel adaptation and biasing blood flow towards low oxygen regions. If the
VEGF stimulus is weak then the vasculature does not adapt quickly enough
and the quiescent cells die (this is what happens at early times in Fig. 17.6).
VEGF levels also decline and blood flow to the remaining tumour cells rises,
enabling them to increase in number until the demand for oxygen once again
exceeds that being supplied, and so the cycle repeats, with pronounced oscil-
lations in the number of quiescent cells (see Fig. 17.6). In order to highlight
the key role played by VEGF in creating these oscillations, also presented in
Fig. 17.6 are the results of a simulation which was identical in all respects ex-
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Fig. 17.5. Series of plots showing how the simulation presented in Fig. 17.4 has
developed at t = 90. The tumour continues to penetrate the tissue region. There
are now enough quiescent cells to elicit an angiogenic response. As a result, the
vasculature has been remodelled, with blood flow and oxygen supply (haematocrit)
being directed primarily towards the tumour mass. Reproduced with permission
from [BAOMM].

cept that vascular adaptation was independent of VEGF (as per Fig. 17.3). In
both cases, the tumours grow to similar sizes. However, when vascular adap-
tation is independent of VEGF the evolution is monotonic, the oscillations
in the cell populations disappear and the number of quiescent cells is con-
sistently much lower. These results show how coupling between the different
spatial scales can effect not only the tumour’s growth dynamics but also the
proportion of proliferating and quiescent cells that it contains.

Vessel pruning may enhance a tumour’s response to radiotherapy

We can use our model to investigate the effects of decreasing the blood vessel
number (a primitive way of investigating the effects of anti-angiogenesis treat-
ments). Our results suggest that low levels of vessel pruning may, in certain
cases, enhance tumour growth by creating a vasculature that allows nutri-
ent to reach tissue more effectively [ABMO4b]. It is observed clinically that
combination therapy involving anti-angiogenesis treatment and radiotherapy
can be more effective than radiotherapy alone and at first glance this seems
counter-intuitive. One possible explanation of this observation is provided by
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Fig. 17.6. Series of curves showing how, for the simulation in Figs. 17.4 and 17.5, the
numbers of proliferating (upper panel), quiescent (middle panel) and total tumour
cells (lower panel) change over time. While the number of proliferating cells increases
steadily, the number of quiescent cells undergoes oscillations of increasing amplitude
until ¢ &~ 120. Thereafter, the tumour is sufficiently large that the quiescent cells
are never eliminated: quiescent cells that die are replaced by proliferating cells that
become quiescent. The dot-dashed lines show the evolution of a tumour which is
identical except that its vasculature is not regulated by VEGF. While both tumours
reach similar equilibrium sizes, when vascular adaptation is independent of VEGF
the oscillations in the cell populations disappear and the number of quiescent cells
is much lower. Reproduced with permission from [BAOMM].

the results from our model. An alternative explanation invokes vessel renor-
malisation [Jain88], and it is now a challenge to the experimental community
to devise experiments to distinguish between these possibilities.

Abnormal vascular adaptation alters the tumour’s growth dynamics

As mentioned in Section 17.3.1, there is still no good (experimental) model
available for vascular adaptation in tumours. It is known, however, that the
tumour neovasculature is abnormal in its response mechanisms to signalling
cues. Therefore we can use the above model framework to investigate the
effects on tumour growth and composition of the failure of different adaptation
mechanisms [AOBMO06]. This presents the intriguing possibility of being able
to determine properties of the vasculature by examination of tumour tissue.
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Vessel dematuration reduces the efficacy of chemotherapy

As a further extension of our model, we have incorporated tumour-induced
vessel dematuration to assess the effect of vessel structure on the performance
of chemotherapeutic agents [RMZAM, AOBMO06]. We have found that demat-
uration can lead to the formation of quiescent regions that are much larger
than those observed in simulations with a normal vasculature, thereby ham-
pering the efficacy of cytotoxic drugs designed to target rapidly proliferat-
ing (tumour) cells. A further extension has been to include a diffusible anti-
VEGFR drug which inhibits the effect of VEGF by competitively binding its
receptor [AOBMO06]. Our model simulations reproduce two key experimental
features: an improved response to cytotoxic drugs following treatment with
an anti-VEGFR drug and the emergence of a “window of opportunity,” i.e.
a period of time following treatment with anti-VEGFR during which such
improvement is possible. The window opens because the anti-VEGFR drug
induces extensive hypoxia within the tumour. This leads to massive VEGF
production and a certain amount of cell death caused by oxygen starvation.
The surge in VEGF levels stimulates remodelling of the vasculature, bringing
oxygen to the hypoxic regions. This effect, coupled with the reduction in oxy-
gen demand caused by cell death there, leads to reoxygenation of the hypoxic
regions and a temporary reduction in the size of the quiescent subpopulation.
As other regions of the tumour become hypoxic and blood flow undergoes
another period of adaptation, the window of opportunity closes.

Explicit incorporation of angiogenesis alters the tumour’s growth dynamics

While vessel radii and blood flow within the branches of the vascular network
may change over time and, thereby, regulate the supply of nutrients to the
tissue, the morphology of the vascular network in the simulations presented
above does not change over time. More specifically, the hexagonal symmetry of
the network is fixed, angiogenesis is not incorporated explicitly and redundant
branches of the network in which blood flow is low do not regress. We have
recently modified our model to address these issues [OAMBO8], and results
from a typical simulation are presented in Fig. 17.7. As the tumour grows and
the metabolic demands of the tissue change, VEGF stimulates the ingrowth
of new capillary tips towards quiescent regions where VEGF levels are high.
Capillary tips that connect successfully to the network alter the morphology
of the vasculature and, thereby, alter the pattern of blood flow within, and
nutrient supply to, the tissue. As a result of the new connections, the flow
through existing vessels may fall and, if low flow (and, hence, low wall shear
stress) is maintained for a sufficiently long period, then the vessel is pruned
or removed from the system.

For comparison with the basic model, in which angiogenesis is treated im-
plicitly, we present in Fig. 17.8 spatially averaged time-activity curves showing
how the coupled dynamics of the tumour and vasculature depend on the way
in which vascular adaptation is modelled. The main features to note are the
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Fig. 17.7. Results from a simulation in which angiogenesis is incorporated explic-
itly into the vascular remodelling algorithm, thereby allowing the development of
arbitrary, asymmetric vascular networks. The plots show the evolution of a small
tumour that is embedded, at ¢ = 0, into a tissue perfused initially by a hexago-
nal network of blood vessels. Over time, the structure of the vasculature changes,
with existing vessels remodelling and new vessels forming as a result of angiogenesis.
The new capillary tips emerge from existing vessels and migrate, via chemotaxis,
towards regions of high VEGF concentration. The capillary tips must form connec-
tions, and establish a flow, within a fixed period of time; otherwise they regress. The
four images show the tissue composition at times ¢t = 0.00, t = 2.22, t = 5.55 and
t=11.11.

increase in the number of proliferating tumour cells and the decrease in the
number of quiescent tumour cells that occur when angiogenesis is treated ex-
plicitly rather than implicitly. These changes are a consequence of the higher
spatial resolution that occurs when individual capillary tips are simulated:
VEGTF produced by quiescent tumour cells will now stimulate the ingrowth of
new capillary tips into that region and enable the cells to resume proliferation.

Since our new model distinguishes between blunt-ended capillary tips (in
which flow is absent) and vessels which are part of the flow network, it should
be possible to generate more detailed predictions concerning the relative effi-
cacy of drugs that target proliferating endothelial cells and those that reduce
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blood flow. Additionally, it will be possible to determine whether low levels
of chemotherapy targeted at proliferating tumour cells produce an additional
beneficial effect by destroying angiogenic tumour vessels and, thereby, reduc-
ing the supply of nutrients to the tumour mass [Sha06].

Quiescent

Mean
radius (um)

0 5 10 15 20 25 30 35 40 45 50
Time, t

Fig. 17.8. Series of plots showing how the evolution over time of the numbers of
proliferating (upper panel) and quiescent (second panel) tumour cells, mean vessel
radius (third panel) and number of vessels (lowest panel) depends on the mechanisms
that control vascular remodelling. Key: Dotted line, remodelling of the vasculature is
independent of VEGF; Dashed line, VEGF enhances vascular remodelling by stimu-
lating vessel dilation; solid line, VEGF enhances vascular remodelling by stimulating
angiogenesis.

17.4 Colorectal Cancer

Colorectal cancer (CRC) was the second most commonly diagnosed malig-
nancy in Europe in 2006 [Ferl07]; it also ranked second according to cancer
mortality. Most CRCs occur spontaneously, developing from pre-existing, be-
nign polyps (or adenomas), which originate from the epithelial sheet that
lines the luminal surface of the bowel. The intestinal epithelium is charac-
terised by numerous invaginations (Fig. 17.9), or crypts, which drive its rapid
self-renewal. Near the bottom of the crypts, a small number of stem cells pro-
liferate continuously, producing transit cells, which divide several times before
undergoing terminal differentiation. At the same time, cells migrate upwards
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Apoptosis

> Differentiated cells

.

PROLIFERATIVE HIERARCHY

Transit cells

} Stem cells

Fig. 17.9. Schematic of the proliferative hierarchy in a normal colonic crypt.
Murine crypts contain about 235-250 epithelial cells, which reside on a basement
membrane. Proliferating cells (i.e. stem and transit cells) occupy the lower third
of the crypt. After several divisions, transit cells differentiate into the various cell
types that constitute the epithelium (e.g. columnar cells and goblet cells).

along the crypt axis and, when they reach the orifice, initiate programmed
cell death (apoptosis). Thus a normal crypt can be viewed as a dynamic sys-
tem in which the processes of cell proliferation, migration, differentiation and
death are tightly coordinated by intra-, inter- and extra-cellular cues. Un-
der aberrant conditions genetic and epigenetic alterations cause dysfunctional
regulation and loss of homeostasis, eventually leading to the formation of a
polyp. Further mutations are required for progression towards a malignant,
metastatic carcinoma. Hence, CRC is a multistep, multiscale process in which
the progressive accumulation of changes at the molecular level translates into
subsequent pathological stages at the macroscale level.

CRC is a natural subject for mathematical investigation because many of
the key mutations that arise have been identified and details of their functional
effect determined. For example, most CRCs bear inactivating mutations in the
APC tumour suppressor gene [Ilya05]. This multifunctional protein is a cen-
tral player in Wingless/Int (Wnt) signalling, a key pathway in the regulation of
normal crypt dynamics [Nath04, Sans04]. In the absence of extracellular Wnt,
a protein complex that includes Apc marks any free S-catenin molecules for
rapid degradation. In contrast, when extracellular Wnt is present, stimulation
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of specific receptors on the cell’s surface inactivates the Apc-complex and -
catenin accumulates. This protein then travels to the nucleus where it induces
the expression of a large number of Wnt targets, including genes involved in
cell-cycle control, active migration and differentiation. Genetic alterations de-
tected in CRCs generally impede Apc-mediated (-catenin degradation, and,
hence, have the same effect as a continuous Wnt signal.

Since CRC has been extensively studied, it is not surprising that a plethora
of mathematical models exist that address various aspects of the disease (for a
critical review, see [vLBJKO06]). For example, as early as 1954, Armitage and
Doll [Armi54] developed a stochastic “time to tumour” model, to describe
the observed age-dependent CRC incidence. More recently, Komarova and
Wang [Koma04] have investigated the likely targets for malignant transfor-
mation in the crypt, while d’Onofrio and Tomlinson [dOno07] and Johnston et
al. [JEBMC] have analysed the cellular changes that can lead to uncontrolled,
exponential growth. We introduce here a series of models that simulate dif-
ferent aspects of the normal gut and CRC. Thereafter, we explain how we
are adapting, extending and integrating these models to obtain a detailed,
mechanistic multiscale model of CRC [vLEIB, Gava05].

17.4.1 Mathematical Modelling

The earliest models of normal crypt dynamics are formulated on simple two-
dimensional (2D) grids (the cylindrical crypt is cut open and rolled out to give
a surface), with cells assumed to move within predefined rows and columns
[Loef86, Paul93]. All cells have the same, constant (rectangular) shape and
size, and cell growth is thus ignored. Proliferation and cell-cycle control are
modelled by assigning cell-cycle times to daughter cells immediately after
division. Cell movement is driven by mitotic pressure: displacements occur
naturally when newborn cells are inserted into the grid. Finally, the rules that
govern whether a cell differentiates differ for stem and transit cells. After stem
cell division, each daughter cell has a certain probability of leaving the stem
cell pool and becoming a transit cell. In contrast, transit cells differentiate
terminally after a fixed number of divisions. In summary, the 2D grid models
can be viewed as basic multiscale models: a 2D tissue is characterised by the
behaviour of its cellular constituents, each of which carries its own subcellular
cell-cycle time and a record of its differentiation status.

Despite their simplicity, 2D grid models have been successfully used to in-
terpret experimental data concerning cell migration and differentiation in the
crypt [Loef86, Paul93]. The main drawback with the 2D approach is that the
insertion of newborn cells inevitably shifts a whole column of cells upwards,
breaking many cell-cell contacts. This is physically unrealistic as epithelial
cells are known to have strong cell-cell connections so that they may form a
protective barrier between the body and the contents of the gut. To overcome
this deficiency, Meineke et al. [Mein01] proposed a 2D lattice-free model in
which cell centres are represented as points that can occupy any position on a
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2D surface with cylindrical boundary conditions. Polygonal cell shapes, which
resemble real epithelial cells, are then determined from the associated Voronoi
diagram while cell-cycle control and differentiation are incorporated as in the
2D grid models. Migration and cell-cell adhesion are accounted for by assum-
ing that neighbouring cells are connected by damped springs and balancing
the forces due to the spring connections with damping forces associated with
cell-substrate binding (see Fig. 17.10). Hence, the position vector z; for cell 4
at time t + At is determined from its position and that of its neighbours at
time t as follows:

mit + 00 = 3u(®) + £ 3 us()(ds () - Ly®)At (172)
Vi

where the summation is over all cells connected to cell ¢ at time ¢, u;; is a
unit vector pointing from cell ¢ to j, L;; is the equilibrium spring length,
d;; the distance between i and j, o the spring constant, and 1 the damping
constant. In contrast to the 2D grid models, cell division now results in local
cell rearrangements only.

u, ()
>

Fig. 17.10. Schematics illustrating the lattice-free approach developed in [Mein01].
(Left) In silico cells attached by springs. (Right) In silico 2D tissue, showing cell
centres (black nodes), vertices (white nodes) and the associated Voronoi tesselation
(solid lines). The related Delauney triangulation (dashed lines) is obtained by con-
necting all neighbouring nodes and defines the network of springs. Reproduced with
permission from [vLEIB].

17.4.2 Multiscale Model Assembly

The spatial models described above do not account for subcellular pathways
and are, therefore, unable to predict the impact of specific genetic alterations
(e.g. mutations in the Wnt network) on crypt dynamics. Nor can they be
used to explore potential interactions between phenomena occurring at dif-
ferent levels of organisation or to evaluate the impact of cancer drugs on the
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system. These aims can be achieved by developing a multiscale framework (see
Fig. 17.11) that embraces each level of organisation, from molecule to whole
organ, in a manner similar to that used to formulate the multiscale model of
vascular tumour growth presented in Section 17.3. Building such a framework,
and coupling models developed originally to describe phenomena at a single
scale, raises many mathematical challenges, four of which we highlight below.

Subcellular
Gene expression

r Apoptosis machinery
Cell-cycle control

Cytoskeleton
Cellular Whnt signal transduction
Division Metabolism
Cell size
Apoptosis
Morphology
Position/Movement
Function
Differentiation Tissue

Extracellular Wnt
Extracellular mutagens
Nutrients, pH, oxygen
Mechanical environment

Fig. 17.11. Prototype multiscale model for normal crypt dynamics and CRC.
The arrows highlight that the relation between the scales is not simply bottom-up.
An extracellular, tissue gradient of Wnt factors, for example, can directly affect
subcellular gene expression.

Incorporating extracellular signalling

In the basic model developed in [Mein01] all cellular processes are assumed to
be independent of extra- and intra-cellular signals. Experimental evidence sug-
gests, however, that epithelial cells respond to spatial variations in: the compo-
sition of the basement membrane; the signals emitted by myofibroblasts; and
the level of Wnt factors. By imposing an extracellular Wnt gradient along



468 H.M. Byrne et al.

the vertical crypt axis and using simple models of the (intracellular) Wnt sig-
nalling pathway [Lee03, vLBJKO07] we are able to predict position-dependent
patterns of gene expression. Coupling the Wnt-signalling model with a cell-
cycle model (e.g. [Swat04, TNO1]) provides additional information about how
cell-cycle times vary along the crypt axis and how terminally differentiated
(i.e. non-cycling) cells are generated.

Controlling cell size

In the 2D grid models cell sizes are fixed, whereas in [Mein01] cell size is
controlled by the relative spatial position of neighbouring cells. In reality,
however, cell size depends on nutrient availability, the cell’s metabolic rate,
its progress through the cell cycle and contact inhibition. Better control of
cell growth and size is thus needed. Cell vertex models, for instance, achieve
this goal by associating with the system an energy function which increases
as cells deviate from their optimal sizes [Brod04]. Cells are assumed to move
in directions that minimise the energy function.

Including cell death

In existing models cell removal occurs only when cells are pushed off the up-
per edge of the 2D surface. Apoptosis can, however, occur within the crypt
at rates which are enhanced by certain experimental manipulations, such as
Apc knockout [Sans04] and irradiation [Pott94]. To simulate and explain these
results, our model must account for biochemical networks that regulate pro-
grammed cell death, biomechanical cell detachment and the resulting changes
at the cellular level. At the macroscale, this poses the additional problem of
dealing with gaps in the tissue.

Modelling domain growth

In the models described above, the 2D surface remains fixed during the simu-
lation period. Although this may be a good approximation for normal crypts,
a more flexible approach is required to describe the changes in crypt size and
morphology associated with aberrant crypts and polyp formation. The model
of morphogenesis and crypt fission developed in [Dras01] provides one possible
resolution to this problem. In [Dras01] Drasdo and LoefHler consider a 1D lon-
gitudinal section of a crypt, represent individual cells as deformable circles and
assume that migration is driven by cell division. Alternatively, the continuum
model of crypt fission developed by Edwards and Chapman [Edwa07] could
be adapted to allow for changes in crypt size caused by genetic mutations.
In [Edwa07] the epithelial cells are treated as a continuous tissue layer that is
attached to a basement membrane by viscoelastic bonds. Model simulations
suggest that mutations causing either a net increase in cell proliferation or an
increase in the strength of cell bonding can lead to buckling and fission.
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17.5 Discussion

We have presented a series of multiscale models of cancer growth, focused on
carcinogenesis in early ductal carcinoma in situ, vascular tumour growth and
colorectal cancer. While we have focused on three particular applications, it
is important to note that this is a rapidly growing area of research. For exam-
ple, Jiang et al. [JPCF] have formulated a multicellular model to simulate the
growth of multicellular tumour spheroids, using a discrete lattice Monte Carlo
model to describe the cellular dynamics and a Boolean network to model the
expression of proteins that control the cell cycle. Equally, Patel et al. [PGLG]|
have developed a model for early tumour growth and metabolism that con-
siders the interaction of native tumour vascularity and increased glycolysis.
Anderson and colleagues [AWCQO06, GAO07] have investigated the effects of
heterogeneity in the tissue and nutrient levels on the dynamics of tumour
growth and have combined this with mutation and evolution to show mecha-
nisms whereby the classical fingering morphology of a tumour can arise and
how the microenvironment can select certain genotypes. Macklin and Lowen-
grub [MLO07] have focused on the biomechanical aspects of a growing tumour
mass to predict fingering as a result of microenvironmental factors. Ribba et
al. [RCS06] have developed a model for colorectal oncogenesis which includes
a Boolean description of a genetic model, integrated with a discrete model
of the cell cycle and a continuous macroscopic model of tumour growth and
invasion. They have used this model to predict the effects of radiotherapy.

While considerable progress has been made in a very short time, many chal-
lenges remain ahead. For example, it is impossible (and not desirable) to have
a detailed comprehensive model of every process involved in tumour growth.
Simplifications need to be made. In modelling a process at one specific spatial
scale, we have well-established techniques for determining the errors incurred
in making such simplifications. However, when we couple such models into an
integrated framework spanning several spatial scales with multiple feedback,
as well as feedforward, loops, we have little idea of how errors propagate and
grow: to understand this is a huge challenge for the future.

The multiscale approaches outlined in this paper appear to be the natural
framework for modelling in this area, but they quickly become computation-
ally infeasible as we try to model a growing tumour consisting of billions of
cells. For that we need a continuum approach, but it is not clear how to
interface between discrete models (appropriate for small cell numbers) and
continuous models, appropriate for large-scale models.

Biological systems are highly robust and therefore we would expect the
behaviour of the system to be insensitive to many parameters but crucially
dependent on a few select parameters. Therefore, for modelling we may only
need crude estimates for most parameters. Model simulations can be per-
formed to identify those parameters to which the system dynamics are most
sensitive and thus direct experimental effort to focus on accurate measure-
ments of these parameters. To be successful it is therefore vital that model
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development be undertaken in close collaboration with experimentalists, and
that experimental design and data collection pay attention to the needs of

models.
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