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Abstract

Understanding the mechanisms governing and regulating the emergence of
structure and heterogeneity within cellular systems, such as the developing
embryo, represents a multiscale challenge typifying current integrative biology
research, namely, explaining the macroscale behaviour of a system from
microscale dynamics. This review will focus upon modelling how cell-based
dynamics orchestrate the emergence of higher level structure. After surveying
representative biological examples and the models used to describe them, we
will assess how developments at the scale of molecular biology have impacted
on current theoretical frameworks, and the new modelling opportunities that are
emerging as a result. We shall restrict our survey of mathematical approaches
to partial differential equations and the tools required for their analysis. We
will discuss the gap between the modelling abstraction and biological reality,
the challenges this presents and highlight some open problems in the field.

Mathematics Subject Classification: 35—02; 35—R99; 92—02; 92B05; 92C15;
92C17; 92C37

PACS numbers: 82.40.Ck; 87.10.—e; 87.10.Ed; 87.17.Pq; 87.18.Ed; 87.18.Hf

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The staggering variety in biological form is remarkable given the relatively small number of
underlying mechanisms by which biological self-organization and morphogenesis proceed.
In particular, the fundamentals governing how individual cell interactions create phenotypic
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structure are typically rooted in a relatively small number of similar principles, usually
utilizing analogous, often homologous, proteins and evolutionary, conserved pathways [1].
It is differences in the temporal and spatial regulation of these mechanisms that typically
result in the complexity that we see [1]. Consequently, our understanding of biological self-
organization is often amenable to, and enhanced by, mathematical and computational modelling
addressing the emergence and regulation of temporal and spatial complexity from fundamental
mechanisms operating ultimately at a cellular level.

Given the importance of both spatial and temporal variation, partial differential equations
(PDE?5) are often, but certainly not always, a sensible mathematical framework for investigating
large-scale structure formation. We will outline representative examples of such modelling
investigations before reviewing how modern biological developments are revealing limitations
in current modelling frameworks and highlighting exciting opportunities for novel theoretical
studies.

1.1. Examples of self-organization in cellular and developmental biology

Developmental biology is replete with examples of self-organization. While the fertilized
egg does exhibit polarity, it is a single cell from which numerous cell types, and structure,
ultimately emerge. Questions immediately arise as to how do individual but genetically
identical cells ‘know’ when and where to create or respond to signals, express genes, synthesize
proteins, differentiate, migrate or divide. The principle mechanism for this is differential gene
expression, whereby both long- and short-range signals are utilized to enforce tight spatial and
temporal control over gene expression, thus robustly ensuring the pattern of differentiated cell
types necessary for embryological development.

Numerous aspects of such dynamics have been considered from a theoretical perspective
to systematically interrogate putative self-organization mechanisms, assist our insights and
extract predictions of, or empirical tests for, their consequences. An illustrative selection of
examples includes the following:

(a) mechanisms for axis formation, for example, left—right polarity initiation in the mouse
[2-4];

(b) heterogeneous cell fate decisions, including the roles of Nodal and Lefty gene products
in left-right polarity signal amplification [2, 5], cell fates in the zebrafish mesoderm [6],
the induction of neural tissue in the frog [1], patterning in the Drosophila wing [7] and
hair follicle formation [8];

(c) controlled cell migrations, illustrated by gastrulation, lung morphogenesis and nervous
system development [9—11];

(d) skeletal morphogenesis, for example the formation of somites [12, 13] and limbs [14—-17];

(e) the formation of skin patterns, typified by mammalian coat markings [18-20] and feather
bud arrangements [21, 22];

(f) fine-grained patterning, illustrated by lateral inhibition within delta-notch signalling [23];

(g) adhesion-driven cell sorting [24, 25].

Figure 1 illustrates four examples of self-organization in developmental biology, including
coat markings, limb/digit, somite and feather bud formation. Cellular biological pattern
formation is far from restricted to developmental biology, however. The formation and
changes in the markings of fish, such as the Angelfish Pomacanthus [26] or the Foxnl-mutant
mouse [27], are representative examples in which higher levels of marking structure evolve
later than the developmental stage. In addition, there are numerous examples where the
structure emerges because of interactions between individual organisms rather than within an
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Figure 1. Examples of self-organization in biology. Clockwise from top-left: feather bud
patterning, somite formation, jaguar coat markings, digit patterning. The first is reprinted from
Widelitz et al 2000, B-catenin in epithelial morphogenesis: conversion of part of avian foot scales
into feather buds with a mutated S-catenin Dev. Biol. 219 98-114, with permission from Elsevier.
The second is courtesy of the Pourquié Laboratory, Stowers Institute for Medical Research, and
the remainder are taken from the public image reference library at http://www.morguefile.com/.

(a) Activator (b) Inhibitor
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Figure 2. Numerical simulation of a Turing model with Gierer—Meinhardt kinetics, as given by
equations (22) and (23). The field is initially at the homogeneous steady state, with small random
perturbations added to the activator profile. Diffusion-driven amplification of the heterogeneities
results in a steady state array of peaks and troughs; the activator (1) and inhibitor (v) are ‘in-
phase’. Zero flux boundary conditions are imposed and D = 30, b = 0.35, as in [60]. The model
equations were solved using a finite difference scheme, including complex step differentiation for
the Jacobian evaluation [61].
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individual organism. Common examples at the cellular level include self-organization due
to the combination of motility and signalling within swarming bacteria [28,29] and social
amoebae such as Dictyostelium discoideum [30].

1.2. A framework for PDE modelling of self-organization

The most common principle for modelling self-organization in developmental biology using
PDEs is the law of conservation [31]. With 92, an arbitrary surface enclosing a time-
independent volume €2,, then the rate of change in the amount of material inside 2, must
equal the net flux of material across the surface 92, plus the net production of material in €2,.
Thus

3/ u(e, £)dV = — J-ds+/ Fux, 0 dV, )
ot Ja, 9% Q

where u(x, t) represents the amount of material at x at time 7, J the flux of material and f the
net rate of production of u. Application of the divergence theorem yields

0
/ {—u+V-J—f(u,x,t)}dV=O. )
o, | 01
Since the volume €2, is arbitrary, the integrand must be identically equal to zero and hence
a
8—”; — V. T+ fu,x, 0. 3)

The system is closed by specifying suitable initial and boundary conditions and the result can
be generalized in an obvious manner to include multiple, interacting species.

1.2.1. Derivation of the flux. The material flux can arise from many sources and its
specification becomes the next problem to be faced. Most simple is advection of the material
with velocity v; this results in a flux of the form J = vu. Diffusion is an alternative, common,

transport mechanism; most frequently employed is the Fickian formulation, J = —DVu,
which yields

0

8—”; — DV2u + f(u,x, 1), o

so that the material moves down gradients of its own density. However, such a formulation tends
to imply that diffusion is a short-range effect: this can be seen by considering the Laplacian
operator in the absence of material production [31]:
V2 o lim W) U 1), )
R—0 R?
where (u(x, t)) is the average density of material in a sphere of radius R centred about the
point x,

3
(ulx, 1)) = 17 R /h u(x+r,t)dr. (6)
sphere

Expansion of the integrand about x for small r gives

(u(x, 1)) = / [u(x, )+ . Vux, 1) + %(r.V)zu(x, £+ } dr,
sphere

4 R3

1
=u(x, 1)+ Eszzu(x, D+, (7

since the second term in the integrand evaluates to zero. This is of the form of equation (5)
with constant of proportionality 1/10.

Other forms for the flux are discussed in more detail in section 2.2—in general they assume
phenomenological forms which are based on qualitative observations.
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1.2.2.  Integro-differential formulation. = Another common framework is an integral
formulation, so that the rate of change in material density at x is dependent on the density
at neighbouring positions x + r. This leads to an integro-differential equation of the form

ou

— = f(u,x, t)+f w@ux+r,t)dr, (8)
at R3

where w is a kernel which quantifies the effect of material in the environment upon u(x, ?).
Any constraints placed on w are dependent on the biological system under consideration.
Typically one might assume that w is homogeneous and isotropic and that the influence becomes
negligible as the distance from x becomes large [32]:

w—0 as |r] > oo, w = w(|r|). O]
Such formulations have been used to model, for example, the effects of cell adhesion and cell
sorting according to different cell-cell adhesion strengths [24, 33].
A Taylor expansion of the density function contained in the integrand, on use of the
isotropy of w, gives rise to

8_u = f(u,x,t)+ f w(r) [u(x, H+@EVulx,t)+ l(r.V)zu(x, t)+-- ] dr,
at R3 2

= f(u,x, 1) +wou +wrV - (Vu) + wgV - V(VZu) + -, (10)
where, assuming convergence,
_ 1 2j
Wy = (z—j)!/Wr w(r)dr. (11)

Depending on the form of w, it may be expedient to truncate the expansion after a finite number
of terms, yielding a higher order PDE. For example, it is immediately obvious that truncation
of the approximation after the 4th order contribution results in an equation of the form

0
a_bzt — f(u,x, 1) +V - [D1Vu — DV (V)] (12)
This type of formulation is often used by modellers to describe the ability of cells to sense

non-locally due to their finite size—see, for example, [34].

1.2.3. Alternative derivations. There are, of course, several other methods of deriving PDE
descriptions of movement—we briefly outline a couple in this section.

Velocity jump processes, in 1D for example, consider the density of left- and right-
moving particles which reverse their direction of motion at random instants of time at rate
A, say. Denoting the probability densities of left- and right-moving individuals by p_ and p,,
respectively, and particle speed by s > 0 gives [35]

op_ ap_

s = Apy — p), 13
o oy P+ —p-) (13)
dp+ 9p+

+ = Ap- — p+)- 14
5 S x (p-—p+) (14)

Letting p = p_ + p, gives the Telegraph equation [36]

?p . dp _ ,3%p

P )P _20P 15

ar? ot dx2 (15)
which in the limit A — oo and lim,_, o s> /2A— D (constant) results in the classical diffusion
equation, excluding behaviour at the extremes of the wavefront where the singular asymptotic

limit, switching between hyperbolic and parabolic behaviour, becomes important.
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On the other hand, space jump processes suppose particles change their position at random
instants of time. Considering jumps of length 4, space can be denoted by a set of grid points,
x;, of separation A, such that P;(t), the probability of finding an individual at x; at time ¢,
evolves according to the equation [37]

P,
S =d [P 2P0 + P (0] (16)

where d is the (constant) transition rate per unit time. Letting the step size, &, tend to zero,
expanding the terms P;y; about x; and assuming that limj_.¢ dhr* =D gives once again the
diffusion equation.

These formulations, and others, have been derived in considerably more generality than
we can feasibly survey here and we refer interested readers to the literature [35, 37-39].

1.3. The suitability of PDEs for modelling biological self-organization

As motivated above, classical modelling studies in biological self-organization have often
focused on differential equations. For simple systems, exact analytical solutions may be
possible. Where they are not, separation of space and time scales or the exploitation of
some other small parameter enables the use of multiscale asymptotic approaches which give
excellent insight into system behaviour under different parameter regimes. As the number of
model components becomes too unwieldy or the interactions too complex for such approaches,
increasingly sophisticated computational methods allow accurate numerical approximations
to be calculated over a wide range of parameter space.

Nonetheless, one should be aware of the limitations of this type of modelling. The flux
and/or production terms in the conservation formulation are often phenomenological, without
derivation from universal or fundamental principles. In addition, as the material density
becomes low stochastic effects can become significant. Finally, tortuous cellular level geometry
complicates the investigation of spatial fluctuations at the cellular scale and the possibility of
large variations among neighbouring cells prevents straightforward use of a continuum limit.

However, with careful consideration of these pitfalls and awareness of when and where
techniques can successfully be applied, PDEs remain one of the most useful and insightful
tools for modelling self-organization in developmental biology.

1.4. Wider context

Although this review will focus on self-organization in biology, it is important to note that the
general phenomenon of pattern formation has motivated an enormous amount of mathematical
modelling and analysis, most of which is beyond the scope of this review. However, we
refer interested readers to the seminal paper of Cross and Hohenberg [40], which reviews
theoretical approaches to spatial pattern formation in hydrodynamics, solidification fronts,
nonlinear optics and chemical reactions, in addition to biological phenomena, and the books
by Britton [41], Fife [42], Grindrod [43] and Hoyle [44]. These references carry out detailed
analytic bifurcation studies of coupled systems of PDEs using a wide range of mathematical
approaches to address issues such as pattern selection, marginal stability, effects of boundaries
and geometry, as well as investigating oscillatory behaviour, propagation of pulses and fronts,
external forcing, effects of external noise, chaos and turbulence.
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2. An overview of the PDE models of self-organization

It is possible to classify the archetypal PDE models for self-organization in development into
two broad categories. In the first, chemicals (termed morphogens) specify a pre-pattern for
future differentiation without interaction from the cells themselves. In the second, patterning
occurs with feedback from the cells on any chemical or physical constituents that may be
playing a role in the organization of the system; these are generally referred to as taxis models.
Both can be derived from conservation equations taking the form

on 0 m

o= - V.- J"+f'(n,u,x,1), (I7)
0

a—l;= — V. J+f (n,u,x, 1), (18)

where u represents the material concentration of biochemical species and n the density of
different cell types. J*/* and f"/* are as before but, importantly, they now also describe the
interactions between the model species.

In order to distinguish between pre-pattern and taxis models, we non-dimensionalize in
the following manner:

on

7 = —v. 7 +f @, a5 0, (19)
n% = —v.-J'+f @, a,%0, (20)

where the tildes denote non-dimensional variables and 7 is the ratio of time scales of
biochemical changes to the cellular response (to biochemical signals). A number of possible
cases arise, two of which are most interesting from the point of view of discussions here.
Firstly, in the case that J* and f* are independent of r, the chemical dynamics decouple from
the system and cellular dynamics are slave to the chemical pattern. Further, when n < 1, so
that the cellular response occurs significantly more slowly than the time scale of biochemical
changes, the biochemical species are at a steady state to leading order in 7, at least once any
initial transients have dissipated. Consequently, we have a pre-pattern that directs future cell
differentiation.

In the rest of this section we give an overview of the paradigm models for self-organization,
outlining in each case examples of their use in modelling developmental systems.

2.1. Morphogen models

A morphogen refers to a diffusible signalling molecule, typically within a developmental
setting, that exerts a graded effect. In particular, cells exhibit a differential response to
the morphogen concentration [1,45] or possibly the history of morphogen concentration
[46,47]. A standard example is the response of cells surrounding a source of morphogen,
whereby the gradient in morphogen concentration induces a spatially heterogeneous cellular
response. Textbook examples of this include the Sonic hedgehog (Shh) protein in chick limb
development [48-50] and the signalling protein Decapentaplegic (Dpp) in Drosophila wing
imaginal disc development [51, 52]. Often, the long-range action of a morphogen is curtailed by
the effects of an antagonist, or inhibitor, and it is the interplay of these proteins that determines
the ultimate response; examples include the induction of neural tissue in the frog [1] and
specification of the somites [53,54]. Generally this conceptual framework is standard in
development [1,45]. A modelling framework for such systems via reaction—diffusion PDEs is

2_’: =V . (DVu) +fu,x,1), @h
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on a bounded domain, usually with Neumann, Dirichlet or Robin boundary conditions. Sources
and sinks of morphogens can be incorporated via Neumann conditions and/or included in the
function f. In complete generality one may consider such equations on numerous neighbouring
domains or with a spatially varying diffusion matrix, D. An example of such a model considers
the robustness of patterning due to the gradient of the signalling molecule BMP in the dorsal
region of the Drosophila embryo where the domain is split into three regions (the neural
ectoderm, the mesoderm and the dorsal region) [55].

2.1.1. Turing models. ~An important special case of the morphogen model, ubiquitous in
theoretical studies, is the eponymous Turing model first considered in the 1950s [56]. This
imposes additional constraints on D and f in equation (21) and precludes the possibility of
spatially inhomogeneous transport or reaction coefficients. In particular, in the absence of
diffusion, and thus spatial heterogeneity, the model exhibits a stable homogeneous steady
state. This steady state is however also required to be unstable in the presence of diffusion.
The fact that stability is lost on introducing spatial heterogeneity via a diffusive transport
process is initially counter-intuitive in that diffusion, in the absence of reaction kinetics, acts to
drive a system to its homogeneous steady state, rather than destabilize it. General, necessary
and sufficient, conditions for a Turing instability for equations (21) on an n-dimensional spatial
domain are presented in the literature [57] and two component analysis can be found in most
textbooks (see below and, e.g. [32]).

In particular, for a system consisting of two morphogens one requires the concept of
‘short-range activation, long-range inhibition’ for a Turing model [58]. Thus one of the
morphogens, denoted the activator, has to catalyze its own production and be inhibited by
the second morphogen. In addition, the activator has to have a smaller diffusion coefficient
and thus have a smaller range of influence. Without these biologically restrictive constraints,
a Turing instability cannot occur.

Figure 2 shows the results of the numerical simulation of a Turing morphogen model using
Gierer—Meinhardt kinetics [59] of the form

9 2

M ov. v+ L —pu, (22)
Jat v

ov 2

S =V (DY) +ul v, (23)

where D and b are positive constants. Amplification of small fluctuations in the activator field
leads to a regular array of peaks and troughs in both activator and inhibitor concentrations.

An important consequence of such a model is that for a sufficiently small domain,
significantly smaller than the diffusive length scale, the homogeneous steady state will be
stable. However, increasing the domain size results in the diffusively driven spatial variation
becoming non-negligible and thus a bifurcation to spatial heterogeneity. This provides a
mechanism for the initiation of structure from fluctuations. As such, this subset of morphogen
models is more fundamental than the general model. When examining the consequence of
distributions of BMP in models such as those presented by Eldar [55], one considers the
downstream effects of an implicit earlier heterogeneity (for example, the fact that the domain
is already split into three regions). In contrast, Turing models are capable of representing the
initial symmetry breaking event and/or amplifying the smallest of fluctuations into a large-scale
spatial pattern.

This is a very important distinction. Morphogen-based pattern formation, whereby
signalling molecules’ long-range influence induces a higher order of structure, is a common and
validated paradigm in developmental biology [1, 45]. The Turing pattern formation mechanism
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within a morphogen system, in contrast, is still to be definitively validated in developmental
biology. Potential candidates for Turing morphogens are Nodal and Lefty in the amplification
of an initial signal of left-right axis formation [2, 5] and zebrafish mesoderm cell fates [6],
plus Wnt and Dkk in hair follicle formation [8] and TGF-8 as the activator, plus an unknown
inhibitor, in limb bud morphogenesis [62].

A difficulty with the Turing model concerns the ratio of activator to inhibitor diffusion
coefficients. Even models which consider a direct comparison with experiments take this
ratio to be much less than unity; for example, in [8] it is taken to be 0.025 without biological
motivation. However, it is unlikely that such small ratios exist in the absence of a large ratio of
molecular sizes for the Turing morphogens. Arguably unrealistic ratios of diffusion coefficients
for ATP and ADP have also been used in simple models illustrating that Turing patterns can
potentially occur at the subcellular level for the glycolytic reaction [63]. In preparation for
our discussion on future modelling opportunities, we will show that while Turing patterns
can occur in two variable systems with nearly equal diffusion rates, this requires an extreme
fine-tuning of reaction rate constants.

The Turing instability for nearly equal diffusion coefficients. Consider a two component
system u(x, t) = (u(x, t), v(x, t)) satisfying the reaction—diffusion equations
u
5= DV?u +f(u), xeQ, tel0,00), (24)
where D = diag(D1, D) is a diffusion matrix, f(u) = (f(u, v), g(u, v)), Q is a bounded
domain and the initial conditions are denoted by u(x, 0) = u(x). For definiteness, we consider
homogeneous Neumann boundary conditions, that is

n-Vu=n-Vv=0, X €092, (25)

where n is the outward pointing normal on 9S2. We assume the kinetics are such that there
is a unique, positive, homogeneous, linearly stable steady state, denoted u,. Now consider a

small perturbation about this steady state of the form
u(x,t) = u, + eRe[e™ uwy (x)], (26)

where u;, is a constant vector and the function wy (x) is not identically zero and satisfies the
eigenfunction equation

Vi = —k*wy, 27)

on the domain €2, inheriting boundary conditions from the full problem. This fixes the allowed,
constant, values of k.

Note that k£ must be real. Indeed, suppose V2w = pw, where 1 and w are, in general,
complex and w is constant. Then a standard manipulation of equation (27) and its complex
conjugate firstly yields

(u* — ”“)/Q lw|>dV = /Q[wvzw* —w*'Viw]dV =0, (28)
and thus the eigenvalue, w, must be real. Its negativity follows from

0= /Q [w*Vzw - uw*w] dv, (29)
which implies

_fg Vw - Vw*dV _fQ Vw2 dV
JowrwdV [ w[2dV

= (30)
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Thus we can write @ = —k?, with k real.
We proceed by substituting (26) into (24) and working to leading orders in €, as befits a
linear stability analysis. This reveals that a non-trivial perturbation requires

det|\ d — J+ k°D| =0, 3D
where
J — (fu fv> , (32)
gu gv

is the Jacobian matrix of the kinetics f evaluated at the steady state u,. A Turing instability,
i.e. a diffusively driven instability, requires both (i) Re(Xy) < 0 and (ii) Re(A;) > O for some
allowed value of k 7 0. Condition (i) yields

Jugv — fo&u >0, Ju+gv<0. (33)
Condition (ii) additionally reveals that we require

D1 Dsk* — (D fy + D1g)k* + (fugo — gufo) <0, (34)
and hence that

D, f, +Digy > 0, (D fu + D1gu)* > 4D1Ds(fugo — 8ufs)s  (35)

for an allowed value of k. For almost equal diffusion coefficients we can write D, = D;(1+6)
with |§| < 1. Without loss of generality we take § > 0, which forces f,, > 0. Then one finds
that the existence of a Turing instability requires that the constraint

8 (1, 140), (36)
Su
is satisfied. This entails we can immediately write g, = — f,(1 + x;8) for some x; € (0, 1).

Reconsidering the second inequality in each of (33) and (35) now reveals

82 (1 - Xl)2 gufv
— > >
4 [1+ x8][1+46] Sugo

which is an extremely fine-tuned constraint to impose on the kinetics. For example, a relative
difference of 25% in the diffusion coefficients, corresponding to § = 1/4, requires a fine-tuning
in the kinetic functions at levels which are bounded above by
32
4[1+8]°

which is 1/80, equivalent to 1.25%. Note that this is a bound whose attainment requires an
additional fine-tuning of y; taking a value of x; which is intermediate in its allowed range, for
definiteness 1/2, will require a greater fine-tuning, at the 0.3% level, for a Turing instability.

However, a fine-tuning of reaction rates in the kinetics is difficult to explain in biology as
they are subject to abundant fluctuation [64]. Given numerous biological systems do appear
to have at least a Turing-type behaviour; this is perhaps a paradox and thus also a challenge
and opportunity for further modelling work to which we will return below.

1, (37

(38)

2.2. Cell movement and taxis models

As mentioned previously, an implicit assumption of the morphogen models is that the cellular
response to the signal inherent in the distribution of morphogens occurs before, or on a much
faster time scale than, cell migration and growth. This assumption consequently decouples the
morphogen model from cell migration or growth, allowing it to be considered in isolation. Itis
obvious, however, that this assumption need not always be true, giving rise to a more complex
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modelling framework, where the cellular response to a signal cannot be de-coupled from cell
dynamics.

Taxis, in a biological context, is the preferential movement of cells towards or away from
a cue. Frequently the cue is a biochemical gradient which in a developmental context can be
considered to be a morphogen, though more generally the chemical cue can be a nutrient or a
metabolite, for example, or the cue can be non-chemical. There are numerous forms of taxis
that can be observed; a non-exhaustive list includes where the cue is due to cellular adhesion
sites (haptotaxis) [65-67], substrate stiffness (mechanotaxis) [68—70], light (phototaxis) [71],
an electric potential (galvanotaxis) [72], a magnetic field (magnetotaxis) [73], the direction of
gravity (geotaxis) [71, 74] and the balance of viscous and gravitational torques (gyrotaxis) [75].
For brevity, we will focus specifically on models which are relevant for development and/or
the cue is chemotactic—other forms may be treated in a similar fashion.

2.2.1. Chemotaxis models. Chemotaxis has been implicated in many developmental settings,
especially in inducing and directing cell motility, leading to higher level structure on the
developing embryo. Examples include the formation of the gut (gastrulation) [10, 11], lung
morphogenesis [9] and feather bud formation [22]. In addition to modelling chemotaxis
in development [76,77], such models are also commonly considered for coat marking
patterns [78] and swarming microbe motility [28-30].

To model chemotaxis we need equations representing the density of each motile cell
type. We also need equations representing the signalling molecules, which are referred to as
chemoattractants or chemorepellents according to how they influence cell motility. Then we
have, in many instances,

n,=V-D,Vn) — V- J+f(n,u), (39)

u,=V.-D,Vu)+gn,u), (40)
where n and u are vectors describing cell density and chemical concentration, respectively. D,
and D, are diffusivity matrices, as described above for the morphogen models, though typically
D, is positive definite rather than positive semi-definite. The functions f(n, ) and g(n, u)
capture signalling molecule interactions, plus typically their production and/or degradation by
the cells, plus other processes such as cell proliferation and death. The term J¢ describes the
flux of cells due to chemotaxis. Given that the cell response is directional it is, in the simplest
setting, taken to be contingent on the gradient of the chemoattractants and chemorepellents.
This yields for the kth cell type

TE=me > i i) Vs, (41)

so that xi;, the chemotactic sensitivity, dictates the response of the kth cell type to the ith

chemical. Note that if x;; < 0, the flux is down concentration gradients and hence the cell

type k is repelled by chemical i. The typical forms of y; ;(u;) are
X0

(K +u;)i’

where K > 0, xo are constants with j € {0, 1, 2}. These functional forms emerge from receptor

models [79, 80] though the specific choices of xg, K, j are cell- and context-dependent.
Figure 3 shows the results of numerical simulation of a chemotaxis model of the form

given by equations (39) and (40). Specifically, we take [81, 82]

X,i(u;) = 42)

g—’: =V .-(DVn)—V . (xnVc)+rn(N —n), (43)
s P UL (44)

ot 1+n
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Figure 3. Numerical simulation of a chemotaxis model, given by equations (43) and (44). The
field is initially at the homogeneous steady state, with small random perturbations added to the cell
density. Diffusion-driven amplification of the heterogeneities results in a regular array of peaks
and toughs. Zero flux boundary conditions are imposed, D = 0.25, x = 1.9, r = 0.0l and
N = 1.0, as in [60]. The models were solved using a finite difference scheme, including complex
step differentiation for the Jacobian evaluation [61].
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Figure 4. Numerical simulation of a two-stage Turing model for hair follicle formation postulated
by Sick and co-workers [8]. (a) primary follicle formation; (b) secondary follicle formation. The
blue dots indicate the positions of potential primary follicles whilst the red dots indicate secondary
follicles. In each case the left-hand figure shows the WT and the right-hand figure a simulation with
increased activator concentration. The dots show areas of high activator concentration. From Sick
et al 2006, WNT and DKK determine hair follicle spacing through a reaction—diffusion mechanism
Science 314 1447-50. Reprinted with permission from AAAS.

where D, x, r and N are all positive parameters. Amplification of small perturbations in cell
density across the field leads to a regular array of peaks and troughs in chemical concentration
that is mirrored by the cell density pattern.

2.2.2. Mechano-chemical models: examples of taxis models in development. A paradigm
of self-organization in the developmental setting is mesenchymal morphogenesis, where the
most important cue is considered to be haptotaxis [14, 15,32]. Examples have included the
emergence of feather buds and limb development. Such models require one to consider how the
density of adhesion sites evolves with cell migration, which is typically assumed to scale with
the density of the extra-cellular matrix (ECM, a dense mesh of interconnected macromolecular
fibres). Hence such models go one step further than those already described; they also have to
track the stresses and strains of this hybrid material and the cells that bind to it.



Invited Article R263

Consequently, a typical framework for such models is [14—16]
ng=—-V-J+rn(N —n), (45)

where rn(N — n), with r and N positive constants, represents logistic growth for cell species
n and the flux J is given by

J=—DVn+nv, +anVp. (46)

In the above v is the material displacement of the tissue from its equilibrium, p is the density
of ECM, D is a cell diffusion coefficient and a is a haptotactic coefficient. Of course, any other
taxis form can be included in the flux, if merited by the biology. In addition, one has to close
the system by considering the solid mechanics governing the evolution of the displacement
field v and the ECM density. Typically the ECM is considered to be convected with the tissue
displacement, without decay or growth, yielding

pr+ V- (pv,) =0. 47

In contrast, the displacement field’s evolution is more complicated, governed by a balance of
forces given that inertia is unimportant at this scale. Hence one has

V - (ogcm + 0cen) +F = 0. (48)

Here, orcm, 0cen are, respectively, the ECM and cellular contributions to the stress tensor and
F is an external force, if present. In the simplest approximations the ECM is treated via a
linear viscoelastic constitutive relation, thus relating ogcy to v and its temporal derivatives.
The cell contribution to the stress tensor, o, is modelled phenomenologically in terms of the
traction forces exerted by the cells via

Oea = T ——[Tp + AVl (49)

+ an?
The stress due to cells, at low cell density, is proportional to the density of cells, n, and the ECM
density, p, and decays at larger cell densities due to contact inhibition; t, A are simply constant
coefficients. Finally a non-local term, VZp,isa leading order correction due to the fact that the
forces exerted by a cell are proportional to the number of focal adhesions in contact with the
cell, namely, fc o © dx. The Laplacian emerges as the leading order correction on expanding
the integrand about the centroid of the (assumed isotropic) integration domain; the fact that
the cell size is far smaller than other model length scales implies that higher order corrections
are certainly negligible.

Equations (45)—(49) are a closed system once supplemented with an expression for external
forces, F, the domain plus initial and boundary conditions. Such a system constitutes a
mechano-chemical model and simultaneously tracks cell movements and their response to
haptotatic gradients.

2.2.3. Fluid advection models. In fluid advection models, the cells are surrounded by a fluid
whose dynamics cannot be decoupled from the biology, akin to the coupling of solid mechanics
and cell motility in the mechano-chemical models. Animportantexample in development is the
breaking of left-right symmetry which is species-dependent. In mouse, the most commonly
studied mammalian embryo, fluid flows induced by the motion of primary cilia within a
sealed depression formed at the ventral side of the primitive streak, the embryological node,
are implicated in left-right symmetry breaking. The conversion of this nodal flow into a
symmetry breaking signal has yet to be fully explained, though numerous hypotheses are
being considered. Simulations of these unsteady flow fields and transport within them assist in
the understanding and testing of these hypotheses, an area of intense active research reviewed
elsewhere [2, 3].
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2.3. Illustrating comparisons between experiment and modelling

The application of morphogen models to Drosophila patterning is widespread; an approach
employed by Eldar and co-workers [83] used PDE models to investigate the robustness of
gradients in the wing disc. Combined studies involving model-building and experimentation
were used to explore feedback loops for ligand degradation. Numerical screens for robust
networks were able to identify self-enhanced ligand degradation as a possible underlying
mechanism, and experimental observations are consistent with this analysis.

One of the most successful examples of the application of Turing’s model to a biological
system comes from the work of Sick and co-workers [8] on hair follicle spacing. The authors
postulate that a two-stage reaction—diffusion mechanism underlies the periodic appearance of
hair follicles in mouse. A first wave of patterning establishes an array of primary follicles that
then directs formation of the secondary follicles by controlling production terms in the model.
Predictions from the model, such as over-expression of the activator leading to increased
follicular density, were verified experimentally, thus providing increased support for a Turing
mechanism underlying this process. Figure 4 shows the results of numerical simulation of
both primary and secondary stages of the modelling process, with predictions from activator
over-expression also shown.

Asai and co-workers hypothesized that a Turing model underlies the formation of pigment
patterns on the skin of the angelfish Pomacanthus and zebrafish [26, 84]. By varying a single
parameter in a simple reaction—diffusion model, they were able to obtain a variety of patterns
found to occur in wild type and mutant lines; illustrative results of this study are shown in
figure 5 for zebrafish. The authors are also able to suggest that the leopard gene may regulate
the kinetics of activator synthesis—cloning and molecular analyses are now needed to provide
a full interpretation of their results.

Miura and co-workers [62] applied Turing’s model to a slightly more complex case: they
considered digit formation on a growing domain and showed that a simple reaction—diffusion
system can reproduce the patterns observed in Doublefoot mice by assuming saturation of the
activator kinetics.

There are, however, cases in which such models have been proven incorrect for modelling
self-organization. The striped expression of Drosophila gap and pair-rule genes seem to
be one such example in which the elegant Turing models are inapplicable [85]: specific
instructions from each gap gene protein seem to direct the formation of the pair-rule stripes.
Nonetheless, such models provide an excellent starting point from which to begin investigating
self-organization—hypotheses and ideas which stem from theoretical investigation have the
potential to direct experimental research in an evidence-based fashion, an efficient approach
given the plethora of possible mechanisms underlying biological phenomena.

2.4. Model comparisons

A natural question to ask is whether one can distinguish between these models either
mathematically or biologically? Most of the mathematical studies begin with linear analysis
which looks for eigenfunctions of the Laplacian and in such cases it is the shape of the domain
and boundary conditions that determine the patterning, rather than the details of the model
itself. Thus, any differences need to be determined at the nonlinear level and, while there
have been quite a lot of studies of Turing and chemotaxis models in the nonlinear regime,
little has been done on the mechano-chemical models owing to their complexity [86, 87]. It
has been shown that Turing and chemotaxis models can both exhibit spiked solutions and that
these can move in space and coalesce [88]. It has also been shown that all these models can
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Figure 5. Comparison of numerical simulation of a Turing model for zebrafish pigmentation with
biological observations [84]. A range of fish mutant in the leopard gene are shown, with the
variation of the pattern from the WT increasing from left to right. The range of patterns can be
capitulated by gradual variation in a single parameter of the Turing model. Reprinted from Asai
etal 1999, Zebrafish Leopard gene as a component of the putative reaction—diffusion system Mech.
Dev. 89 87-92, with permission from Elsevier.

exhibit travelling waves if a disturbance is initiated at one end of the domain and patterns,
including chaotic-like instabilities, can be left in the wake of the propagating front [89-91].
This phenomenon is discussed in more detail in section 2.4.1. Given that patterns emerge from
these models due to the same principle of short-range activation, long-range inhibition, it is
hardly surprising that it is difficult to distinguish between them.

From a biological point of view it is difficult in many cases to determine if pattern arises
due to a chemical pre-pattern or due to cell condensation (aggregation) because at the moment
it is very difficult experimentally to distinguish between cause and effect. However, there are
examples of where this has been done [92].

2.4.1. Propagating patterns. Many patterning processes in biology take place behind
travelling fronts. For example, feather bud formation in vivo takes places sequentially: on
the dorsal tract (as shown in figure 1) an initial row of feather buds forms along the head-tail
axis and subsequent rows form in an ordered fashion, propagating out from the midline [93, 94].
As mentioned in section 2.4, each of the models described here is able to display propagating
pattern formation, via initial conditions involving a localized perturbation to the homogeneous
steady state. In order to illustrate this result, figures 6(a) and (b) show the results of simulating
the cell-chemotaxis system given by equations (43) and (44) with the fields initially at the
homogeneous steady state and a perturbation added to the cell density at the origin.
However, these types of models, with initial conditions perturbed locally about a
steady state, are unsuitable for modelling the majority of biological systems due to their
inherent inability to buffer against perturbations. Any perturbation in constituent densities
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Figure 6. Propagating patterns arising from the chemotaxis system given by equations (43) and
(44). (a), (b) Cell density and chemical concentration over time. The field is initially at the
homogeneous steady state, with small random perturbations added to the cell density around x = 0.
We see a pattern of regions of high cell density/chemical concentration interspersed with regions
of low cell density/chemical concentration propagating out from the point of initial disturbance.
(c) Disturbances to the steady state cell density at both x = 0 and x = 80 initiate two propagating
waves of patterning. (d) Addition of a maturation parameter x +— x H(ct — x) slows the natural
rate of patterning and also makes the field ahead of the pattern stable to perturbation. In each case
zero flux boundary conditions are imposed, D = 0.25, x = 1.9,r =0.01,¢ =0.08and N = 1.0,
as in [60], and the models were solved using the MATLAB function pdepe.

or concentrations away from the initial point of disturbance would cause secondary waves of
patterning to propagate from the sites of perturbation, interacting with the initial pattern and
destroying the directionality of pattern formation. Figure 6(c) shows the results of adding a
second initial perturbation to the cell-chemotaxis system; two waves of patterning arise in this
case.

Within the context of these types of PDE models for pattern formation, one can achieve
stability to such types of perturbation, whilst ensuring that sequential patterning takes place,
by assuming that a bifurcation parameter changes spatio-temporally. For example, figure 6(d)
shows the results of numerical simulation of the same cell-chemotaxis system with the
chemotaxis parameter x +— x H(ct — x). In this way, cells in more distant regions of the
field gain the ability to respond to chemotactic signals later than those situated closer to x = 0.
In the case shown, the natural speed of pattern propagation is restricted by the rate at which
cells become able to react to gradients in chemical concentrations and the wavelength of the
pattern is also increased.
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Figure 7. Propagating patterns of somite formation produced by the model of Baker and co-
workers [13, 95, 96]. Regression of a wavefront along the head—tail axis causes a series of discrete
signals that cause corresponding switches in the levels of somite factor from low to high. In each
case dark areas indicate areas of high concentration.

Another method for achieving such kinds of propagating patterning is to assume that the
system is bi-stable and that a propagating parameter switches the system from one state to
another in a discrete manner. This idea has been used by Baker and co-workers [13, 95, 96]
in the context of somitogenesis, segmentation of the head—tail axis of vertebrate embryos (see
figure 1). In these models, the expression of a high level of a ‘somitic factor’ causes cells to
form somites. Bi-stable kinetics coupled with a wavefront which enables cells to switch from
a low to a high level of somitic factor, via interaction with a signalling molecule, results in a
propagating pattern of somitic factor concentration. Figure 7 shows the results of numerical
simulation of the model of Baker and co-workers [13,95,96]. These models do not suffer
from the problem mentioned above because, by the nature of the bi-stable kinetics, small
perturbations are damped.

2.5. Outlook

The above models are, mainly, at the macroscopic, coarse-grained level and their principal
aim is to show how patterns can emerge from the combination of non-patterning individual
behaviour. They recognize that biological functions/structures arise from an integration of more
basic functions, something that is only now being seen to be true by the wider community. For
their time, they were adequate in that the prevailing biological data were also at the macroscopic
coarse-grained level. In fact, they can still be considered to be very useful paradigm models
for patterning on the macroscopic scale, either alone or coupled together [22, 60, 97, 98].

The revolution in molecular biology has led, however, to very different types of data and
therefore if models are to make an impact in the biological sciences they must be formulated
at the level of the data. These data are, increasingly, at the fine-grained molecular level and
therefore models have to take into account the effect of small numbers (where deterministic
approaches may be invalid and stochastic approaches more appropriate), obstacles within
and tortuosity of tissue (calling into question the assumption of simple Fickian diffusion)
and incorporate cell—cell signalling and cell-chemical responses into higher (tissue) level
approaches. We now consider some of the open questions that arise as a result of trying
to incorporate these phenomena into models.
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3. Open problems and future challenges

Experimentation is yielding enormous amounts of information concerning the network of
biological interactions underpinning the emergence of structure, plus detailed spatial and
temporal data mapping gene expression and cell location. In the following we consider the
revolution emerging from molecular biology and biological imaging, plus the challenges and
opportunities this presents to the modelling community.

3.1. Molecular biology and self-organization

Experimental advances entail that the molecular mechanisms underlying self-organization in
developmental biology are being elucidated. Such developments impact throughout the area,
providing new data, rejecting old hypotheses and highlighting where further work is required.
Theoretical models need to keep pace to continue to achieve their objective of guiding insight,
suggesting empirical tests of hypotheses and providing a unique, and complementary, means
of probing our understanding of this complex biological field.

As an example of how novel data are rejecting old hypotheses, it was often assumed that
the ‘activation’ required for a Turing system may arise from a protein inducing the release of a
bound version of itself from cell membranes [58]. However, acommon experimental technique,
in situ hybridization, has been developed to track and visualize the local concentration of
specific mRNA transcripts throughout a tissue, thus indicating transcription. In systems where
there is a putative Turing mechanism, such as with zebrafish mesoderm cell fates [6] or avian
bud formation [21], the nominal activator is tracked in this manner. This indicates that the
self-induced production of the activator is actually via gene expression, which has a substantial
impact on modelling formulation, as we now discuss.

3.1.1. Gene expression time delays. Experimental observations show us that gene expression
takes time; any delays associated with signal transduction will simply extend this delay. Exactly
how much time depends on the size of the genetic sequence to be expressed. Estimates range
from just over ten minutes to several hours [99, 100]. On the other hand, patterning times in
developmental processes have been estimated to be as low as 20 min [55]; a gene expression
time delay is thus likely to be highly significant for the fastest developmental events. Such
observations are exacerbated by the fact that incorporation of a gene expression time delay in a
simple Turing system reveals that time delay can induce a disproportionate retardation, much
greater than the gene expression delay, in the time to patterning and, on growing domains, can
cause patterning failure [101]. Thus the effects of the time delay are far from trivial. These
results are illustrated in figure 8 where a selection of numerical simulations from the paper
of Gaffney and Monk [101] are presented. For exponential domain growth, with a doubling
time of two days, the authors were able to show that even relatively small delays greatly
influenced the patterns formed, with eventual failure for longer, though not unreasonable,
delays.

Any self-organizing system reliant on gene expression for structure formation on time
scales which are not substantially greater than the gene expression time delay is potentially
susceptible to the effects of this delay. Due to the need for activation this includes putative
Turing systems. Modelling opportunities arise in investigating current models to ascertain
whether gene expression delays have substantial effects. Numerous further questions arise.
For example, can mathematical modelling classify when gene expression time delays may
be neglected in a given pattern forming system? Will a gene expression time delay induce
oscillations should any gene products form a negative feedback loop? Are the stability and
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Figure 8. Results of numerical simulations of a Turing reaction—diffusion system with domain
growth and delays [101]. In each case, the concentration of activator is plotted. The domain
doubling time is 2 days and the time delays are marked on each individual plot in units of 12 min.
The vertical axis is the (square) domain length, which is monotonically increasing in time, and the
horizontal axis is the spatial coordinate of the simulations. Tdel denotes time delay and IC the
initial conditions. It is easy to see that, for both sets of initial conditions (given in [101]), time
delays have a marked effect on the pattern formed, with eventual failure. Reprinted from Gaffney
and Monk 2006 Gene expression time delays and Turing pattern formation systems Bull. Math.
Biol. 68 99-130, with permission from Springer.

robustness of pattern forming systems altered by such gene expression delays? What happens
when time delays are considered within a large network of interacting morphogens?

3.1.2.  Networks, systems and synthetic biology, parameter estimation. Typically, the
modelling of pattern formation in biology has relied upon putative models with a small number
of interactions, with the canonical example of two morphogens in Turing’s model. This was
reasonable before the revolution in molecular biology; however, to be realistic in this day
and age, models must be more detailed as substantially more information is available for
utilization and investigation in biological modelling. An informative example is the study of a
model of gene product interactions, as illustrated in figure 9, in the determination of segment
polarity in Drosophila [102]. With over 100 ordinary differential equations (ODEs) and 48
adjustable parameters, it was still possible to use modelling tools to demonstrate that the current
network representing gene interactions could not explain observed patterning events but simple
additions to the network could. The inability to estimate parameters was compensated for by
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Figure 9. A schematic of the gene product interaction network considered in [102]. The
solid lines indicate known interactions whilst the dashed lines indicate interactions suggested by
numerical simulation of the network. WG, wingless; EN, engrailed; HH, hedgehog; CID, cubitus
interruptus (whole protein); CN, repressor fragment of cubitus interruptus; PTC, patched; PH,
patchedhedgehog complex. Ellipses, mRNAs; rectangles, proteins; arrows, positive interactions;
circles, negative interactions. ci is basally expressed (+ in thombus). Reproduced from [102] with
slight modifications.

numerical simulations using @(250 000) random selections from the extremely large regions
of feasible parameter space—the vast majority of these random selections yielded pattern
formation similar to that observed in sifu.

This highlights that modellers should be alert to the fact that patterning events may depend
on the subtle details of network interactions and that self-organization models based on a small
number of interacting chemicals should often, but perhaps not always, be superceded with
ones including the effects of additional interactions as data become available. However, this
is where a balance must be struck between biological accuracy and the ability of the modeller
to fully explore the system using both analytical and numerical tools. Such comments are not
reserved for development either. The networks underpinning signal transduction in bacterial
chemotaxis are also being elucidated [103], and modelling frameworks are being developed
to incorporate such information into macroscale PDE models [80].

While molecular biological methods often reveal interactions, quantitative estimates of
reaction rates, for example, are rare. This is problematic, especially for moving in the
direction of larger models. Qualitative techniques will be especially valuable for such
studies. For example, graph theory can be applied to study the stability of large networks of
ODEs [104, 105]. Note that the applied study of the linear stability of PDEs typically involves
the reduction to ODEs via an expansion in the eigenfunctions of the transport operator. Thus
graph theoretic techniques are applicable in the context of biological networks with pattern
forming properties in revealing aspects of stability properties from network topologies rather
than network dynamics.

One can also adopt the approach of performing a random sampling of parameter
space [102]. This can be highly revealing even when an exhaustive sampling is impossible, and
further opens up the possibility of examining the role of biological networks in patterning. The
latter task, which will be enormously demanding computationally, emphasizes the vital exercise
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Figure 10. An example of a cell differentiation pattern with one cell type expressing green, the
other red, fluorescent protein, emerging from an artificial self-organizing system. Reprinted by
permission from Macmillan Publishers Ltd, Basu er al 2005, A synthetic multicellular system for
programmed pattern formation Nature 434 11304, copyright 2005.

of devising accurate asymptotics for larger scale networks, even if the goal is to speed up
numerical calculations rather than to write down analytical solutions. This is certainly possible
with biological systems as large as those envisaged even in the current context [106—108].

In addition, while parameter estimates can be rare, they should be considered when
available. Fluorescent recovery after photobleaching (FRAP) techniques, for example, have
become widely available for measuring diffusion coefficients in realistic environments [109,
110]. Sometimes parameter estimates can highlight modelling difficulties, as with our
previous observations that in the absence of large diffusivity ratios for putative Turing
morphogens, there is unreasonable parameter fine-tuning. However such difficulties often
present novel opportunities. In the current context, the complexity of both networks and
the cellular microenvironment can allow Turing-style patterns without parameter fine-tuning.
For example, a model with more than two reactants has successfully shown a Turing
instability with equal diffusion coefficients for ATP and ADP given realistic glycolytic reaction
rates [111]. Analogous comments apply for pattern formation models considering the intra-
and extracellular environments coupled via signal transduction [112]. These exemplify how
the additional biological phenomena discussed in this section, and below, represent potential
resolutions of fundamental and paradoxical difficulties in proposed mechanisms of biological
self-organization, rather than distracting and unnecessary complications.

As a final motivation for larger scale models, we mention an exciting experimental
development, namely, the prospect of synthetic multicellular systems for artificial pattern
formation [113]. While prototypical, such studies illustrate how genetically engineered
receiver cells can be designed to sense a chemical gradient and undergo a desired pattern
formation—an example of this is shown in figure 10. Highly amenable to mathematical
modelling, pattern formation by design has broad potential application areas including tissue
engineering, biosensing and bio-directed fabrication [113]. Such systems will be substantially
more complicated than a Turing pair however. For example, a prospective mechanism for
sharpening the edges of artificial patterns could make use of the biological mechanisms of
segment polarity in Drosophila [113], requiring O(100) equations for the relevant network
interactions [102].
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Thus, in summary, a major challenge in the modelling of biological pattern formation is
to consider coupling of large networks, with significantly more than two interacting proteins,
plus subcellular dynamics, to support understanding not only of biological systems but also in
the context of synthetic biological design.

3.2. Noise and robustness

A fascinating advance in molecular biology is the development of in vivo genetic reporter
systems, that is the genetic expression, and subsequently tracking, of fluorescent proteins
at the cellular level, as illustrated in our discussion on synthetic biology. This technique
additionally has allowed the investigation of noise in the gene expression underlying biological
self-organization processes such as embryonic development [114—116]. Noise is observed
to be present in general with two types of source: (i) intrinsic variability caused by, for
example, fluctuations in promoter activation and deactivation, mRNA and protein production
and decay; (ii) extrinsic variability, defined as ‘fluctuations and population variability in the
rate constants associated with these events’ [117] and typified by changes in temperature and
cellular conditions. Robustness is usually defined as the ability of a system to buffer against
such fluctuations, so that a mechanism may reproducibly deliver a required output. It is
exemplified by the fact that, for most genes, heterozygous pairs do not lead to an apparent
phenotype [64].

One may subsequently speculate that noise on the individual cell level will not impact
on modelling at larger scales, given that even small biological systems consist of substantial
cell numbers. However, numerous individual-based stochastic effects manifest themselves
at higher scales, and an open area of research is the understanding of when such cell-
based fluctuations are indeed negligible. Here we outline two examples where they are not:
(i) stochastic-induced switching between stable steady states in a bi-stable system; (ii) errors
in differentiation signals inherited from the effects of fluctuations on morphogen gradients.

Stochastic switching. We demonstrate the effects of stochasticity upon bi-stable systems
using an example presented by Erban and co-workers [118]: consider the following scheme of
reactions for a chemical A,

ki

24 5 34, 34 824, 53 A, A%y (50)

One may write down a simple ODE to describe the system using the law of mass action [119]:

d[A]

dr

where [A] denotes the concentration of A. It is easy to see that the system, given the
parameter values detailed in the caption of figure 11, has two stable steady states, given by
[A]s = 100, 400, and one unstable steady state, given by [A], = 220. Analysis of the system
shows that phase trajectories with [A](0) < 220 will converge to the lower steady state, whilst
those with [A](0) > 220 will converge to the upper one. The system may, however, be re-
interpreted as a continuous time Markov chain and investigated using the Gillespie stochastic
simulation algorithm (SSA) [120]. A very different behaviour is observed—stochastic effects
allow the system to ‘jump’ between the two steady states.

The results of two realizations of the system are shown in figure 11. The long time scale
simulation allows us to see switching between the two stable steady states, as a result of the
inherent stochasticity in the system—this is not, by contrast, achievable with the deterministic
PDE model.

= —ko[AP + ki [A) — ka[A] + ks, (51)
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Figure 11. Numerical simulation of the chemical scheme (50) using both a deterministic and
stochastic approach. In both figures the results of numerical solution of equation (51) are shown
by the red, smooth line whilst results of a stochastic realization are shown by the blue, jagged
line. (a) Over short time scales the system tends to remain close to the steady state near which
it started; (b) over longer time scales we observe switching between the steady states in the

stochastic simulation. Numerical simulations were based on the code associated with [118],

found at http://www.maths.ox.ac.uk/cmb/education/. Parameters are as follows: k; = 0.18 min~!,

ko = 2.5 x 10~*min~!, k3 = 2200 min~", k4 = 37.5min~".

Morphogen gradients: the stochastic French Flag model. Diffusion can also be represented
in a stochastic manner. Consider, for example, the system
du_ DV?u — u, (52)
ot
in one spatial dimension, where u represents the morphogen concentration, A the rate of linear
decay and D the diffusion rate of morphogen. Numerical simulation of the system forx € [0, 1]
with a flux of morphogen at the left-hand boundary and reflecting conditions at the right-hand
boundary is shown in figure 12(a). A steady gradient is formed which decreases monotonically
over the domain. The idea behind Wolpert’s French Flag model [45] is illustrated in the figure:
cells on the domain which experience u > 60 become ‘blue’, those with 30 <u < 60 become
‘white’ and those with u < 30 become ‘red’.
Figure 12(b) shows the result of simulating the same system using a Gillespie
approach [120]. The idea involves dividing the domain up into k equally sized boxes such that
the following diffusion ‘reactions’ take place:

d d d d d d d d
Ul —> Uy —> -+ —> Up_| —> Ug, Up —> Ug_1 —> -+ —> Uy —> uy, (53)

together with the flux and decay equations

G5 u, and w; >0, fori=1,...,k, (54)

whereu;,i =1, ..., k, represents the number of morphogen molecules in box i. The diffusion
constants D and d are related via the expressiond = D/ (Ax)?, where Ax is the box width.
We see that there are several boxes which become ‘incorrectly’ specified via the stochastic
realization, compared with the deterministic PDE description.

Given the phenomena just outlined, we now proceed to consider another active research
field, addressing how such noise may be buffered. We outline some of the mechanisms
proposed to increase robustness and include modelling-based insights. We then move to
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(a) Deterministic simulation (b) Stochastic simulation

Density (u)
Density (u)

0.5
Position (x) Position (x)

0.5 1.0

Figure 12. Numerical simulation of diffusion using both a PDE formulation and a Gillespie
approach [120]: (a) numerical solution of equation (52) using a finite difference scheme;
(b) stochastic realization of equations (53) and (54). In each case, concentrations of u = 60
and u = 30 denote thresholds for different differential programs (blue (left-most), red (middle)
and red (right-most)). Numerical simulations were based on the code associated with [118], found
at http://www.maths.ox.ac.uk/cmb/education/. Parameters are as follows: D = 0.0625, r = 6.0,
A =0.004 and Ax = 0.025.

modelling frameworks which can integrate stochastic effects with the PDE modelling of
biological systems.

3.2.1. Mechanisms for buffering against noise. No matter how well regulated, any biological
system is still influenced to some degree by stochastic effects and a number of theories have
been put forward to explain the apparent robustness of systems to such noise. For example, the
existence of large gene networks has been postulated to improve robustness by incorporating
feedback loops that buffer against fluctuations and also by allowing for redundancy. However,
the mechanisms which buffer against fluctuations to yield robustness, especially in fields such
as developmental biology, are still a subject of much debate. Here we outline a few examples
where modelling has been used to demonstrate the ability of systems to filter out noise or to
postulate a mechanism to increase robustness to the effects of noise.

Tostevin and colleagues [121] have recently argued, using mathematical techniques, that
there are fundamental limits to position determination by morphogen gradients. They propose
that time-averaging of a single gradient can lead to great precision even in the limit of very
low protein copy numbers and that there exists an optimal length scale for the gradient in order
for precision to be achieved. Dessaud and co-workers [46] show that some form of temporal
averaging is at work during chick limb specification; they show that changing the time and level
of exposure to Shh have equivalent effects on intracellular signalling. However, that temporal
averaging is employed to increase robustness to fluctuating signals is yet to be definitively
demonstrated.

A textbook example of the ability of a developmental system to buffer against fluctuations
comes from the work of Kruse and co-workers [122—124]: they investigated the roles of
diffusive versus transcytotic trafficking during morphogen gradient formation in the Drosophila
wing disc. As a result the authors suggest, via a combination of mathematical and theoretical
techniques, that repeated internalization and externalization of the ligand Dpp provides a more
stable mechanism for gradient formation by buffering against variability in the flux of Dpp
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(a) n=1 (b) n=2 (c) n=10
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Figure 13. Steady state morphogen profiles for different types of decay and morphogen flux, f.
(a) Linear decay, n = 1, equation (56), results in a profile that changes markedly. (b), (c) as the
decay rate becomes increasingly nonlinear, equation (57), the profile becomes increasingly robust
to changes in f. Parameter values are as follows: D = 1.0, A = 0.1, f =0.1,0.5,5.0.

into the wing disc. We also note that the interaction of multiple gradients has been proposed
as a model mechanism for complex patterning [125, 126].

Self-enhanced ligand degradation. One simple example of the use of mathematical models
to suggest robust mechanisms comes from the work of Eldar and colleagues [64, 83] into the
mechanisms underlying morphogen gradient formation. The authors used a PDE of the form

z—’: = DV%u — ru), (55)
in one spatial dimension to describe the kinetics of morphogen concentration, u. A flux
of morphogen at the left-hand boundary, together with suitable conditions at the right-hand
boundary and an initial distribution of morphogen were also assumed. The authors carried out
extensive computational screening of the system using different diffusion and flux rates and
assuming different forms for morphogen decay, A (u).

Assuming a linear decay rate, so that A(#) = Au, results in a steady state morphogen

profile
f x D
= = exp (_g), where a = /=, (56)

whereas a nonlinear decay rate of the form A(u) = Au" gives
o

=— 57
(x+pB)" 7

Ust

where

n—1

_ 2 - = " _ (meD)™ 58
m=-—— oe—(m(m+ )7> ; ,3—< f) - (59

f is the flux of morphogen at the left-hand boundary and x € [0, co) such that u — 0 as
X — 00.

Figure 13 demonstrates the increased robustness that comes from a nonlinear decay rate.
Eldar and co-workers were able to show that this form of self-enhanced ligand degradation is
consistent with the properties of the morphogens Wingless and Hedgehog in the Drosophila
wing disc [83]. Lander and co-workers have also made substantial contributions in the area,
investigating, for example, the roles of diffusion and cell—cell trafficking in morphogen gradient
formation [127, 128].

Next, we describe three ‘error correction’” mechanisms [129] that have been suggested for
refining tissue patterns established by graded morphogen expression.
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Elimination of mis-positioned cells. This can occur, for example, via increased apoptosis:
cells which express markers of a domain other than the one in which they are situated undergo
programmed cell death. The phenomenon occurs in Drosophila embryos with altered Bicoid
gradients: increased apoptosis in certain regions of the embryos counteracts the effects of
gradient alteration [129, 130].

Sorting of mis-positioned cells. This may occur, for example, as cells sort according to
differences in their adhesive properties [25, 131]. Hh signalling in the neural tube appears
to control cell adhesion properties, thereby allowing the segregation of Hh-responding
cells [129, 132].

Re-specification of mis-positioned cells. This occurs, for example, when individual cells are
unable to retain their original identity in a group of cells expressing different markers. One
documented case of this occurs during inversion of pieces of somite precursor tissue at certain
positions along the head-tail axis of vertebrate embryos: normal segmentation results, despite
changes in the levels of FGF signalling [133].

These examples suggest not only that the mechanisms underlying development may be
robust but also that the embryo may have developed techniques with which to guard against
environmental and intrinsic fluctuations.

3.2.2. Incorporating stochastic effects into models. Given that PDE models cannot always
be satisfactorily applied to modelling biological systems, we now outline some stochastic
methods which could be considered. Our discussion will be motivated by a concrete example:
the description of a simple diffusion process. The PDE generally used to describe diffusion of
a chemical species C in one space dimension is

0 0 0

«©_2 D—C , xeR, >0, (59)
ot 0x ax

where c is the concentration of chemical C and D describes the diffusive flux. The system is

closed by specifying conditions as x — =00 and an initial condition c(x, ) = co(x).

Stochastic differential equations. The Langevin form of the diffusive process described above
can be written by supposing that the position of each particle evolves according to

X(t+df) = X(t) + 2D dW(dr), (60)

where dW(dt¢) is a normal random variable with mean O and variance dr and D is the
macroscopic diffusion constant. To simulate the behaviour of N morphogen molecules, a
finite time step Ar is chosen. The position of each molecule is updated according to the
equation

x;(t + A1) = x;(1) + V2D AL &, i=1,....N, 61)

where each &; is a normally distributed random variable with zero mean and unit variance.

Fokker—Planck equations. The Fokker—Planck equation is used to describe the evolution
of the probability density function (PDF) for a particle over time. Let p(x, |y, s) be the
probability that the particle is at x at time ¢ under the condition that it was at y at time s. Then

pr. 1 +8t]y. s) = / px, 1+ 8112, Dp( tly. s) dz. 62)
R
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Multiplying both sides by a smooth test function ¢ (x) and integrating over x, gives

/p(x,t+8t|y,s)¢(x)dx=/ |:/ p(x,t+5t|z,t)¢(x)dx} p(z, tly,s)dz. (63)
R R L/R

Using a Taylor expansion on the right-hand side and neglecting terms o((x — z)?), which we
assume to be small, gives

/ [{p(z, E+ 811y, 5) — Pz, 1y, 5)) + — (/ (x = 2)p(xt +81]z, 1) dx p(z. 1]y, s))
R 0z \Jr

1
__ﬂ (/ x = z)2p<x, t+68t|z,t)dx p(z,tly, s)>:| #(z)dz =0. (64)
20z \Jr

Since the above holds for all test functions ¢, we have

{p(z,t +6tly,s) — p(z, tly,s)} = _3% (/R(x —2)p(x,t+8t)z,t)dx p(z, tly, S))

192
+52>5 /(x — 2’ p(x, 1 +8t|z, 1) dx p(z, 1]y, s) | . (65)
20722 \UJr
Assuming that the diffusion rate is isotropic gives
/(x —2)p(x,t+8tz,t)dx =0, (66)
R
and letting
/(x —z)zp(x,t+8t|z,t) dx =2Dét +0(8t), (67)
R
gives
(th+8t| 7S)_ (Z7t| ,S) 82
b D TP TR T (D p(tly. ) +o(80). (68)
8t 0z
Passing to the limit 6t — 0 gives the familiar equation
ap 92
— = —(Dp). 69
o = 33(0p) (69)

However, for systems involving more than a few species, the Fokker—Planck equation cannot
in general be solved—even numerically. In practice, most researchers will use Monte Carlo
methods, solving the Langevin equation many times and using statistical techniques to estimate
the PDF.

Chemical master equations. The final approach we consider is that of the chemical master
equation—differing in format from the other approaches considered in that it is discrete in
space. We divide the real line into boxes of length Ax = 1/k so that the number of cells in
box i is denoted by C; for i € Z and specify the transition probabilities per unit time of a cell
moving left or right from box i by Tii =d.

In order to construct a master equation describing the evolution of C; we let P (n, t) be the
joint probability that C; = n; attime ¢ for i € Z and n a vector representing the n;. We define
creation and annihilation operators A¢, A : R¥ — R¥ i € Z and projections B; : R* — R,
i € Zby

Al iy, oo, gl > [ng, oo mp+ 1o g, (70)
Al tny,oong, oo, l = [ng, oo m — 100 g, (71)

B; :[ny,....,n;...,0] — n;. (72)
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The continuous time evolution of P (n, t) can be written as

dP(n,t
Pm.) _ Y d{[B:Af, AnlP(A{, Ain. 1) — [Bn]P(n. 1)}
ot i€l

+ Y d{[BiA{_ Ain]P(A{_ | ASn, 1) — [Bin]P(n. 1)} . (73)
i€l
The stochastic means, defined as M; = Zn n; P(n, t), are easily established as satisfying
oM;

ek d(Mi—y —2M; + M;,,) , i€Z, (74)

which can be compared with a second order finite difference spatial discretization of
equation (59),

% = & [u,'_l —2u; + M,‘+1] s i€, (75)
where D = d/(Ax)? and Ax is the distance between spatial grid points.

As with the Fokker—Planck equation, the master equation formalism is deterministic in the
sense that, once the initial probabilities are specified, the future probabilities are fixed [134].
The discrete formulation may be a more accurate representation, especially if concentrations
are low. However, it is rare that the master equation is directly simulated as, even for a few
species, many hundreds of equations (one for each possible state of the system) need to be
simulated. Most often Monte Carlo approaches, such as the Gillespie SSA outlined earlier in
section 3.2, are employed.

3.2.3. Open problems concerning noise and biological self-organization. The inclusion of
stochastic effects in the modelling of biological systems is a comparatively new field. Hence,
there are numerous issues in the area, most of which remain unexplored—here we outline but a
few of the questions to which we must begin to seek answers, in order for further understanding
in the area.

What is appropriate choice of modelling framework? This is not obvious—especially in
the case of nonlinear kinetics—and may be limited, at present, to the biological data available.
What are the effects of discretizing both space and time? How do such models compare
with those in which both are left as continuum variables [135]? Can efficient numerical code
be developed to simulate large numbers of realizations of stochastic systems with multiple,
interacting species? This is becoming increasingly important as our knowledge of biological
systems at the cellular/molecular levels increases rapidly. How may different temporal and
spatial scales be separated using asymptotic techniques? How can cellular level, stochastic
dynamics (including phenomena such as feedback loops, amplifiers, switches) be incorporated
into higher level models? Phenomena such as delays in gene transcription and translation and
growth are well documented biologically, but how do they interact and how does stochasticity
play a role?

3.3. Domain geometry and heterogeneity in the developmental setting

In the above we have seen that a major challenge in modelling is the development of methods for
dealing with the numerous, complex biological interactions taking place during development.
Revolutions in the coupling of molecular biology and biological imaging entail that far
greater knowledge is becoming available and will continue to become available, concerning
the detailed geometry of development. For example, spatial and temporal gene expression
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Figure 14. The developing uterus in C. Elegans; detailed information on expression of gene
Y47G6a.7. Reproduced from [136].

profiles are available for approximately 10% of the genes within Caenorhabditis elegans [136];
similarly detailed geometrical information of domain geometries is becoming available, as
illustrated in figure 14. In contrast, most pattern formation models consider a very simple
domain, with transport modelled by Fickian diffusion. Consideration of events taking place
on the cellular level immediately reveals that the basis of assumptions such as Fickian diffusion
of signalling molecules and cells need to be investigated in detail. This is considered below,
making an assumption of geometric periodicity at the cellular level, followed by an investigation
of the effects of the macroscale geometry on important patterning properties such as stability
and robustness.

3.3.1. Microgeometry: the cellular microenvironment. ~Consider figure 15. A priori, it is
not clear that one can model transport within a complex extra-cellular domain using simple,
Fickian diffusion, nor whether one can incorporate detailed intercellular dynamics in a mean-
field sense within pattern formation models. Below we invoke homogenization theory [137]
to show this is indeed possible. The technique, at the simplest level, is to perform a multiple
scales perturbation analysis; the small parameter, €, is the ratio of the mesoscopic length scale,
over which the system exhibits periodicity, to the cellular length scale, over which there is
extensive heterogeneity. Below we will assume periodicity on the mesoscopic scale. It would
also be appropriate to consider media which are random on the length scale of a few cells,
though statistically homogeneous on the mesocopic length scale. We note that such techniques
are common in other fields, such as the modelling of dislocations and shocks in physics [138]
and theoretical electrophysiology [137, 139], but have yet to become standard in biological
self-organization modelling.

To begin, consider the microscale equations for two extracellular species U;, U,, whose
concentrations in the extracellular space are denoted by u; and u,, respectively. As we are
considering the cellular level geometry, we also need to consider the dynamics on this scale. We
assume there is a surface density of free receptors, denoted ry, which will bind to either species,
forming bound receptors, r; or r, according to the binding molecule. As an example one could
assume that the binding of U; induces an intracellular signal which leads to the production
of both species Uj, U, subject to inhibition due to the binding of U,. This illustrative model
will show, inter-alia, how receptor competition at the cell surface can be incorporated into
macroscopic equations.

The equations for the above framework are given by

olly
ot

=V - (DyViy), (76)
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Figure 15. A cartoon of the tortuous microscale scale geometry of cells (white and shaded) plus
the extracellular space in the context of zebrafish gastrula at 50% epiboly. In the figure, shading
represents cells which express the mesodermal marker no tail (ntl) in wild type. Studies of Nodal
and Lefty in the lead up to this stage of zebrafish development indicate that these proteins form a
Turing pair controlling the balance of mesodermal versus ectodermal cells [6]. Figure reproduced
with slight modifications from [6].

for « € {1, 2}, within the complicated extracellular domain, denoted €2,. Note that we do not
have the summation convention for the repeated Greek subscripts. On the cell surfaces, that is
on 9€2,, we also have interaction of the chemical species and receptors:

Dyn - Vuy, = €Ay (uy, ua, ro, 11, 2), 77)
ar
8_;3:Bﬂ(ul’u27r0’rlrr2)r (78)

where 8 € {0, 1, 2} and n is the normal pointing out of the extra-cellular domain. We keep these
cell surface interactions in a general setting during the model formulation stage to emphasize
the universal application of this technique.

In practice, the scaling with € for the surface fluxes in equation (78) emerges during
non-dimensionalization, as illustrated in cardiac electrophysiological modelling [139, 140].
However, one can anticipate the above scalings; as € tends to zero, with the macroscopic length
scale fixed, and the cellular length scale decreasing, the surface area per cell scales with €2,
The number of cells in a fixed macroscopic volume scales with 1/€3 and thus for a fixed surface
density of receptors, the number of receptors in a unit macroscopic volume would scale as 1 /¢
as € — 0. To avoid a divergence, or an absence of, receptors in the asymptotic limit, one must
have the receptor surface-density scaling with €. For typical receptor dynamics, the functions
A, and Bg will be homogeneous degree one in receptor density, giving the above on a simple
rescaling of ry, r; and r, to e-independent densities. Of course, the biophysical parameters
used for non-dimensionalization, and thus €, are fixed; we simply find an approximation to the
modelling equations which is accurate under the well-justified assumption that € < 1.3

To implement the multiple scales analysis, let x denote the spatial coordinates which vary
on the macroscopic length scale; similarly, y = x/e are the spatial coordinates which vary

3 The biophysical parameters may in fact indicate that an excellent approximation is achieved with the absence of
receptors or for a large receptor reservoir, which would yield different scalings to those above; we implicitly assume
that no such simplifications occur in the model formulation.
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on the cellular scale. Thus, a function, say f(x,y), which depends on both macroscopic and
cellular length scales has a gradient with respect to the macroscopic length scale of
vy = L 13
ax; € dy;
where the Latin index, i € {1, 2, 3} denotes the ith spatial coordinate. One can readily deduce
analogous expressions for other differential operators. In addition, assuming the cellular level
fluctuations perturb the mean field, we have

(79)

Uy (x,y, 1) = ul(x, t) +eul (e, y, ) + €2 ul(x,y,t) +- - -, a € {l1,2}, (80)
rp(X.y. 1) =rg(x, 1) +ery(X,y, 1) +€rg(e,y, 1) + -, Belo, 1,2} 81)

Substituting the expansions of the differential operators and variables into equations (76) and
(78), we have at order ¢!

9%ul
oud  ou!
0= Dyn; | Loy HMa | (83)
dx;  dy;

where summation convention is implicit for repeated Latin indices. Similarly, at order € we
have

Bug Bzug 8214; 82u§
= D, + + , (84)
Jt 0X;0X; ax;0y; ay; dy;
d [aud oul d [oul 0ul
=Dy — | 22+ |+—|—=+—1|;,
ox; [ 0x; Oy dy; L dx;  dy;
and the surface relations
8”& a”i 0.0 .0 .0 .0
Dyn; 8_x,~+ 3y =Aa(u19u27r0771772)a (85)
arY
a—: = Bﬂ(u?,ug,rg,r?,rg). (86)

We impose equation (82) for u! within the extracellular subspace of the smallest repeating
subunit of the periodic domain, which is denoted by €2,,; see figure 16 and its caption for further
details of the geometry. The solution is of the form

1 0l (x. 1)
Ma(xayv t)zwcti(}))—"i-vot(xa t)7 (87)
0

where u,,

, Uy are currently unknown and the w,,; satisfy
8211)0“'

=0, yeQ,,
dy;oy; g

ad ai
n,[ - +5,,]=0, y €09, NI, (88)
dy;
Wq; periodicony € 32,\(02, N Q2,).
Further, without loss of generality, one can take v, = 0 by inspection of (80). One can also
extend Wy, Wy to the whole domain by periodicity*. We also have that equation (88) implies

4 To construct a twice differentiable solution in this manner will require additional constraints to those stated thus
far; it would be sufficient for ), to exhibit reflection symmetries in planes perpendicular to its principal axes and
containing its centroid.
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Figure 16. A description of the geometry used in the multiple scales analysis. For illustrative
purposes, the smallest self-repeating unit is depicted as a cuboid, whose edges are shown in blue.
In general this contains several cells, or parts of cells, as illustrated in orange; it is also, for
definiteness, taken to contain the point x. The domain 2, considered in the text is the extracellular
space contained within the depicted cuboid. The boundary 92, is equal to the union of 9€2, N9 <2,
and 992, \ (092, N 2,), where 2, denotes the extracellular space; in particular, neither 92, N 02,
nor 92, \ (32, N €2),) is empty in general.

Wy = Wy, at least to within a constant; the fact that w,;, wg, are only uniquely defined up
to a constant will not be important below.

We are now in a position to homogenize. Note that in the multiple scales asymptotic
approximation one seeks solutions treating the spatial variables x and y as independent once
any differential operators have been expanded via equation (79) and its analogues [141]. Thus,
the multiple scales approach allows us to integrate equation (85) with respect to the cellular
scale variable y over 2,,. On dividing through by the volume of €2, and using (85), (87) and
(88), to eliminate u), u2 we obtain

me
oud fQ Yy 0%u®
= Dy (S,' j + ud
fﬂp dVy 0x;0x;

+ LA, (ul,uz,ro,rl, ) (89)

The parameter A is the area of 92, N 02, divided by the volume of €2,,, which is equivalent to
the surface area—volume ratio of the extracellular domain. Note that our homogenized equation
depends only on derivatives of wy;, weo and is thus unique despite the fact that wy;, wy, are
unique only up to a constant. We also have the zero order receptor equations

arﬁ 0

a—t—Bﬁ(ul,uz,rO,rl, ) (90)
which depend on x and ¢, but not y, as required for consistency. Thus equations (88)—(90)
dictate how the cellular level features, such as the microgeometry and receptor dynamics, are
incorporated into macroscopic models, accurate to leading order in €.

In particular, note that microscale anisotropy will manifest in a more complicated

macroscale diffusion operator and receptor dynamics are inherited essentially unchanged
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at the larger scale. These dynamics could be based upon simply the law of mass action
or include, for example, simple representations of a gene expression time delay. A similar
procedure, explicitly taking into account the cell interior, could readily incorporate a coupling
of the receptors with signal transduction pathways and intracellular dynamics, allowing the
systematic construction of multiscale models for the interaction of subcellular and supercellular
phenomena.

An important constraint for the application of this procedure is that a mean-field
approximation is appropriate. For example, it would not be immediately applicable to the
fine-grained patterning associated with delta-notch lateral inhibition as a discrete cellular-
scale model is required [1]. Such exceptions aside, this homogenization procedure provides a
framework for the construction of a single multiscale model for variations on the macroscale
which incorporates (i) cellular level geometrical data from imaging, (ii) the ever increasing
details becoming available at the networks and pathways level and (iii) cell surface kinetic data
derived from FRAP studies [110].

This also serendipitously highlights a broad open challenge. Can the extensive literature on
homogenization procedures (e.g. [138]) be adapted to produce accurate, simpler, macroscale
models of biological self-organization in the presence of discrete modelling frameworks or
stochasticity, such as low gene expression copy number fluctuations? Complications arise in
such scenarios as the smoothness and determinism of the modelling variables on the cellular
scale would generally be absent.

3.3.2. Macrogeometry. At the macroscale level in development, one must also consider
the fact that the domain is growing. Typically the domain growth rate is much slower than
other processes, allowing an effective and simplifying decoupling. Even when the domain
growth drives the system through a patterning bifurcation it is typically quasi-steady either
side of the bifurcation point and thus the homogenization analysis of section 3.3.1 is expected
to be legitimate. This shows that while domain growth cannot simply be ignored, it can
be represented by a slow time evolution of model parameters independent of microlevel
complexities.

The consequences of domain growth upon self-organization frameworks such as the
morphogen or Turing models have been investigated extensively using PDEs and the
conservation approach [142—-145]. Starting, once again, from the basic format assumed in
equation (1) we have

i/ ulx,t)dx = — J-ds+/ Sflu,x,t)dx, 1
or Jo, 9% Qu

with the same notation. Supposing that €2,(¢) is an arbitrary volume in a time-varying domain
Q(t), we draw on the Reynolds transport theorem [146] to express the left-hand side as

i/ ( t)dx—/ [a—”+v< )}dx ©2)
Py Qaux, = o L7 au )
which gives

?9_1; +V-(au) =V -J+fu,x, 1), &)

where a is the flow due to domain growth. On incorporating domain growth, two new terms
emerge in the model: the first, @ - Vu, is an advection term which corresponds to flow due to
local growth and the second, #V - a, to the dilution effects of local volume change.

A Lagrangian description may be applied to the problem:

x=TX,1), x € Q(1), (94)
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where X is the initial position of an element moving in the flow, a, so that I'(X, 0) = X. The
local flow can then be specified as

ox or
a(X}l)=:5;:= TR

95)
where the mechanical properties of the tissue have been ignored and growth only assumed to
occur due to local volumetric increase [147].

Crampin and co-workers considered pattern formation in Turing-type reaction—diffusion
models with domain growth. Beginning with slow isotropic growth, they demonstrate
pattern formation under different types of growth function and show that domain growth
may be a mechanism for increased robustness of pattern formation [147]. In a further
work, they generalize their results to non-uniformly growing domains, showing that weak
spatial heterogeneity does not alter pattern selection from the uniform case, but that sufficient
nonuniformity can give rise to new pattern sequences [145].

Crampin and co-workers further extended their study to consider Turing instabilities when
growth was coupled to morphogen concentration [145]. However, they did not consider any
specific biological applications. Baker and co-workers [142] consider simple morphogen
models, in which local morphogen concentrations were assumed to control cell proliferation
(and hence domain growth) in a manner similar to that shown to control cell proliferation in
the Drosophila wing disc [148]: growth could either arise if the gradient or the absolute levels
of Dpp concentration were above certain thresholds. In certain limits, they were able to derive
analytical expressions describing domain growth over time.

Further to this work, Neville et al [149] considered the pattern forming potential of the
Schnakenberg model on growing domains, comparing isotropic, exponential domain growth
with scenarios with biochemically controlled growth. They demonstrated, via numerical
simulations and weakly nonlinear analysis, that despite a complex interplay between the effects
of chemicals on the domain and the influence of the domain on the patterns formed, domain
growth increases the tendency of the uniform steady state to form patterns.

However, all such models consider very simple geometries, and thus an interesting
development will be pattern formation on differential manifolds incorporating, for example,
the Laplace Beltrami operator for diffusive processes [150, 151]. In addition, numerous open
problems emerge when considering how to cross the scale between movement on cellular scales
and global domain growth. One example is the generalization of the above homogenization
procedures when microscale periodicity is absent. Another example is revealed on noting that,
in contrast to individual cell motion during mesenchymal morphogenesis, numerous migratory
movements during development occur via cell sheets. Self-organization models taking into
account such coordinated movement are in their infancy and determining how to incorporate
detailed cell sheet movements within domain growth via mean-field equations represents a
major challenge.

We conclude this section by noting that pattern formation under the influence of
domain growth, and the resultant increased levels of robustness, is an example of sequential
induction [1], whereby a complicated pattern is reliably formed by a sequence of patterning
forming events, as, indeed, suggested by Turing. Sequential induction is considered to be
a common mechanism throughout development, with differential gene expression acting
temporally as well as spatially [1]. Consequently, it is clear that, more generally, the
slow evolution of parameters within biological models of pattern formation should also be
investigated in detail to see how temporal regulation can assist in invoking and maintaining
pattern.
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4. Summary

We began this work by outlining some of the areas in which PDEs have already been used
to model developmental systems, sketching a derivation of the PDE formulation using the
principle of conservation and discussing the suitability of PDEs for modelling biological
systems. In section 2 we gave an overview of some classical paradigm models, showing
some of the mathematical techniques commonly used in their analyses and presenting results
of numerical simulations. In section 3 we discussed some of the most pertinent open problems
in the area, including the integration of large amounts of molecular data and noise.

The future of PDE modelling in developmental biology now lies in researchers embracing
challenges such as those summarized here. We must be respectful of the fact that simple models
do have many advantages—not least their amenability to analytical exploration—whilst being
aware of the enormous complexity of biological systems now becoming apparent with the
recent revolution in molecular biology.
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