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In this paper, we review multi-scale models of solid tumour growth and discuss a middle-
out framework that tracks individual cells. By focusing on the cellular dynamics of a
healthy colorectal crypt and its invasion by mutant, cancerous cells, we compare a cell-
centre, a cell-vertex and a continuum model of cell proliferation and movement. All
models reproduce the basic features of a healthy crypt: cells proliferate near the crypt
base, they migrate upwards and are sloughed off near the top. The models are used to
establish conditions under which mutant cells are able to colonize the crypt either by
top-down or by bottom-up invasion. While the continuum model is quicker and easier
to implement, it can be difficult to relate system parameters to measurable biophysical
quantities. Conversely, the greater detail inherent in the multi-scale models means that
experimentally derived parameters can be incorporated and, therefore, these models offer
greater scope for understanding normal and diseased crypts, for testing and identifying
new therapeutic targets and for predicting their impacts.
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1. Introduction

Population expansion and ageing mean that the number of lives claimed annually
by cancer will increase further unless more effective measures for its prevention
and treatment are found (Jemal et al. 2009). Increased understanding of the
processes that drive cancer progression is fundamental to achieving these goals.
Cancer develops when genetic and epigenetic changes disrupt the processes that
maintain cellular homeostasis by regulating cell division, growth, movement and
apoptosis. Successful angiogenesis, the formation of new blood vessels, is also
necessary for tumours to progress to the rapid phase of vascular growth. To
confound matters, these coupled processes act over a spectrum of spatial and
temporal scales. The spatial scales range from the subcellular to the cellular and
macroscopic levels, while the timescales vary from seconds (or less) for signal
transduction to months (and years) for tumour-doubling times. Traditionally,
partial differential equation models have been used to simulate the growth of
solid tumours and other biological tissues. However, they are not well suited
to study multi-scale systems and are not valid for small numbers of cells. This
is important when modelling cancer, as a mutation initially creates a single
abnormal cell. Since it is now possible to image individual cells, this is a natural
level at which to focus when developing models that can be validated. However,
numerous questions are raised, including ‘which cell-based description should
we use?’, ‘what level of detail should be included at each scale?’ and ‘as cell
numbers increase, how do we move from the discrete system to the continuum?’
Multi-scale models provide a natural framework for addressing such questions
(Zheng et al. 2005).

Correspondingly, the approaches used to model avascular tumours have
become increasingly varied and complex. There are now several multi-scale
representations of cellular and tissue processes in avascular tumours (see Martins
et al. 2007; Preziosi & Tosin 2009, for reviews). Spheroidal avascular tumours
grow up to 1 mm in diameter, their size being limited by the diffusion of oxygen
and other nutrients to the centre of the tumour.

In order to grow larger, a tumour must stimulate the inward growth of new
blood vessels to supply it with the nutrients it needs to survive. This process, and
the consequent development of a vascular tumour, has become an increasingly
large field of study in recent years. Multi-scale models range from simple ones
in which cellular automata are coupled with reaction–diffusion equations for
oxygen and glucose that act on a macroscale (Patel et al. 2001; Smallbone
et al. 2007), through to more complex models that incorporate blood flow,
vascular remodelling (McDougall et al. 2002; Owen et al. 2009) and details
of subcellular processes such as the cell cycle and protein expression (Alarcón
et al. 2003; Shirinifard et al. 2009). Such models enable us to investigate
the effect of feedback between subcellular, cellular and tissue processes on
the morphology and composition of vascular tumours and their response to
chemotherapy (Byrne et al. 2006). The frameworks for running simulations of
such models are large and complex. As a result, several collaborative software
projects such as CompuCell3D (Merks & Glazier 2005) and Chaste (Cancer,
heart and soft-tissue environment; Pitt-Francis et al. 2009) have been developed
to tackle such problems. In this paper, we describe some of the multi-scale
approaches that have been used to model early colorectal cancer (CRC) in
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(a) (b)

Figure 1. Schematic representations of the cell-level models. (a) Cell-centre model: the size and
shape of the cells (bounded by solid lines and filled circles) are determined from a Voronoi
tessellation of the cell centres (open circles). (b) Cell-vertex model: cell size and shape are defined by
the positions of vertices at cell junctions (open circles). Evolution of the epithelium arises through
motion of centres or vertices, as indicated by arrows.

Chaste, comparing in particular cell-centre and cell-vertex models with a
continuum description of epithelial dynamics in a colorectal crypt. We assess
the relative merits of each model and discuss their suitability for studying the
colorectal crypt.

2. Multi-scale and continuum model frameworks

The intestine consists of a series of regularly spaced, test-tube-shaped crypts,
covered with a protective layer of epithelial cells. CRC, the second most
common malignancy in Europe (Ferlay et al. 2007), typically originates from
the epithelium, as a result of genetic and epigenetic changes. Renewal of the
intestinal epithelium occurs every few days and requires coordination of cell
proliferation, migration, differentiation and apoptosis. Stem cells at the base
of each crypt proliferate to produce transit cells, which divide several times
before differentiating into the functioning cells of the gut. The new cells drive
the upward movement of existing cells, which undergo apoptosis (cell death) and
are shed into the lumen when they reach the top of a crypt. Crypt homeostasis is
maintained by position-dependent extracellular signals (e.g. basement membrane
composition, Wnt levels) and intracellular gene levels (Gaspar & Fodde 2004).
Mutations in the associated regulatory networks disrupt homeostasis, leading to
increased cell proliferation, crypt deformation and fission and polyp formation
(Preston et al. 2003).

The above description highlights the multi-scale nature of the dynamics
of normal and diseased crypt epithelia. In §3, we introduce the general,
‘middle-out’ multiscale framework that we have developed to simulate the
dynamics of a colorectal crypt (Pitt-Francis et al. 2009; van Leeuwen
et al. 2009) and present two alternative cell-based models that can be
incorporated into the framework: a cell-centre model and a cell-vertex model
(figure 1).
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(a) Multi-scale model framework

The multi-scale model that we use couples processes acting at the tissue,
cellular and subcellular scales. To facilitate comparison of the cell-based models,
common subcellular and tissue-level models are used to describe cell proliferation.

(i) Tissue- and subcellular-level models

The crypt is viewed as a two-dimensional cylindrical surface of height
HC = 20 cell diameters and circumference WC = 10 cell diameters, where we
estimate that a cell diameter is approximately 8 mm (Drasdo & Loeffler 2001).
The independent variables x ∈ (0, WC) and y ∈ (0, HC) represent, respectively,
circumferential distance and distance from the crypt base. Periodic boundary
conditions are imposed on x = 0 and x = WC, and no cells are removed through
the crypt base (y = 0). Cells are removed, or sloughed off, when they reach the
lumen (y = HC).

We suppose that the crypt contains healthy and mutant cells and that there is
a spatial gradient in Wnt along the crypt axis, so that Wnt levels are high near
y = 0 and low near y = HC. Owing to its small size, we assume a nutrient-rich
environment and do not include a vasculature in the model. Mutant and normal
cells are assumed to differ in their rates of cell proliferation and their cell–cell and
cell–substrate adhesion properties (Sansom et al. 2004; Bienz 2005). Specifically,
healthy cells proliferate in the bottom third of the crypt (0 � y � HW = HC/3)
where Wnt levels exceed a threshold level, whereas mutant cells proliferate
throughout the crypt, irrespective of the local Wnt concentration. The mutant
cells also exhibit increased stromal adhesion and stronger cell–cell adhesion.

The cell cycle of both normal and mutant cells is assumed to vary stochastically,
with the total duration of the G1, S, G2 and M phases being sampled from
a normal distribution, with mean 16 h and s.d. 1 h.

(ii) Cell-centre model

We extend a lattice-free, cell-centre model (figure 1a) developed by Meineke
et al. (2001), and described by van Leeuwen et al. (2009). Each cell is treated
as a discrete entity and adjacent cell centres are connected by linear springs.
Neighbouring cells are determined by a Delaunay triangulation while cell shapes
are determined by a Voronoi tessellation. The equations of motion are developed
by neglecting inertial effects and balancing viscous drag on cell centres with
cell–cell interaction forces associated with the compression and extension of the
springs. The equations of motion are

mi
dri

dt
=

∑
j∈Si

kij(|ri − rj | − sij(t))
(rj − ri)
|rj − ri| , i = 1, . . . , n, (2.1)

where ri is the position of cell centre i, n is the total number of cells, sij(t) and
kij are the natural length and strength, respectively, of the spring connecting cell
centres i and j , Si is the set of cells that are adjacent to cell i, mi is the drag
coefficient, which depends on cell i’s type, and t is time. The drag term models
cell–stroma adhesion.
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When cell i divides, its daughter cell j is placed a distance 0.1 cell diameters
from cell i, in a randomly chosen direction. To model cell growth during M phase,
the rest length of the spring connecting parent and daughter cell, sij(t), increases
from 0.1 to 1 during the last hour of the cell cycle; sij(t) = 1 for all other
connections.

(iii) Cell-vertex model

In the cell-vertex model (figure 1b), the size and shape of each cell is dictated
by the movement of its vertices. We introduce a free energy U , with contributions
from each cell, whose gradient with respect to vertex displacement exerts a
force on each cell vertex which, if inertial effects are neglected, is balanced by
a drag force proportional to the vertex velocity. We decompose U for cell j into
a deformation energy, U j

D, a membrane surface tension energy, U j
S, and a cell–

cell adhesion energy, U j
A (Nagai & Honda 2001). The deformation term ensures

that cells attain their target area (cell height is assumed constant). Membrane
surface tension is included to conserve membrane length and acts to drive cells
to a circular shape. The cell–cell adhesion energy term represents the free energy
associated with cadherin and other bonds on the membrane; it is proportional to
the contact area between two cells and depends on their types. The equations of
motion are as follows:

hi
dri

dt
= −Vi

n∑
j=1

(U j
D + U j

S + U j
A), (2.2)

= −Vi

n∑
j=1

⎛
⎝l(Aj − AT ,j)2 + b(Ck − CT ,j)2 +

Mj∑
m=1

gSLj ,m

⎞
⎠, (2.3)

where ri is the position of vertex i, hi is the associated drag (averaged over
values assigned to all cells containing the vertex), Vi is the gradient with respect
to ri and n denotes the number of cells in the system. In equation (2.3), Aj is
the cross-sectional area of cell j , Cj is the perimeter (in two dimensions) and
Mj is the number of vertices of cell j . Lj ,m is the length of the line connecting
vertices m and m + 1. Similarly, AT ,j is the cell’s natural (or target) area, and
CT ,j = 2(pAT ,j)1/2 its natural perimeter. Finally l and b are positive constants,
and gS is a positive constant whose value depends on whether edge m is on an
external boundary or not (Honda et al. 1984; Nagai & Honda 2001).

On completing its cell cycle, a cell splits into two equal parts, along its short
axis (Sausedo et al. 1997). The target areas of both daughter cells are set to
AT = p/8 [cell diameter]2 and increase linearly during the first hour of their cell
cycles towards AT = p/4 [cell diameter]2, the target area of a mature cell.

(iv) Implementation of multi-scale models

The cell-centre and cell-vertex models are implemented in the Chaste
framework (Pitt-Francis et al. 2009), which has been released under the LGPL
2.1 open source licence and is available at http://www.comlab.ox.ac.uk/chaste.
The parameter values are given in the electronic supplementary material. The
crypt size is taken from Meineke et al. (2001) and the cell-cycle times from
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x
y = 0

y = HW

y = HC

D

G = 0

crypt base

crypt lumen

Figure 2. Schematic representation of the crypt in the continuum model. Mutant cells occupy the
domain D while normal cells surround it.

Sunter et al. (1979). The parameters for the cell-vertex model were chosen to
ensure that the crypt was in a quasi-steady state (the net rate of cell proliferation
balancing the rate cells are removed from the top of the crypt) and the vertex
movement was stable (they moved smoothly and did not pass through edges of
other cells). The parameters for the cell-centre model were chosen by matching the
velocity of the cells with that for the cell-vertex model. For the system described
above, it takes about 25 min (130 min) to simulate 1000 cell-hours on a desktop PC
(2.4 GHz processor) using the cell-centre (cell-vertex) model. Details of numerical
parameters used can be found in van Leeuwen et al. (2009).

(b) Continuum model

For comparison with the two cell-based models, we also develop a continuum
model for the proliferation and movement of cells within the crypt. It is assumed
that there are no gaps in the epithelium, the cell density is constant and two
distinct cell populations, separated by a closed, moving interface G(x , y, t) = 0
(figure 2), are considered: normal (N) and mutant (M) cells. Mutant cells occupy
the domain D bounded by G = 0. The epithelium is characterized by an average
velocity field v(x , y, t) and pressure field p(x , y, t). To mimic Wnt dependence,
normal cells lying outside D proliferate in the region 0 < y � HW at rate k− while
mutant cells in D proliferate uniformly at rate k+, so that V.v = k±. Following
Greenspan (1976), Darcy’s law is used to model cell motion, so that m±v = −Vp,
where m− (m+) are effective viscosities representing adhesive drag forces between
normal (mutant) cells and the stroma. Combining the law of mass balance and
Darcy’s law, and writing p = m−k−p̂, v = k−v̂ and t = t̂/k−, we have

V2p̂ = −H(HW − y), outside D, (2.4)

where H(HW − y) is the Heaviside step function. For mutant cells,

V2p̂ = −kfM, inside D, (2.5)

where fM = m+/m− represents the relative effective viscosity of mutant to normal
cells and k = k+/k− is the relative proliferation rate. On G = 0, pressure and
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normal velocity are continuous and G = 0 moves as a material interface, such that

fM n.Vp̂|− = n.Vp̂|+, [p̂]+− = 0,
vG

vt̂
+ v̂.VG = 0, (2.6)

where n is the unit normal to the interface and [.]+− is the difference in the values
from each approach, + for mutant cells, − for normal cells. To close the model,
no-flux conditions are imposed on the base and sides of the crypt,

vp̂
vy

(x , 0, t) = 0 (2.7)

and
vp̂
vx

(0, y, t) = vp̂
vx

(WC, y, t) = 0, (2.8)

while to represent sloughing of cells from the top of the crypt we impose

p̂(x , HC, t) = 0. (2.9)

We seek solutions symmetric about x = WC/2 using a collocation method,
in which D represents a patch of mutant cells within the crypt (figure 2).
A local polar coordinate system (r , q) centred on the mid-point of D is
introduced and the solution of equations (2.5) and (2.8a) is represented
as an expansion in rm cos(mq), m = 1, 2, . . .. Outside D, the solution of
equations (2.4), (2.7), (2.8b) and (2.9) is represented as an expansion in
cos uny(cos unw − tanh(unHC) sinh(unx)), where un = (n − 1/2)p. Collocation
points are distributed along x = WC/2 (outside D) and G = 0. Enforcing the
remaining boundary conditions yields a linear algebraic problem for the vector of
coefficients in the expansions, solved by minimizing the residuals in the L1 norm.
Representative results are shown in the electronic supplementary material.

3. Comparison of models

We use the above models to simulate a healthy crypt undergoing normal tissue
renewal (crypt homeostasis), comparing the output from the cell-based and
continuum models. We then investigate how the system dynamics change when
a patch of mutant cells is introduced into the crypt.

(a) Crypt homeostasis

Typical simulation results for the cell-based models are presented in figure 3.
Owing to the stochasticity inherent in the models, and since the components
of the cell velocities satisfy vy � vx , average values of vy were computed by
splitting the crypt into horizontal bands of unit width, averaging vy over all cells
in a given band and repeating the process for 100 simulations; similar averages
were obtained for the average area difference AT − A and the number of vertices
associated with each cell. The results are presented in figure 4 where they are
compared with corresponding output from the continuum model. In each case,
the velocity profile changes markedly between the proliferating (0 � y � HW) and
non-proliferating (HW � y � HC) regions. In the lower region, vy increases linearly
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(a) (b)

Figure 3. Example simulations using (a) the cell-centre model and (b) the cell-vertex model.
Proliferating cells, yellow; non-proliferating cells, pink.

with distance from the crypt base for all three models (figure 4c). In the non-
proliferating region, for the cell-based models, vy still increases, albeit more
slowly. This is because the non-proliferating cells relax and increase in size
((AT − A) decreases; figure 4a), forcing those above them to move more quickly.
Correspondingly, the pressure field in the continuum model falls from the base to
the top of the crypt (figure 4b), indicating how cells would be compressed were
such effects taken into account. However, in the continuum model, cell density is
fixed, so vy is uniform for y > HW and the maximum cell velocity is higher than in
the cell-based models (figure 4a). In the homeostatic state, proliferative expansion
in the continuum model is entirely accommodated by vertical cell displacement,
whereas in the cell-based models, it is accommodated to some extent by cell
compression and some lateral displacement, leading to lower cell velocities.

Further inspection of our simulations reveals that cells near the crypt base
are more compressed than those near the top (figure 4a,b), the decrease for the
cell-based models being approximately linear in the non-proliferating zone. If
we identify (AT − A) with cell pressure, then figure 4a,c suggests that, in the
non-proliferating region, vy ∝ d(AT − A)/dx , which is consistent with Darcy’s law
(figure 4b). In the lower, proliferating region, the agreement between the cell-
level and continuum models is poor because the cells in the continuum model
are assumed to be incompressible. We note also that for both cell-based models
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Figure 4. (a) Average area difference, AT − A, varies with distance from the crypt base, y, for
cell-centre and cell-vertex models. (b) The pressure, p, varies with y in the continuum model.
(c) The averaged vertical component of the cell velocity, vy , varies with y for all three models.
(d) The average number of vertices for the cell-centre and cell-vertex models varies with y. Cell-
vertex model, solid line; cell-centre model, dashed line; continuum model, dashed-dotted line. The
dotted vertical line separates the Wnt-stimulated, proliferating region (0 < y � HW) from the non-
proliferating one (y > HW).

the average number of cell vertices remains constant throughout the crypt at 6,
apart from near the crypt base where the no-flux boundary conditions lead to
cell distortion (figure 4d).

All three models reproduce the basic features of a healthy crypt: cells proliferate
in the lower region, they migrate upwards and are sloughed off near the top. We
now investigate how well the models reproduce other experimentally observed
phenomena, such as crypt monoclonality.

There has been considerable debate about whether the cells within a crypt are
polyclonal (emerging from multiple stem cells) or monoclonal. Recently, when
Taylor et al. (2003) labelled mitochondrial DNA to track cell lineages, wave-like
ribbons extending from the base to the top of the crypt were observed. The
results presented in figure 5 show that the cell-based and continuum models
yield similar qualitative behaviour (movies of these simulations are presented
in the electronic supplementary material). While the cell-based models produce
wavy lineages, the continuum model generates a vertical column since it predicts
no azimuthal movement of cells in homeostasis. Consequently, the continuum
model cannot be used to investigate whether crypts are monoclonal or polyclonal.
By contrast, extending the duration of the cell-based simulations reveals that
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Figure 5. Snapshots of a cell lineage from: (a) the cell-centre model; (b) the cell-vertex model;
(c) the continuum model; and (d) experiment (adapted from Taylor et al. 2003). Both cell-based
models show marked cells moving as a wavy ribbon as in the experiments, and the continuum
model predicts a uniform band of labelled cells. In (a,b), cells from the lineage are blue, transit
cells are marked yellow and differentiated cells marked pink. In (c), the evolution of a labelled
region of cells is tracked over time. Green, t = 0; blue, t = 60 and red, t = ∞. In (d), cells from the
lineage are marked in blue, other cells are in black.

if cells at the base of the crypt move freely then it will eventually become
monoclonal, whereas if they are fixed in position then the crypt will remain
polyclonal (see figure 6 and van Leeuwen et al. 2009). These results, together with
independent experimental confirmation that crypts are monoclonal (McDonald
et al. 2006), lead us to predict that the (stem) cells at the base of a crypt
move freely.

(b) Crypt invasion by mutant cells

In this section, we study the ways in which a small patch of mutant cells
can colonize a crypt during early CRC. Two hypotheses have been proposed
to explain this phenomenon. Proponents of the ‘top-down’ theory argue that
the first mutant cells appear near the top of the crypt and invade downwards
into the crypt (Lamprecht & Lipkin 2002). Other authors argue that mutations
originate in stem cells at the crypt base, migrate upwards and colonize the crypt
via ‘bottom-up morphogenesis’ (Preston et al. 2003).

To compare the two hypotheses, we introduced, into a normal crypt, a circular
patch of mutant cells, of radius 2 cell diameters, centred at (x , y) = (WC/2, A0),
and investigated how changes in the drag coefficient of the mutant cells and their
initial vertical position, A0, affected their ability to colonize the crypt. Recall that
the drag force acts at the cell centre for the cell-centre model whereas in the cell-
vertex model it is the average of the drag on the cells surrounding that vertex; in
the continuum model the effects of cell–stroma adhesion are incorporated within
the relative viscosity fM. Simulation results from the cell-vertex and continuum
models suggest that mutant cell invasion is predominantly ‘bottom-up’ but that
‘top-down’ invasion can occur if adhesive effects are strong (figure 7).
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(a) (b) (c) (d) (e)

Figure 6. Results from two simulations of the cell-centre model showing how pinning the cells at
the crypt base affects the distribution of cells within a normal crypt. In the lower plots, the cells at
the crypt base are fixed in position and no single cell lineage dominates the crypt. When the cells
at the crypt base are free to move (upper plots), the crypt eventually becomes monoclonal. The
cell distributions are plotted at times t = 0, 250, . . . , 1000 h for (a–e), respectively, and the colour
code is the same as that used in figure 5a.

5 100
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20
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Figure 7. (a–c) Simulation results from the cell-vertex model showing how a patch of mutant cells
initially moves up the crypt and then migrates down. The cell distributions in (a–c) correspond
to times t = 0, 25 and 50, respectively. Parameter values are as in the electronic supplementary
material, except hM = 18hN, A0 = 8. (d) Simulation results from the continuum model showing
how a highly viscous patch of mutant cells (A0 = 8, B(0) = 6, fM = 15.0, k = 1) invades the crypt.
The boundary separating the mutant and normal cells is plotted at times t = 0, 8, 16, 24 h and the
arrows indicate the direction of movement of the interface.
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Figure 8. Plots showing how the vertical height of the centre of the lowest cell in the mutant patch,
B(t), changes over time as the initial vertical position of the mutant patch and the corresponding
drag ratio vary. The initial patch is a circle of radius 2, centred at (x , y) = (WC/2, A0). Results
are plotted at times t = 0, 10, 20, 30, 40, 50 h for (a,d) the cell-centre model, (b,e) the cell-vertex
model and (c,f ) the continuum model. (a–c) A0 = 4; (d–f ) A0 = 12.

In order to determine how the dynamics of the mutant patch are influenced
by the way in which drag is modelled, the position, B(t), of the lowest point of
the patch was recorded every 10 h, with values averaged over 50 simulations for
the cell-based models. The results presented in figure 8 show that the different
models share many common features. For example, in all cases and for all values
of A0, as the drag coefficient of mutant cells increases, they move more slowly
than the healthy cells and are more likely to persist in the crypt. This is because
the mutant cells offer greater resistance to the proliferative force exerted on them
by the normal cells beneath them (figure 8).

Another common feature is that the patch dynamics are influenced by its initial
position and, in particular, the velocity of the normal cells near its base. For
example, when A0 = 4 and B(0) ≈ 2, mutant cells near the base of the crypt, where
the velocity is low (figure 4c), are more likely to exhibit downward invasion than
mutant cells near the base of crypts having A0 = 12 and B(0) ≈ 10 (figure 8).
We remark also that the dynamics of patches with A0 ≥ 12 and B(0) � 10
(figure 8d–f ) are similar because the velocity of the normal cells near the top
of the crypt does not vary markedly (figure 4c).

Some behaviour is model specific. For example, for certain parameter values
(when mM � 14mN in figure 8b), the mutant cells initially move up the crypt
(B(t1) > B(0), t1 > 0) but move down at later times (B(t2) < B(t1), t2 > t1;
figure 7). This phenomenon is peculiar to the cell-based models and arises
because the mutant cells need time to establish a critical mass within the crypt.
Thereafter, displacing the normal cells below the patch offers less resistance to the
mutant cells than displacing the normal and mutant cells above it and downward
invasion ensues. We note also that the cells in the continuum model have more
azimuthal expansion than those in the cell-vertex model (figure 7).
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Figure 9. Bifurcation diagram showing how, for the continuum model, the minimum value of
the relative viscosity needed for downward movement of cells at the base of the mutant patch,
f∗

M , increases as the initial height of the centre of the mutant patch, A0, increases. Parameter
values: k = 1.

The cell-based results in figure 8 were obtained by averaging over 50
simulations. Given that the cell-centre and cell-vertex simulations take,
respectively, 25 and 130 min to perform, it is clear that comprehensive parameter
sensitivity analyses will be extremely time consuming. By contrast, such analyses
are relatively straightforward with the continuum model. Indeed, figure 9 shows
how, for the continuum model, the minimum value of the relative viscosity fM
needed to guarantee downward invasion of a patch of mutant cells increases as
A0, the initial height of the centre of the mutant patch, increases.

Experimental results indicate that Wnt-independent mutant cells have stronger
cell–stroma adhesion than normal Wnt-dependent cells (Sansom et al. 2004).
Our simulation results are consistent with these observations if we associate Wnt
independence with increased drag. Our simulations also suggest that increased
levels of adhesion (modelled by increased drag) are necessary for top-down
morphogenesis. However, they also suggest that bottom-up morphogenesis is the
dominant mechanism for invasion.

4. Conclusions

In this paper, we have investigated the suitability of two cell-based models and
a continuum model for simulating the cellular dynamics of intestinal crypts. We
have shown that, while each model exhibits similar behaviour for many critical
phenomena, there are model-specific differences. These findings suggest that more
research must be carried out into the effects of using different individual cell-
based models. This is a challenging research question because of the number of
parameters involved and the fact that the way in which a biophysical process
is incorporated may be model-dependent (consider, for example, the ways in
which cell–cell adhesion is modelled in this paper). One possible approach may
be to derive continuum descriptions from the discrete models. For example,
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Murray et al. (2009) derived, from a simple one-dimensional spring-based model,
a reaction–diffusion equation for cell density, while Lushnikov et al. (2008) used
a statistical mechanics approach to derive a similar equation from a cellular
Potts model. Crucially, both formulations contain a nonlinear diffusion coefficient
that encapsulates the microscopic behaviour of the cells and depends on the
assumptions made at this level. Comparison of the nonlinear diffusion coefficients
reveals how macroscopic behaviour depends on model choice. The form of the
resulting continuum model may also vary. For example, by considering the limit
of large numbers of cells and assuming that cell parameters vary slowly, Fozard
et al. (2009) derived a continuum description of a monolayer of tightly adherent,
visco-elastic epithelial cells. The resulting model contains convective derivatives
not normally associated with continuum tissue models.

Throughout the paper, we interpret ‘hybrid’ to mean a model in which cells
are considered as discrete, and one of our justifications for considering cells as
individuals is that for small cell numbers a continuum approach is not valid. As
a tumour grows, the number of cells increases to an extent that a continuum
description, at least in certain regions, is now valid. In such cases, ‘hybrid’ may
refer to a model in which cells are viewed as discrete in some parts of the domain
and as a continuum in others (e.g. Kim et al. 2007).

While we take the application area of our modelling approach to be cancer,
it is important to note that most of the issues discussed arise in many areas of
biology, including development, regenerative medicine and wound healing (e.g.
Deutsch & Dormann 2005; Schnell et al. 2007).

The mechanical components of the cell-based models are purely deterministic.
An interesting extension to the models would be to include stochasticity for the
mechanical parameters. However, we anticipate that the effect on the results of
the current study would be negligible.

There are many ways in which the idealized models of the colorectal crypt
presented in this paper could be extended and modified. For example, we could
model the cells as deformable, elastic spheres (Drasdo & Loeffler 2001) or we
could use the cellular Potts model (Glazier & Graner 1993). Further work
is needed to determine the level of detail needed to account for subcellular
effects such as progress through the cell cycle, Wnt signalling, cross-talk between
different signalling pathways and feedback between phenomena acting at different
spatial scales. For example, while in van Leeuwen et al. (2009) a detailed
model of the Wnt-signalling pathway (see van Leeuwen et al. 2007) was used
to couple cell proliferation and cell–cell adhesion, it remains to be established
how mechanical effects (e.g. cell compression) affect cell proliferation and how
interactions between signalling pathways (e.g. Wnt and c-myc) are affected by
mutations in one of the pathways (Barker et al. 2009).

We began this paper by posing the questions ‘which cell-based description
should we use?’ and, ‘as cell numbers increase, how do we move from the
discrete system to the continuum?’. By comparing two cell-based models with
a continuum model of the intestinal crypt, we have shown that many of the
experimentally observed features of the crypt are robust to changes in the
modelling framework used. Establishing which model framework to use and what
level of detail to include remain open questions. In the future, close collaboration
between experimentalists and theoreticians and careful integration of data with
mathematical models should help to resolve these issues.
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