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ABSTRACT
In early embryonlc development, fibroblast cells move .
through an extracellular matrix (ECM) exerting large traction
forces which deform the ECM.
interactions mathematically and show that the various effects

We model these mechanical
involved can combine to produce pattern in cell density. A linear
analysls exhibits a wide selection of dispersion relations,
suggesting a richness in pattern forming capablility of the model.
A nonlinear bifurcation analysis 1s presented for a simple version
of the governing field equations. The one-dimensional analysis
requires a non-standard element. The two-dimensional analysis
shows the possibility of roll and hexagon pattern formation. A
realistic biological application to the formation of feather germ

primordia 1s briefly discussed.
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3 (8 Introduction.

Several models have been proposed to describe the
mechanisms involved in morphogenesis - the development of
biological pattern and form. The majority of these view
In the firat, a pre-pattern

In the

morphogenesls as a two stage process.
is set up 1n some chemical (morphogen) concentration.
second, cells respond to the local concentration of morphogen and
differentiate according to their 'positional information' (Wolpert
(1969), (1981)).

The pre-pattern may be set up by simple diffuslion or in a
typical Turing reaction-diffusion way (Turing (1952), Murray
(1977),(1981 a,b), Meinhardt (1982), Tickle et al (1975), Wolpert
et al (1971)).

An alternative approach has been made by Oster et al
(1983, 1985) and Murray and Oster (1984 a, b), based on the
following experimental observations (Harris et al (1981)): 1) cells
spread and migrate within a substratum consisting of a fibrous
extracellular matrix and 2) they generate large contractile forces
which deform the ECM.

For completeness, section 2 contains a brief derivation
of the model equations (see Oster et al (1983) for fuller
details). In sectlion 3 the results of a linear analysis are gilven
which show the wide selection of dlispersion relations possible. 1In
section U4, we carry out a nonlinear bifurcation analysis on a
simple but practical verslon of the model. In section 5, we
investigate two dimensilonal patterns in a caricature of the model
analyzed 1n section 4, and show the possibility of roll and
hexagonal, structure in cell density populations. Finally, we
briefly discuss the blological application to the problem of

feather germ formation.

2. Model Equations.
The model 1s based on the three fleld variables:
n(ﬁjt} = density of mesenchymal cells at position x and time t.
p(x,t) = density of ECM at position x and time t.
u(x,t) = displacement at time t of a material point in the matrix
initially at x.



The model equations are:

oe . an_ - D,m
11 conservation: &= v+[D;m - D;m - an¥p - ng%] + m(N-n) (2.1a)
: 3 P E
Mechenical balance: 7[uc + “23—2 I+ 3= (e + Yol
m 2 e
* annle #6710 ® ab
Matrix : 2 .
conservation: Z& + V-{p 5% }=0 (2.1c)

1 T
where e = 5 {vu + vu'}  1s the linear strain tensor and D, D,, a, r, N, u,
2 > 3
up, By, v, ¥, A, v and B8 are parameters which we describe below.
We briefly motivate the various contributions to equations

(2.1a)-(2.1c).

Cell conservation. The equation for cell conservation 1s of the form

an _

% = - 9-J + m(N-n) (2.2)

where J 1s the cell flux through a volume element of matrix and, to be specific
we have taken a logistle growth term where r, the mitotic rate, and N are

positive constants. The cell flux, J, is made up of a number of terms:

Random dispersal: In populations of low cell density, random dispersal of cells
may be modelled with a Ficklan flux -D,vn where D, 1s the diffusion '
coefficient. However, with high mesenchymal cell densities, we should take non-
local effects into account since mesenchymal cells have long flnger-like
extensions (filopodia) which can detect non-local cell densities. Thus cell
'diffusion' depends also on the average cell density in the immediate
surrounding. We model this non-local (long range) diffusion by D2V(?§l)

where D, 1s the coefficlent of long range diffusion.

Haptotaxis. Cells actively move by attaching thelr filopodia to adhesive sites
in the ECM. The tendency of cells to move up a gradient in adhesive sites
(Harris (1973)) is called haptotaxis. Assuming, reasonably, that the density of
adheslve sites 1s proporticnal to the matrix density, we model the haptotactic
flux as anVp where a 1s the coefficient of haptotaxis. We could, of course,
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include a long range haptotactic effect but for simplicity do not do so here.

3

Convection. Cells are passively carried on the substratum and this convective

motion is given by n -g—lt": . Here ":% is the veloclity. This 1s probably the most
important dispersal component.
Substituting these contributions into (2.2) glves (2.1a)

Mechanical balance. We are deallng with systems with very low Reynolds number
(Purcell (1977), Odell et al (1981)) so the viscous and elastic forces dominate
the inertial terms and cell motlon instantly ceases when the applied forces are

turned off. Therefore there 1s a balance between the cell contractile forces

deforming the ECM and the vlscous and elastic restoring forces in the ECM.

There is experimental evidence for assuming small strains. We therefore model

the cell-matrix composite as a linear, {sotroplc, viscoelastic material with

= +
stress tensor @ = G ¢nyy * “cell-matrix’ waem
9cC 36 E A
= — —_ —
Fmatrix Y1 3t~ M2 ot LS T {e + DeI},

viscous elastic

where 8 = div u, the dilatation, E is Young's modulus, u, and yu, the shear and
bulk viscosities respectively, v the Poisson ratlo, v = —l-—_“E.—v , and I the unit

tensor.
The stress due to the contractile forces exerted by the cells is taken
2
= = T
83 0,.11-matrix 1(n)n[p+87p ]I where t(n) Tl i1s the traction/unit

length/unit cell, t, A and B are positive constants. The motivation for this
term is that mesenchymal cells exert contractile forces by attaching their
filopodia to the adnesive sites and compressing the matrix. Therefore, the
contractile force 1s proportional to the density of adhesive sites which in
turn, we take as proportion to p. Long range effects should again be taken into
account: this gives the term gv2p. As cell density increases, the
traction/unit cell decreases due to cell-cell inhibition (Trinkaus (1984)),
hence the qualitative form of t(n) taken. The equation for mechanical

equilibrium 1is
Voo + oF =0

where F 1s a body force. Typically the ECM 1s attached elastically to a



subdermal layer which we model as a linear spring and so F = -su, where s 1s a
positive constant.

Matrix conservation. The matrix density p satisfies the usual conservation

equation

30 o.My o
Gpt Plpggdoml
With the processes and time scales we are concerned with here no matrix is being

secreted.

i 2 Linear Dispersion Relations.

It is convenient to non-dimensionalise the system to highlight the
dimensionless parameter groupings in a blologlcally significant way: they
indicate which biological processes have equivalent effects. The system reduces
to

2 W
A= Dy - Do - a 9-{n%} - v-{n 2 + m(1n) (3.1a)
o[y e+ up 22T+ (e + %61 + —T (o + g920)T] = sup (3.10)
(1+an )
ap gy _
XevpByao (3.1¢)

where Dl, D,, a, 1, Wys My, A, B, T and s are non-dimensional parameter
groupings (see Appendix (A.1)).

Linearising about the blologically relevant steady state
n=1=p,u=01n the usual way we obtain the dispersion relation for the
(Appendix (A.2)).

Setting various parameters equal to zero gives rise to varled
behaviour for o(k2):
evolve when the parameters are such that Reo(k2) > 0, k2 # 0.

growth rate o as a function of the wave number k.

Table 1 illustrates a few of these. Spatial patterns

a1

Table 1: (a) Examples of possible types of dispersion
relation o(k2?) (Appendix (A.2)) with finite ranges
of unstable k (wave number) in the case » = g = 0.

-+ denotes unstable wave number
e denotes non-zero parameter
o denotes parameter set to zero

+ guadratic condition on T

DDy cjuls Conditions on T o(kz)
G(K‘)A
2
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.
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h, tne-Dimensional Nonlinear Analysis.

In this section we briefly summarize some pesults from Maini et al
(1984) for a simple version of the model of blological relevance 1in which
<, u, B, and s are the only non-zero parameters. We take t to be the

(b) Examples of the dispersion relation o(k2)
(Appendix (A.2)) with infinite ranges of unstable
k (wave number) in the case x» =8 = 0.

bifurcation parameter. The one-dimensional system we consider is

Dy[Dof o tfu]s Conditions on T o(kz)
A~ an £l a_u o
/2 <t< 1l (k) . i L ] (4.1a)
e|efe0l0 > K"
o T (Dl + Snz);’(nl + a) ! a3u + 32u + E_ [l’l{ +8 329}- -sup =0 (4.1b)
4 axZat  ax2 | ¢ ax UMPTE o ;

+ two quadratic conditions on T

HERSHE c@)| ' 242 R (4.1c)
X
e e o000 T2 0y F aaliin; 8 ’ e
I
+ two quadratic conditions on T - where we have rescaled time by dividing through by u .

L)

>
1
!

7471?4

1/2 + abpl2a < t < | s The dispersion relation (from (A.2)) 1s

O|e|e|0joj® gtk + (121)k2 + 8
T > sD,/a L - L (4.2)

9= 0, ok?) = - .

t £ 1/2
The trivial solution corresponds to neutral stability of the steady state and 1s

K* not considered in the following analysis. Figure 1 illustrates the behaviour of

the dispersion relation as t increases.

G
® (ool o0le + condition that c(k2)=0 has
3 real roots

’A [
1/2 € G() h
olelelolole / T < 1/2 + sDy2a I\j 2 "
\'.: i (¥
1 <1< (ur + 1)/2
O|0(Oje|e|®
o = > )’k:..
t=f;+£:‘
T=T,
T<T

[The form of some of these dispersion relations indicates the lack of validity of

a linear theory.]
Pigure 1. Behaviour of the non-zero solution for o(k2) (see(4.2)) as <
increases. There 1s a eritical value for t (r ) such that 1f ¢ < T the
uniform steady state (n =p = 1, u = 0) is staBle. For

-k e2 (0 < e €1) the uniform steady state is unstable and spatial

disturbances of wave number k, grow fastest where l-cg = B? and

8 % [14s8+/(1*s8)2-1]. B



Linear analysis therefore, predicts that if 1 = L e26, where 0 < ¢ (]J

and § = +1, then the uniform steady state goes unstable and the fastest growing

unstable wave number is kc, where

=1 Tivsg)2T =[=
r, =3 [l4sgw/(T8)2-1 ] and k2 J?T_; (4.3)

Expanding ¢'about (ki"f) in a Taylor series we have

o(ké.rc +e2§) = c(}l&g‘) + 2§ :—3— |k2 . + 0(e¥) (4.4)
o - et'e

Thus the exponential growth term is exp(0(e2)t) and this suggests the usual
long time scale T = e2t (Lara Ochoa and Murray (1983)). As k, 1s the fastest
growing wave number, we assume that on the long time scale T, the nonlinear
solution will have wave number ke (Matkowsky (1970)). To investigate the
nonlinear behaviour of (4.la)-(4.lc), we use the method of balancing harmoniecs
and substitute

n(x,T,e) =1+ § ¢ {A (e T)cosjk X + D (e,T)sinjk x}

J J
u(x,Tye) = JEIEJ{BJ(E,T)stucx + E, (e, Thoosgk x|}
p(x,Te) =1+ T ¢ (€, (e Tcosgk x + F, (e, Thstngk x} (4.5)
571 ¢
where T =¢2t ad A, = | A, ete.
1 ks

into (4.1a)-(4.1c) ard equate coefficients of e. This leads to a hierachy of linear
equatons for the coeffletents Aj(T), By(T), C;(T), Dy(D), EJ(T) and Fy(T) which ve can

solve. Tb lowest order in e, we have

4
= 0

0 0
Kt Ay (T) + (K248)B, (T) + k_t_(1k28)C,(T) = 0 (4.6)

0 0
(A (T) +k By(T)) =0

0
d{C)D + Kk B(D) = 0

0 0 0
and a similar set of equations for {D (T), E{(T), F (T)} For the remaining
calculation we shall only consider {A (T); Bj'(T) C (T)} to simpliry the
analysis. The analysis may be repeated exactly f‘or' {D (T), EJ {1, F {T)}

Order ¢2 tems glve

aBY(T)
—[Az('I‘) - BZ(T}} +k Al{T) =0

Thp(D) + (A2H)By(T) + 2 x (1-UgKk2IC(T) =

S )
7, (1-6k2)AY ()G (T) - By (T)C,(T)
dB (T)
gelcs (T)+2‘.(BZ(T)}+kC(T) =0
and at order €3, (U.1b) gives
aB) (T) 0 0 0
—kc ar + kcﬁ{Al(T) + CI(T)} + BﬁkgCl(T) +
T 0 kcfc 3 0 0
kcrc(25kg = 3)A (T)C,(T) +—5 {Bkc - 1}A,(T)C4(T) (4.8)

0 0 0 0
- S{C1(TB,(T) - By(TIC,(T)} = 0
Standard nonlinear analysis simply requires successive suppression of
secular terms. With the structure of our equations this 1s not sufficlent to
determine the amplitude equations. We have to use an integrated form of the
conservation equations. Integrating the first and third of (4.6) we have three
0 0 0
simultaneous equations for A;(T), B;(T) and C{(T) , namely
0 0
Ay(T) + K By(T) = vy
0 0 0
2 2 =
k1 A (D) + (248)By(T) + k7, (1-8k2)Cy(T) = 0 (4.9)
0 0 0
kcBltT) +Cy(T) = v,
0 0 )
where y, and y, are constants. The system (4.9) is degenerate and has
nontrivial solution if and only if

0 1]
[kg(l"‘(c} +3]ys + kgrch =0 (4.10)

that 1s, there 1s a constraint on the initial conditions. This is what we would
expect because of the intimate relationship between u(x,t) and o(x,t).
Integrating the first and third of (4.7) gives



o2/

0
0 0 ampe Table 2. Behaviour of A,(T) from equation (4.12).
AZ{T) * a(ch(T] - "2_ + Y1

; (4.11) Y <0 ¥> 0
0 0 {cimpz
C,(T) + X B,(T) = Bl W
1 1 §>0 A? evolves {75 ﬁ? + =
where y; and vy, are congta.m;e.. . to {X/ 1Y}
Note that y, = A;(0) + kB, (0). If we assume initial perturbations to Threshold in a?(OJ:

a%0) < (x/1}1/2 = 040

0 0
be 0(e2), then Y1 = v3 = 0. Moreover, assuming initial perturbations to . 5§ <0 A? + 0 ‘13 0
A0 > (/2 > 40+ @

1 1
be O(e3) implies y; = y3 = 0. Making these assumptions 1is not necessary but
they simplify the analysis.

We solve system (4.9) and the integrated form of (4.7) for

B (1), & 1(T), ﬁg(T) B:(T) and C:(T) in terms of A (T) and, substituting into If we are in the parameter space P (Figure 2) the cell density evolves
(4.8), we have the usual landau equation to the bounded steady state
i BN, : - | X cosk (1.13)
ar - 6XAY(T) + Y{A((T)}3 (4.12) n=1+¢ T cosk x
21, +1 {14gst_+2Ur_-638s-12)
where X = and Y = ¢ c
ETC T28s

The behaviour of (4.12) is summarised in Table 2.

£
—
1\
\ P\
S S

>SS

Figure 2. Parameter space P, (shaded), where Y > 0 ((4.12)) and the homogeneous
steady state n(x,t) = 1 evolves to the heterogeneous solution (4.13).
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If we include all of the initial constants, we would have finished up
with the perturbed version of the above Landau equation, namely

aAy (T)

— = Cp + SCRKAL(T) + Zo{Ay(D)]2 + Y{AY(D) ]2 (4.14)

where Cy, X, and Z; are functions of ‘rjl' and Y% » 1=0,1.

In this case the homogeneous steady state would evolve to a
heterogeneous steady state dependent on initial perturbations. As we are
dealing with small perturbations, these variations are small. B

5. Two-Dimensional Nonlinear Analysis.

In this section we analyze a caricature of the above model (3.1) in
which (3.1a) involves only convection and consider it in two dimensions to
investigate the possibility of a regular tesselation pattern. We linearise the
conservation equations %% - v-(ng—%) =0 = g—z + V-{p%%) about the steady state
n=p=1,u=0 which on integration give

=l-9,0=1-9 (5.1)

where 8 = dlv u, and in which we assume 8 < 1 as n and p are necessarily
non-negative.

We replace the sup term in the mechanical balance equation by the
linearised term su and take the divergence of the resulting equation. Using the
identity v.e = grad div u - —21- curl curl u for the divergence of the linear
strain tensor, the equation becomes

72 :—% +v2g + tv2{[1-6]2 - g[1-8]v%e} - s8 = 0 (5.2)

Clearly the dispersion relation for this equation is (4.2) and
for v > t,, where t  1s glven by (4.3), the uniform steady state is linearly
unstable. To study the full nonlinear system, we substitute

T=1 0+ § R a(x,t) = 7§ £6 (x,t) where 0<e <1 (5.3)
¢ =1 1 1=1 1=

into equation (5.2). As in section 4, this gives rise to a hierachy of linear
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equations which we can solve. We follow in part the process used by Busse
(1983).

The only regular patterns in the plane are rolls, triangles
(hexagons), squares, and tesselations of these. Therefore we look for 8g(x,t)

of the form

99 = & a, () {oos(iox + 1y) + cos(ly - )} + ag(t)oos Ay (5.4)
& 1/4
where the fastest growing unstable mode has wave number x (= [a/src} )
and k2 + 22 = 2, 42 = 2. Putting a,(t) =0, a,(t) =0, a;(t) = 2a,(t)
into (5.4) gives roll, rhombic and hexagonal structures respectively

(Christopherson (1940)).
With e,(x,t) as above, 8,(x,t) must have the form

9, = by(t)coshly + by(t)cos(3ly+kx) + b;(t)cos(3ly—kx)
+ b, (t)cos2(ly+kx) + bs(t)cos2(ly-kx) + bg (t)cos2kx

where, on equating coefficlents of €2, we can find by(t), 1 =1, 2...6 in terms
of a,(t) and a,(t): it is a simple but tedious calculation.

Taking powers of ¢ up to e3 into account, to suppress secular
terms a;(t) and a,(t) must satisfy the coupled system of ordinary differentlal

equations
da, (t) )
@ e = Yay(1) = Yay(Bay(t) - Zay(B)a2(t) - T (2R (E)
i (5.5)
da,(t
K2 —— = Yay(t) - Loz - 7a2(0a (1) - Ray¥(®)

(2r_+1)

1
where X = —21—2——{511+531‘2}:2, Y= —él:{ercﬂ%l}xz.

32 e
Z—Ts‘éz{rc 1} amd R ﬁi‘{ﬁrc-’i}.

We can take 1, > 0, thus X and Y are positive and the sign of R and Z depend on

the value of 1 c*
The system (5.5) has the following steady states
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I.a; =a, =0;
Io. ab a; =0, a, =+ /IR
IOI. a,b a; = 2a,, a, = :‘%— ?m‘ s (5.6)

_ =Y/ YZHE(IZ4R)
V. a,b a; = -2&,, a, = S(1Z4R) :

RY
ﬂ = .
SRR . = M
VR+Z
where, for example, IIa,b exists if and only if T > 2 Note that to
R INA!]
lowest order in e, IIIa is a, = 2a,, a, = 5078 = 0, where

¥, = % k2, and this 1s the same as I. A similar argument can be applied to IVa
and, 1n the following analysis, we will not distinguish between states I, IIla
and IVa.

We can analyze the stabllity of states I-IV in (5.6) by calculating
the elgenvalues (.\s) of the appropriate matrix. This gives a quadratic for
To simplify the solution of the
quadratic we approximate the coefficients to lowest order in e. Table 3
sumnarises the results of the stabllity analysis.

).5, with coefficlents dependent on e.

Table 3. Summary of stability analysis of the steady states I-IV (5.6) of the
coupled system of ordinary differential equations (5.5).

T, € 5/6 5/6 < 1 < 47/51 47/51 <t < 32/33 T. > 32/33
[ unstable star
IIa,b do IIa stable node
not exist IIb saddle point

IILb and IVb IIIb and IVb IIIb and IVb

unstable node saddle point stable node

Note that for —2 < To < %—g— the only stable regular pattern is a roll,

2
while for T, > -% rolls and hexagons are stable. In the latter case, the
evolved pattern depends on initial conditions.

61

6. Biological Application to the Formation of Sidin Organ Primordia.

In the early stages of skin organ development (hair, teeth, feathers,
scales) dermal cells aggregate to form a regular spatial pattern. These
aggregations (papillae), in assoclatlon with overlapplng arrays of columnar
epldermal cells (placodes), lead to the formation of skin organ primordia (e.g.
Rawles (1963), Wessels (1965)).

Rows of feather primordia develop sequentially to form a hexagonal
pattern within well-defined regions of chicken skin (pterylae). The pattern 1is
initlated by a single row of feather primordla forming along the dorsal midline
in the posterior part of the spinal pteryla (Stuart and Moscona (1967), Davidson
(1983)) and successive rows form on elther side of this initial row.

We apply our model to this with the following scenario: initlally
there 1s a uniformm density of dermal cells along the dorsal midline. As the
cell traction inecreases (or other parameters involved in the dimensionless
traction parameter change appropriately) this homogeneous steady state
bifurcates into a heterogeneous pattern of isolated clumps (cf. section b).
This parameter evolution may be due, for example, to cell maturity: cells "age"
into the unstable regime in parameter space. The tractlons produced by these
aggregates strain the matrix and a secondary row of paplllae are encouraged to
form at locl midway between the primary papillae, where the strain 1s a local
minimum. This recruits other cells and thereby forms a hexagonal pattern. The
scenario is 1llustrated in Figure 3.

a2
T 00 ® O 000
\ N7 NS
® 0 o
(i) T= T (i) T>Te (iic)

@~ cell ajjrejate

Figure 3. Scenario for hexagonal pattern formation in an idealized section of
chick pteryla. As traction increases, the uniform cell density (1) becomes
unstable and evolves into a row of isolated aggregations (11); this sets up a
strain field causing condensations along a neighbouring row at intermediate
points; (iii) 1llustrates how hexagonal patterns can arise.
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T. Conclusions.
We have presented a model for cell aggregation based on well
documented mechanical properties of cells and extracellular matrix. We have

11lustrated how cell traction on a viscoelastic substratum can produce
aggregations in one- and two—dimensions. Two dimensional patterns may be
produced synchronously (section 5) or asynchronously (sectlon 6). No directed
cell migration is necessary. MNumerical simulations (in one dimension) of the
full equations (to be presented elsewhere) show the aggregation patterns.
Numerical studies are underway to verify the two-dimensional patterns.

In this model, the extracellular matrix behaves as a passive
viscoelastic material. However, in cartilage formation in chick limbs, the
osmotic component of the extracellular matrix plays an active role in
aggregation formation (Oster, et al (1985)). Some of the predictions made by
these mechanical models can be (and are being) investigated experimentally.
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APPENDIX

(A.1) To non-dimensionalise the model (2.1a)-(2.1c), let L ad T, by

typlcal length and time scales respectively and let

pg bea typical matrix

density. The dimensionless quantities are
X t nx,t) ___ elxt) & u(x,t)
;=E » ES‘T—’ ?1(;__,t)= N ,obt)’ o0 !E(}_(.) T ’
= 0
DTy D,Ty g spgl2(1+v) _  apgTy
Bl=v—s 2 T I8 2 _szss’EQ_!s’:_f__’u_T)
(1) uy(1+)  _ tNpg(l+v)
?‘=TN1'0; u1= T,E sy Uz T T{!E' s T E

Dropping the tildes, the model system reduces to (3.1a)-(3.1c).

(A.2) Tre dispersion relation satisfled by the linear growth rate o(k2) 1is

21 2
where b(k2) = uDzl{E' + {(_-;.i\_) + uDl}k“ * {1 + ur - W}k +3

o(k2) = 0; or olk?) =

b(k2) + /HIKZ) - hkZe(k?)
2uk?

ard

c(k?) = ‘(1_::_)[’21"5 + {(337)(8Dy - Dz] + Dk®

where

& ((2)[rs - D - a(1- )] + sD, + DyJk*

1+

't
+{SDI+I‘—W}k2+r‘S

gyt g

and we have divided y, t and s by (149).
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