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Abstract
The integration of processes at different scales is a key problem in the modelling of cell
populations. Owing to increased computational resources and the accumulation of data at the
cellular and subcellular scales, the use of discrete, cell-level models, which are typically
solved using numerical simulations, has become prominent. One of the merits of this approach
is that important biological factors, such as cell heterogeneity and noise, can be easily
incorporated. However, it can be difficult to efficiently draw generalizations from the
simulation results, as, often, many simulation runs are required to investigate model behaviour
in typically large parameter spaces. In some cases, discrete cell-level models can be
coarse-grained, yielding continuum models whose analysis can lead to the development of
insight into the underlying simulations. In this paper we apply such an approach to the case of
a discrete model of cell dynamics in the intestinal crypt. An analysis of the resulting
continuum model demonstrates that there is a limited region of parameter space within which
steady-state (and hence biologically realistic) solutions exist. Continuum model predictions
show good agreement with corresponding results from the underlying simulations and
experimental data taken from murine intestinal crypts.

1. Introduction

A healthy colonic tract is composed of several distinct layers
of tissue and has a luminal surface that consists of regularly
positioned, test-tube-shaped invaginations called crypts (see
figure 1). Its outermost monolayer of epithelial cells, which
acts as a protective barrier and absorbs nutrients, is attached
to a basal lamina, which itself lies on top of a further tissue
layer, the lamina propria.

There is a well-defined organizational structure within a
homeostatic crypt: proliferative stem cells, which are believed
to reside near the bottom of the crypt [32], divide to produce
semi-differentiated transit cells that move up the crypt wall
towards the luminal surface. Transit cells divide a maximum

of four or five times before becoming further differentiated
and non-proliferative. Upon reaching the top, the fully
differentiated cells either undergo apoptosis and/or are shed
into the lumen and transported away [11, 27]. The journey
time of a cell from bottom to top of a murine colorectal crypt
is thought to be between 2 and 3 days [28].

Molecular gradients confer positional information to cells,
which is processed by subcellular molecular networks and
influences cell behaviour. For example, canonical Wnt
signalling has been identified as being an important regulator
of transcriptional activity along the crypt axis (e.g. [10, 33]).
Wnt molecules, whose distribution is graded along the crypt
axis [13], bind at the cell surface, releasing transcription factors
which, subsequently, migrate to the nucleus and initiate gene
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Figure 1. A section through a normal healthy crypt. Image supplied
by kind permission of Trevor Graham, CRUK. A schematic
illustration of the crypt continuum model. The parameters L and
yCrit denote the crypt height and the critical value of y below which
cells proliferate, respectively.

transcription. One such transcription factor, β-catenin, is
known to influence cell proliferation, apoptosis, differentiation
and migration [10]. Mutations that alter the balance between
cell proliferation, differentiation and apoptosis within the crypt
can lead to the formation of neoplasia [14, 22, 34]. For
example, 85% of colorectal tumours have a mutation in the
APC gene, a key regulator of Wnt pathway activity [1]. Hence,
an understanding of the homeostatic regulation of normal
crypts is essential for the understanding of the initiation and
progression of diseases such as colorectal cancer.

Computational models have been used extensively in
the study of crypt homeostasis [36]. Compartment models
represent one of the more straightforward mathematical
approaches: the populations of different cell types (e.g.
stem, transit and differentiated) are modelled using ordinary
differential equations (ODEs) [2, 16]. These models can
be used to test hypotheses regarding the proliferative and
differentiative behaviour of the various collective populations.
However, ODE models cannot explicitly account for spatial
regulation of cell behaviour, such as control by molecular
gradients, or mechanical properties, such as cell adhesion and
movement.

In a cellular automaton (CA) framework, discrete
subpopulations of cells are tracked on a periodic lattice
representing the crypt wall, with the automaton rules based
upon available biological data, such as cell labelling studies
and cell proliferation/movement rates [17, 18]. These models
have been used to validate verbal models of cell dynamics
within the crypt and to place theoretical bounds on quantities
such as the number of stem cells in the crypt. Drawbacks with
the CA approach include: (a) the presence of lattice artefacts
arising from the discrete nature of the cellular automaton; and
(b) difficulty relating automaton rules to biophysical principles
and measurements. These issues are avoided by the use
of off-lattice models, where cell movement is continuous

and occurs as a result of the consideration of an explicit
definition of biomechanical forces. For example, Meineke
et al [21] have considered an off-lattice model in which cells
interact via a linear force law, with populations of stem,
transit and differentiated cells tracked as they move, divide and
differentiate. Van Leeuwen et al have extended the Meineke
et al [21] framework by including Wnt-dependent regulation
of cell proliferation and movement, thus coupling phenomena
occurring at the subcellular, cellular and tissue scales. At the
subcellular level, deterministic ODEs characterize molecular
networks, such as cell-cycle control and Wnt signalling.
The output of these subcellular models then determines the
behaviour of each epithelial cell in response to intra-, inter-
and extra-cellular cues.

While the Meineke et al [21] and Van Leeuwen et al
[37] models provide a computational method for including
increasing amounts of ‘bottom-up’ biological data, parameter
space searches involving a vast number of simulations are
required in order to develop insights into model behaviour at
the cell population scale. For larger parameter spaces, this
process becomes increasingly inefficient. For example, it is
not clear a priori how the crypt simulations will perform if
the crypt length is varied in order to apply the model to other
regions of the intestine or species. These problems can be
circumvented, to a certain extent, by considering continuum
approximations to underlying discrete simulations [7, 19, 23–
26, 38]. Analysis and simulations of the continuum models
can help to develop insight regarding governing features of
the underlying simulations, and hence the consequences of the
underlying biological assumptions upon which the models are
based.

In this paper we investigate how the key processes of cell
proliferation and movement are related in the intestinal crypt
by developing a continuum model based upon the Meineke
et al [21] and Van Leeuwen et al [37] simulation frameworks.
The layout is as follows: in section 2 we consider a continuum
approximation to the Meineke et al [21] and Van Leeuwen et al
[37] models. In section 3 we demonstrate that there is excellent
agreement between the continuum and discrete models, and
that the crypt model permits homeostasis only for a limited
range of values of a nondimensional parameter. Finally, in
section 4 we conclude with a summary and discussion.

2. Model development

2.1. Discrete model

Most spatial models of the crypt are discrete in nature, with
each cell treated as an individual (e.g. [21, 37]). Cell motion
is determined by neglecting inertial effects and balancing the
forces exerted upon a given cell by its neighbours with a drag
force that is assumed to originate from both cell-matrix and
internal cell friction; cell–cell friction is neglected. When cell
division occurs, a new daughter cell is introduced adjacent to
the mother cell. For example, Meineke et al [21] developed
a crypt model in a cylindrical geometry in which the forces
between cells were modelled via linear springs. Stem cells,
positioned at the base of the crypt, were assumed to produce
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transit cells whose progeny further differentiate as they migrate
up the crypt. The cell proliferation rates were estimated using
data from murine intestinal crypts (e.g. stem cells divide at
half the rate of transit cells).

Meineke et al [21] and Van Leeuwen et al [37] consider
an off-lattice model in which the two basic properties of elastic
repulsion and adhesive attraction between neighbouring cells
are described by a linear force law. Cells are assumed to
move on a fixed basal geometry; thus, the feedback between
cell proliferation in the epithelial layer and deformation of
the underlying mesenchyme is neglected. We note that these
deformations were considered by Drasdo and Loeffler [4].
Applying Newton’s second law in the over-damped limit, the
equation of motion of the nth cell is given by

drn

dt
= α

∑
m

(|rm − rn| − a)
rm − rn

|rm − rn| , (1)

where rn is the coordinate vector of the nth cell, the sum is
taken over the nth cell’s neighbours, α is the ratio of the spring
constant to the cell viscosity and a is the resting spring length.

In order to simulate cell motion in a crypt-like geometry,
equation (1) is solved on the surface of a cylinder, which, for
computational purposes, is unwrapped yielding a rectangular
domain with periodic boundary conditions. It is assumed that
cells can only leave the crypt via cell shedding or apoptosis
at the top of the crypt; hence, the bottom of the crypt
(y = 0) is modelled by imposing a ‘hard wall’ boundary
condition while at the top of the crypt (y = L), where
cells are extracted into the intestinal lumen, it is assumed
that cells experience zero stress. Nearest neighbours are
defined using the Delaunay triangulation. The difference
between the discrete model considered in this paper and
those of Meineke et al [21] and Van Leeuwen et al [37] is
that we assume a much simpler model of cell proliferation
and differentiation: cell proliferation occurs in a spatially
restricted region of the crypt (y < yCrit) with a mean cell
cycle period, TC , which can be interpreted as the average
cell cycle period in the proliferative region (i.e. the average
period of stem and transit cells). This simple spatial restriction
of cell proliferation captures the observation that morphogen
gradients, such as Wnt, restrict cell proliferation to the lower
end of the crypt. Upon cell division, a daughter cell is placed in
a random direction a short distance away from the mother cell.
Simulations are performed using the Chaste computational
infrastructure [29, 30].

2.2. Continuum model

Making the assumption that the crypt is symmetric about its
longitudinal axis and hence that cell dynamics can be described
using a 1D model, equation (1) can be coarse-grained in the
continuum limit to the nonlinear diffusion equation

∂q

∂τ
= ∂

∂y

(
α

q2

∂q

∂y

)
, (2)

where y is the spatial coordinate and q(y, τ ) is the cell number
density along the crypt axis [24]. A cell number density of
q = 1/a corresponds to the springs connecting neighbouring
cells being at equilibrium while larger densities correspond to

cell compression. We note that, rather than representing the
active migration of cells, the nonlinear diffusive flux in the
continuum model represents the passive effect of forces that
neighbouring cells exert upon one another via their connecting
springs (see appendix B).

Cell proliferation can be accounted for in this continuum
description by the inclusion of a source term and the governing
equation for cell number density is then given by

∂q

∂τ
= ∂

∂y

(
α

q2

∂q

∂y

)
+ H(yCrit − y)

ln 2

TC

q, (3)

where H(·) denotes the Heaviside function. At the bottom of
the crypt, the ‘hard wall’ boundary condition in the discrete
simulations becomes

∂q

∂y

∣∣∣∣
y=0

= 0, (4)

while at the top of the crypt (y = L), the no-stress boundary
condition becomes

q(L, τ) = 1

a
, (5)

where a is the natural spring length and L is the crypt height,
i.e. the cells being shed at the top of the crypt have equilibrium
density. The initial conditions are taken to be

q(y, 0) = q0(y). (6)

A schematic illustration of the model is presented in figure 1.
One of the benefits of transforming from a discrete to a

continuum description of cell dynamics along the crypt axis
is that analysis of the continuum model can help develop
insight into governing mechanisms that determine coarse-
grained features of the underlying simulations. For example,
upon defining the cell flux along the crypt axis to be J = vq,
where v is the cell velocity field, we obtain, upon comparison
with the flux term in equation (2), that

v(y) = − α

q3

∂q

∂y
. (7)

Moreover, this expression can be used to calculate TClear, the
time for a cell to reach the top of the crypt given an initial
starting position, y1, i.e.

TClear =
∫ L

y1

1

v
dy. (8)

2.3. Nondimensionalization

We nondimensionalize equations (3)–(6) as follows:

ŷ = y

L
, τ̂ = τ ln 2

TC

, q̂ = qa, (9)

where time has been nondimensionalized with the cell
proliferation time-scale. Equations (3)–(6) are then given in
the nondimensional form by

β
∂q̂

∂τ̂
= ∂

∂ŷ

(
1

q̂2

∂q̂

∂ŷ

)
+ H(ŷCrit − ŷ)βq̂, (10)

∂q̂

∂ŷ

∣∣∣∣
ŷ=0

= 0, (11)
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q̂(1, τ̂ ) = 1, (12)

q̂(ŷ, 0) = q̂0(ŷ), (13)

where the nondimensional parameter β = ln 2L2/a2TCα

represents the ratio of the time-scale of cell movement along
the length of the crypt axis to the cell division time-scale, and
ŷCrit = yCrit/L. For notational convenience we now drop the
hatted notation.

The homeostatic behaviour of the crypt, which we are
predominantly interested in from a biological perspective, is
governed by the following equations:

d

dy

(
1

q2

dq

dy

)
+ H(yCrit − y)βq = 0, (14)

dq

dy

∣∣∣∣
y=0

= 0, (15)

q(1) = 1, (16)

with the nondimensional crypt clearance time given by

T̂Clear = −
∫ 1

ŷ1

βq̂3

(
dq̂

dŷ

)−1

dŷ. (17)

Equations (14)–(16) were solved numerically using finite
differences on a fixed equally spaced mesh containing NNod

grid points. Spatial derivatives were approximated using
central differences. The resulting system of nonlinear
difference equations was solved using the nonlinear least-
squares iterative solver ‘fsolve’ in Matlab. Solutions were
checked for convergence and accuracy by considering finer
spatial discretizations and reducing solver tolerances. We
present the results below.

3. Model analysis

3.1. Steady-state analysis

In order to validate the use of the one-dimensional continuum
model to describe cell behaviour in the two-dimensional
discrete crypt, we have performed a range of simulations of
the discrete model, as described in section 2.1, using different
numerical values for the model parameters α, yCrit and TC .
Simulations were run until dynamic equilibrium was attained
(> 200 h) and cell velocities and densities were time averaged
over 100 further hours of simulation time. For a given
parameter set the numerical solution of equations (14)–(16)
was calculated in order to determine the cell density profile
along the crypt axis while the cell velocity field was calculated
using equation (7). In figure 2 we present a representative
sample of the results.

A notable feature of the discrete simulations is that the
crypt does not always tend to a dynamic equilibrium. In
figure 3 we present a plot of total cell number in the crypt
against time for different values of the parameter α. For small
enough α the rate at which cells are produced at the bottom of
the crypt is greater than the rate at which they can be removed
via passive migration, the total cell number in the crypt grows
in an unbounded manner and the cell density diverges leading
to biologically unrealistic cell densities and inter-cell forces.

0 2 4 6 8 10 12 14 16 18 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

y

v

(a)

0 2 4 6 8 10 12 14 16 18 20
1.2

1.3

1.4

1.5

1.6

1.7

y

q

(b)

Figure 2. A comparison of discrete (markers) and continuum (lines)
model solutions for a range of different parameter values. (a) Cell
velocities, v(y), plotted against crypt height, y. (b) Cell densities,
q(y), plotted against crypt height, y. Parameter values: (α, ycrit,
TC) = (40, 6.3, 14) (solid lines and crosses); (α, ycrit, TC) = (80,
6.3, 14) (dashed lines and circles); (α, ycrit, TC) = (50, 10.3, 14)
(dot-dashed lines and triangles); (α, ycrit, TC) = (50, 10.3, 18)
(dotted lines and stars).

This dependence of dynamic equilibrium on the numerical
value of the spring stiffness can be explained by analysis of
the continuum model.

3.2. Parameter space analysis

In order to analyse steady-state behaviour in the continuum
model we separate the crypt into proliferative (A) and non-
proliferative (B) regions, where y < yCrit and y > yCrit,
respectively. In region B, where there is no proliferation,
the cell density profile is given by

qB(y) = 1

C1(1 − y) + 1
, (18)

where C1 is an integration constant and the boundary condition
(12) has been imposed. In region A we can find bounds for the
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Figure 3. The total number of cells in the discrete simulation model
is plotted against time when α = 27, 21, 15, 9 (solid, dot-dashed,
dotted and dashed lines, respectively). In these simulations TC = 14
and yCrit = 1

3 . Simulations were initialized (t = 0) from an
equilibrium configuration (data not shown).

derivative dq

dy
(see appendix A) and hence obtain that there is

no homeostatic solution to the crypt model when the inequality

β >
1

yCrit(2 − yCrit)
(19)

holds.
Considering numerical solutions of equations (14)–(16)

we demonstrate that there is a limited region of (β, yCrit)

parameter space that yields homeostatic solutions (see
figure 4 (a)). When β is large enough, the cell proliferation
rate is much larger than the rate at which cells can move
up the crypt and a steady-state solution is not attainable (the
number of cells tends to infinity). The region of parameter
space in which homeostatic solutions are possible is bounded
by inequality (19). In figure 4(b) corresponding solutions of
the discrete model show good qualitative agreement with both
numerical solutions of the continuum models and inequality
(19).
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Figure 4. Average densities in the continuum (a) and discrete (b) models are plotted against the nondimensional parameters β and yCrit. The
dashed line denotes the upper bound presented in inequality (19).

In dimensional units a necessary condition for
homeostasis is therefore

α >
log 2L4

a2TCyCrit(2 − yCrit)
. (20)

Thus, assuming fixed values for the other parameters, there is a
critical value of α below which the homeostatic solution is lost.
This is precisely the behaviour presented in figure 3. A similar
argument can be applied to other model parameters. For
example, in longer crypts, as the cells have a further distance
to travel to the top of the crypt, the cell movement time-
scale increases relative to the proliferation time-scale and a
threshold exists beyond which the homeostatic solution is lost.
The inequality (20) can therefore be used to guide parameter
choice in the simulation of longer crypts (e.g. in other regions
of the intestine).

The breakdown in crypt homeostasis is dependent on the
interplay between the processes of movement and proliferation
in the crypt. Outside the homeostatic range of parameter
space, high cell densities at the bottom of the crypt yield a
small diffusion coefficient, cell movement decreases and cells
cannot escape from the proliferative zone. As cell proliferation
depends linearly on cell density, there is positive feedback in
the system, the cell density increases further and so on. Hence
the loss of the homeostatic solution is dependent on the forms
of the nonlinear diffusion coefficient and the cell proliferation
rate. Both of these assumptions would have to be validated in
a given experimental context before one could speculate on the
physiological relevance of the breakdown of crypt homeostasis
in the model.

3.3. Dimensional analysis

In this section we demonstrate using data from murine small
intestinal crypts how results from the continuum model can
be used to efficiently determine biologically relevant regions
of parameter space. The key experimental data, taken from
[31] and presented in table 1, are compared with the following
model quantities: (a) the number of cells in the proliferative
region of the crypt

( ∫ yCrit

0 q(y) dy
)
; (b) the time for crypt

renewal (equation (8)); (c) the total cell number in the crypt
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Figure 5. Determining what values of the model parameters β and yCrit yield biologically reasonable crypt behaviours. (a) New cells per
day, (b) crypt renewal time, (c) fraction of cells dividing in the crypt and (d) total cell number are plotted for different values of the two
model parameters β and yCrit. The shaded bars denote numerical values of the respective variables. The contours (dashed lines) enclose that
region of parameter space that lies within 20% of the experimentally quoted values presented in table 1.

Table 1. Experimentally known quantities in the murine small
intestinal crypt taken from [31] with the exception of the crypt
renewal time which is taken from [28]. Note that crypt labelling
experiments typically show ∼ 25 labelled cells along a section but
that Potten and Loeffler [31] have measured the crypt to have a
height of 16 cell diameters. The extra nine cells are an experimental
artefact resulting from the section width and packing arrangements
[31].

Quantity Description

Crypt length (L) 16 cell diameters
Crypt circumference 16 cell diameters
Number of cells in the crypt 250

Fraction of proliferative cells
2

3
Cells produced per day 300
Cell velocity at the top (v(L)) 0.75 cell positions per day
Number of stem cells (NS) 1–16
Number of transit cells (NT ) 160
Number of Paneth cells (NP ) 30
Stem cell cycle period (TST ) 24 h
Transit cell cycle period (TTr) 12 h
Crypt renewal time (TClear) 2–3 days

( ∫ L

0 q(y) dy
)

and (d) the fraction of proliferating cells (the
ratio of the number of cells in the proliferative region to the
total number of cells).

In order to estimate the parameter TC , which represents
the average cell cycle period in the proliferative region of a
homeostatic crypt, we assume that the proliferative region is
occupied at some time t0 by NP non-proliferative, NS stem and
NT transit cells. Neglecting cell motion, we estimate that at
t0 + TC there are

NP + NS e
ln 2
TSt

TC + NT e
ln 2
TTr

TC (21)

mother and daughter cells, where TSt and TTr, the stem and
transit cell cycle periods, respectively, are 24 and 12 h (see
table 1). Setting

2(NP + NS + NT ) = NP + NS e
ln 2
TSt

TC + NT e
ln 2
TTr

TC , (22)

we can solve for TC (assuming TTr = 1
2TSt) to obtain that the

average doubling time in the proliferative region of the crypt
is

TC = TSt

ln 2
ln

⎛
⎝−NS +

√
N2

S + 4(NP + 2NS + 2NT )NT

2NT

⎞
⎠ ,

(23)

which upon substitution for the experimentally estimated
values yields (see table 1)

TC ∼ 13.8 h. (24)
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Figure 6. The narrow region of parameter space (light region) that
is consistent with the data presented in table 1 is determined by
combining results presented in figure 5, i.e. yCrit ∼ 0.7, β < 0.3.

In figure 5 we compare the experimentally known data
listed in table 1 with results from the continuum model.
As error estimates are not provided for most of the given
data, approximate regions of parameter space in which model
output is within 20% of the estimated experimental value are
highlighted (solid lines and arrows). In figures 5(a), (c) and
(d), the number of cells produced in the crypt, the fraction of
cells that are dividing and the total number of cells in the crypt,
respectively, increase with the size of the proliferative region
or the cell division rate, as expected. In figure 5(b) the crypt
renewal time (i.e. time taken by a cell near the bottom of the
crypt to reach the top) decreases with yCrit and increases with
β.

In figure 6 we combine the results presented in figure 5 in
order to define a region of parameter space that produces results
that are in agreement with the experimental data presented in
table 1. These results suggest that a reasonable choice for the
model parameters is yCrit ∼ 2

3 and β < 0.3 for a murine small
intestinal crypt. Recalling that

β = ln 2L2

a2αTC

, (25)

and substituting for L = 16 and TC = 13.8, we obtain

α >
ln 2L2

a2βTC

= 18. (26)

In previous models, Meineke et al [21] and Van Leeuwen et al
[37] fitted α = 30 based upon the resulting simulation output.

4. Conclusions

In this study we have developed a one-dimensional continuum
model of the crypt based upon the coarse-graining of previous
discrete models. By comparing cell velocity and density fields
along the crypt axis, we have demonstrated that the continuum
model is in good agreement with corresponding discrete model

simulations. The major benefit of this approach is that the
continuum model can be analysed quickly and easily and
a broad parameter space can be explored, yielding insights
regarding the underlying discrete simulations. We envisage
that results from the continuum model can be used as a guide
in the design and interpretation of future discrete simulations
of intestinal crypts.

Following the work of Meineke et al [21] and Van
Leeuwen et al [37], we have assumed that (a) cells interact
via a linear force law and (b) cells move on a fixed cylindrical
geometry. The linear force law assumption represents the
simplest description in an off-lattice framework of the elastic
repulsion and adhesive attraction between neighbouring cells.
The advantage of using nonlinear force laws, such as the
Hertz or Jones–Kenall–Roberts (JKR) [15] models (see e.g.
[3, 5, 8]), is that in these models the parameters are, in
principle, experimentally accessible. However, we note
that it is thought that once characteristic biological features
and mechanisms, such as cell adhesion and repulsion, are
satisfactorily represented in a discrete simulation framework,
qualitative and many quantitative features of simulation results
appear to be independent of the precise model details [8, 9].
With regard to the assumption of a fixed geometry, we note that
healthy crypts can undergo morphological changes, such as
crypt fission, over time-scales of the order of tens of years [12].
The frequency of fission events can increase dramatically in
cancerous tissue and fission is thought to be a key mechanism
by which mutations can spread throughout the gut from a
single crypt. Clearly, the assumption of a fixed geometry
needs to be relaxed if one wishes to couple proliferation in the
crypt to morphological changes in crypt structure [4, 6]. This
more complicated problem is a current topic of research in our
group.

We have assumed that the net effect of molecular
regulation of cell proliferation is to define a threshold
proliferation height, yCrit, above which proliferation does not
occur. This approach allows us to classify model behaviour
in terms of the two nondimensional parameters β and yCrit:
when the cell division time-scale is sufficiently decreased
relative to that of cell movement along the crypt axis, the
homeostatic solution is lost. This result was verified by
considering simulations of the discrete model in different
regions of parameter space. We note that, in reality, spatial
regulation of cell proliferation along the crypt axis depends on
a range of factors, such as extracellular signalling and refer
the interested reader to [25] where we demonstrate how the
parameter yCrit can be related to Wnt pathway regulation.

Whether or not the blow-up uncovered by the continuum
model analysis is biologically relevant is dependent on
the accuracy of the underlying assumptions in the discrete
simulations: cells interact via a linear force law and divide
at an exponential rate in the proliferative region of the
crypt. We note that one way to remove the blow-up in our
model framework is to introduce feedbacks that modify cell
proliferation and/or movement. For example, by considering
a hard-wall-like potential (e.g. [19]), cell densities can never
exceed some pre-specified threshold density. Alternatively,
Murray et al [25] assume that cell proliferation is regulated by
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contact inhibition and the inclusion of a logistic growth term
ensures that cell densities cannot reach the threshold required
for the blow-up. We note that the assumption that the feedback
between cell proliferation and geometry is negligible would
become invalid in the limit of excessive densities in the crypt.

We have identified a small region of non-dimensional
parameter space which yields numerical results consistent
with experimental data from murine intestinal crypts. The
advantage of the continuum model analysis is that we can
derive expressions for experimentally measurable quantities,
such as the crypt renewal time; hence, parameter sweeps
can be performed much more efficiently than by using the
corresponding discrete model. We note that a similar approach
could be applied to data from other species or regions of the
intestines.

Finally, we highlight the need to develop both discrete and
continuum models for multiscale systems. As exemplified in
this study, the continuum approach allowed us to generalize the
description of the intestinal crypt model and to classify model
behaviour. However, when, for example, an understanding
of the behaviour of small subpopulations of cells is required,
such as in the study of cell lineages, simulation of the discrete
model is essential as the continuum model becomes invalid.
In summary, while the discrete simulation approach can allow
us to answer specific questions, the continuum model can be
used to develop insight into the coarse-grained behaviour of
the underlying simulations.
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Appendix A. Deriving the crypt inequality

Making the change of variable q = 1/u the system (14)–(16)
becomes

d2u

dy2
= βH(yCrit − y)u−1, 0 � y � 1, (A.1)

du

dy
(0) = 0, (A.2)

u(1) = 1. (A.3)

The region yCrit � y � 1

In the region yCrit � y � 1, equation (A.1) reduces to

d2u

dy2
= 0. (A.4)

The solution to this equation that satisfies boundary
condition (A.3) is given by

u(y) = 1 − A(1 − y), yCrit � y � 1, (A.5)

for some constant A. Note that since we are interested only in
solutions u � 0, the right-hand side of equation (A.1) is non-
negative. This, together with boundary conditions (A.2) and
(A.3), means that the solution u must increase monotonically
with y, attaining its maximum value at y = 1. In particular,
we have that 0 � u(yCrit) � 1. Using the above expression
for u and rearranging this inequality, we find that the unknown
constant A must satisfy

0 � A � 1

1 − yCrit
. (A.6)

The region 0 � y < yCrit

In the region 0 � y < yCrit, equation (A.1) reduces to

u
d2u

dy2
= β. (A.7)

This equation is nonlinear and cannot be solved
analytically; however, we can make further progress as
follows. We rewrite equation (A.7) as

d

dy

(
u

du

dy

)
−

(
du

dy

)2

= β, (A.8)

and integrate with respect to y, imposing boundary condition
(A.2). We obtain the integro-differential equation

u
du

dy
−

∫ y

0

(
du

dx

)2

dx = βy, 0 � y � yCrit. (A.9)

This may be rewritten as

d

dy

(
1

2
u2

)
−

∫ y

0

(
du

dx

)2

dx = βy (A.10)

and integrated with respect to y, once more imposing boundary
condition (A.2), to give

1

2

(
u(y)2 − u(0)2

) −
∫ y

0

∫ ξ

0

×
(

du

dζ

)2

dζ dξ = 1

2
βy2, 0 � y � yCrit. (A.11)

Evaluating this last equation at y = yCrit and imposing
continuity of u there (so that u(yCrit) = 1 − A(1 − yCrit)), we
obtain
1

2
((1 − A(1 − yCrit))

2 − u(0)2) −
∫ yCrit

0

∫ ξ

0

×
(

du

dζ

)2

dζ dξ = 1

2
βy2

Crit. (A.12)
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As previously identified, u must increase monotonically
from y = 0 to y = yCrit. Furthermore, if we impose boundary
condition (A.2) and the matching condition du/dy(yCrit) = A,
we obtain the inequality

0 � du

dy
� A for 0 � y � yCrit; (A.13)

hence,

0 �
∫ yCrit

0

∫ ξ

0

(
du

dζ

)2

dζdξ � 1

2
A2y2

Crit (A.14)

and, using (A.12), we obtain

1

2
((1 − A(1 − yCrit))

2 − u(0)2) − 1

2
A2y2

Crit

� 1

2
βy2

Crit � 1

2
((1 − A(1 − yCrit))

2 − u(0)2). (A.15)

Next, note that in the region 0 � y � yCrit, the solution
u must lie above 1 − A(1 − y); this results from the fact that
in this region, the right-hand side of equation (A.1) is strictly
positive. This means that we must have

1 − A � u(0) � 1 − A(1 − yCrit), (A.16)

which we can then use to eliminate u(0) from inequality
(A.15). We obtain

0 � 1

2
βy2

Crit � 1

2
((1 − A(1 − yCrit))

2 − (1 − A)2),

(A.17)

and hence

0 � β � A

yCrit
(2 − A(2 − yCrit)). (A.18)

The last step is to note that the function f (A) = A
yCrit

(2 −
A(2 − yCrit)) attains its maximum value of 1/yCrit(2 − yCrit)

at the point A = 1/(2 − yCrit), which lies within the interval
(A.6). Hence, we obtain

β � 1

yCrit(2 − yCrit)
. (A.19)

Appendix B. Coarse-graining a two-dimensional
spring-based model

B.1. The one-dimensional case

Murray et al [24] consider a one-dimensional chain of cells
that interact via a linear force law. Applying Newton’s second
law in the overdamped limit, the equation of motion for the ith
cell is given by

dri(t)

dt
= α(ri−1(t) − 2ri(t) + ri+1(t)), i = 2, . . . , N − 1,

(B.1)

where the parameter α is the ratio of the spring constant, k, to
the cell viscosity, η, i.e. α = k

η
. In the continuum limit

∂r

∂t
= α

∂2r

∂i2
, (B.2)

where r is treated as a continuous function of i such that

r(i, t) = ri(t). (B.3)

Equation (B.2) can be reformulated such that cell number
density is the dependent variable by making a coordinate
transformation from the old independent variables i and t to the
new independent variables r (the dependent variable in the old
coordinate system) and τ (time). Subsequently differentiating
with respect to r we obtain the partial differentiation equation

∂q

∂τ
= ∂

∂r

(
α

q2

∂q

∂r

)
, (B.4)

where

q(r, τ ) = ∂,(r, τ )

∂r
. (B.5)

The no-stress boundary condition can be reformulated by
introducing an image cell at the boundary such that rN+1 =
rN +a, which transforms in the continuum limit to q(L) = 1/a.
For further information we refer the interested reader to [24].

B.2. The two-dimensional case

Using mitochondrial DNA staining experiments, Taylor et al
[35] and McDonald et al [20] have observed that cell motion
in a healthy crypt is directed predominantly along the crypt
axis. Whilst this observation provides justification for the
assumption of one spatial dimension in equation (2), below
we describe how the one-dimensional continuum model can
be derived from a discrete model of cell dynamics in two
spatial dimensions.

In two spatial dimensions the equation of motion of the
nth cell, positioned at rn, is

drn

dt
= α

∑
m

(|rm − rn| − a)
rm − rn

|rm − rn| , (B.6)

where the sum is taken over a cell’s neighbours and α is again
the ratio of spring constant to cell viscosity. Defining rn in
Euclidean coordinates to be

rn = xni + ynj, (B.7)

the equations of motion can be resolved along the x and y axes
yielding

dxn

dt
= α

∑
m

(xm − xn) − αa
∑
m

cos θm, (B.8)

dyn

dt
= α

∑
m

(ym − yn) − αa
∑
m

sin θm, (B.9)

where θm is defined to be the angle that the centre of the mth
cell makes with respect to the centre of the nth and the x axis
in a local coordinate system where the nth cell is taken to be
the origin. The first terms in equations (B.8) and (B.9) take
a similar form to the equation of motion of a cell in the 1D
case (see equation (B.1)). The second terms are nonlinear and
explicitly couple the dynamics of the cells in the x direction
with those in the y direction.

In simulations of the two-dimensional crypt model, a cell’s
neighbours are regularly distributed around it. Making this

9
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assumption in equations (B.8) and (B.9), the second terms on
the right-hand sides are zero, hence we obtain that

dxn

dt
= α

∑
m

(xm − xn) (B.10)

and

dyn

dt
= α

∑
m

(ym − yn) . (B.11)

In a similar manner to the one-dimensional case, we assume
that the right-hand sides of equations (B.10) and (B.11) can
be written as Laplacians in which the independent variables
are i and j . Again, analogously with the one-dimensional
case, we make a coordinate transformation in independent
variables from ij to xy with the cell number density given by
the Jacobian determinant of the coordinate transformation, i.e.

qn(x, y, τ ) = ∂in

∂x |yτ

∂jn

∂y |xτ

− ∂in

∂y |xτ

∂jn

∂x |yτ
. (B.12)

We then define the symmetric connectivity tensor, An, to be

An =

⎛
⎜⎜⎝

(
∂jn

∂y

)2

+

(
∂in

∂y

)2

−∂jn

∂x

∂jn

∂y
− ∂in

∂x

∂in

∂y

−∂jn

∂x

∂jn

∂y
− ∂in

∂x

∂in

∂y

(
∂jn

∂x

)2

+

(
∂in

∂x

)2

⎞
⎟⎟⎠ ,

(B.13)

and find that the governing equation for cell number density is
of the form

− 1

α

∂qn

∂τ
= ∇.

(
∇ An

qn

)
. (B.14)

In order to derive a closed-form model in which qn is
the only dependent variable a further assumption is required.
Given the observation of axial symmetry in normal crypts
[20, 35], we consider a particular case of equation (B.14) in
which

∂in

∂y
= ∂jn

∂x
= 0, (B.15)

such that the cell number density reduces to the separable form

qn(x, y, τ ) = ∂in(x, τ )

∂x

∂jn(y, τ )

∂y
, (B.16)

and equation (B.13) simplifies to

An =
⎛
⎝

(
∂jn

∂y

)2
0

0
(

∂in
∂x

)2

⎞
⎠ . (B.17)

Upon substitution of equation (B.17), equation (B.14) can be
written as

∂qn

∂τ
= α

(
∂jn

∂y

)2
∂

∂x

(
1

q2
n

∂qn

∂x

)
+ α

(
∂in

∂x

)2
∂

∂y

(
1

q2
n

∂qn

∂y

)
.

(B.18)

For notational convenience we define

qn1(x, τ ) = ∂in

∂x
,

qn2(y, τ ) = ∂jn

∂y
, (B.19)

which are the numbers of cells per unit length along the x and
y axes, respectively, and substitution in equation (B.18) yields

∂qn

∂τ
= αq2

n2
∂

∂x

(
1

q2
n

∂qn

∂x

)
+ αq2

n1
∂

∂y

(
1

q2
n

∂qn

∂y

)
.

(B.20)

Finally, assuming axial symmetry, qn is constant with respect
to x, and equation (B.20) reduces to the 1D form

∂qn

∂τ
= ∂

∂y

(
α

q2
n

∂qn

∂y

)
. (B.21)

We refer the interested reader to [23] for further details.
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