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Recently, signalling gradients in cascades of two-state reaction–diffusion systems were described as a

model for understanding key biochemical mechanisms that underlie development and differentiation

processes in the Drosophila embryo. Diffusion-trapping at the exterior of the cell membrane triggers the

mitogen-activated protein kinase (MAPK) cascade to relay an appropriate signal from the membrane to

the inner part of the cytosol, whereupon another diffusion-trapping mechanism involving the nucleus

reads out this signal to trigger appropriate changes in gene expression. Proposed mathematical models

exhibit equilibrium distributions consistent with experimental measurements of key spatial gradients

in these processes. A significant property of the formulation is that the signal is assumed to be relayed

from one system to the next in a linear fashion. However, the MAPK cascade often exhibits nonlinear

dose–response properties and the final remark of Berezhkovskii et al. (2009) is that this assumption

remains an important property to be tested experimentally, perhaps via a new quantitative assay across

multiple genetic backgrounds. In anticipation of the need to be able to sensibly interpret data from such

experiments, here we provide a complementary analysis that recovers existing formulae as a special

case but is also capable of handling nonlinear functional forms. Predictions of linear and nonlinear

signal relays and, in particular, graded and ultrasensitive MAPK kinetics, are compared.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The detection of chemical signals by living cells and the trans-
duction of these signals into the interior of the cell are crucial
phenomena that need to be explored as we strive to understand the
complex behaviours that underlie development. Biological networks
commonly use signalling cascades during these processes, but it is
not clear how the individual stages of these cascades shape the
input signal and how the final output differs depending on the
internal workings of the transduction network.

Paradigms of signalling cascades at work can be found in
development of the Drosophila embryo, where diffusion-trapping
at the exterior of the cell membrane triggers the mitogen-
activated protein kinase (MAPK) cascade to relay an appropriate
signal from the membrane to the inner part of the cytosol,
whereupon another diffusion-trapping mechanism involving the
nucleus reads out this signal to trigger appropriate changes in
gene expression. Fig. 1 is a schematic of such a cascade and
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represents the system studied in this paper. In this context, the
term ‘trapping’ refers to the way an otherwise mobile and
diffusing particle may become immobile or trapped. For example,
Fig. 1(B) shows a mobile and diffusing extracellular molecule
binding to a receptor to become immobile as part of a ligand–
receptor complex. Similarly, at the next stage of the cascade,
an intracellular molecule may diffuse, but it becomes trapped
if it enters an immobile nuclei (Fig. 1(D)). A number of papers
have investigated the role of diffusion-trapping mechanisms in
the establishment of signalling gradients in Drosophila embryos,
including Coppey et al. (2007, 2008) and Shvartsman et al. (2009).
Berezhkovskii et al. (2009) study the gradients responsible for
terminal patterning by the Trunk ligand binding to the Torso
receptor and activating the MAPK cascade which, in turn, leads to
phosphorylated MAPK shuttling in and out of the nucleus, thus
triggering a transcriptional response.

In order to investigate gradients in diffusion-trapping mechan-
isms, Berezhkovskii et al. (2009) studied a system of partial
differential equations (PDEs) in one, infinite, space dimension
that describes the dynamics of a two-stage cascade of diffusion-
trapping systems:
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Fig. 1. Adapted from Fig. 1 of Berezhkovskii et al. (2009). (A) A diffusible ligand (solid square) is reversibly bound to cell surface receptors. A diffusible intracellular

molecule (star) shuttles in and out of nuclei (circles). (B) Transitions between mobile and immobile states for a particle in the extracellular stage of the cascade.

(C) Immobile particles in the first stage initiate the production of mobile particles in the second stage. In this case a ligand–receptor complex is an enzyme acting on a pool

of inactive intracellular molecules (present in excess, denoted by a triangle). (D) A mobile intracellular molecule is reversibly trapped by immobile traps. In this case the

traps are nuclei distributed in a shared cytoplasm of the early embryo.

Fig. 2. Fig. 2 from Berezhkovskii et al. (2009), Copyright (2009) National Academy of Sciences, U.S.A. Terminal patterning system in the early Drosophila embryo. (A) Torso

receptors (purple) are uniformly distributed along the plasma membrane of the embryo. Inactive ligand (Trunk) is distributed uniformly in the extracellular matrix; it is

converted into an active and diffusible form (blue, light) by Torsolike (yellow, lighter), a protein localised at the poles of the embryo. The Torso–Trunk complex signals

through the MAPK signalling cascade, which leads to MAPK phosphorylation and nuclear import. (B) Quantified pattern of MAPK phosphorylation. (Left) Fluorescent image

of the anterior of the embryo; nuclei are stained in green (light), and phosphorylated MAPK is stained in red (dark). (Right) Gradients of nuclear and cytoplasmic

phosphorylated MAPK. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Here CðiÞim and CðiÞm denote concentrations of immobile and mobile
molecules of species i (i¼1, 2), respectively, Di is the diffusion
constant, kðiÞm and kðiÞim denote the rate constants for annihilation
of immobile and mobile molecules, and ai and bi are the rates of
binding and release, respectively (each for i¼1, 2). In relation to
Fig. 1, the concentration of solid squares is represented by Cð1Þm , i.e.

the diffusible ligand, D1 is its associated diffusion coefficient and kð1Þm

is the rate of degradation. The rates of binding to and release from
the receptor are a1 and b1, respectively. Similarly, the intracellular
molecule, Cð2Þm , is represented by the star, D2 is its associated
diffusion coefficient and kð2Þm is the rate of degradation. The rates of
shuttling into and out of the nuclei are a2 and b2, respectively.
Essentially, the two systems are identical, with g1ðxÞ being the input
to the first system, and the output of the first system used as the
input to the second via the term g2ðC
ð1Þ
im Þ. Cð2Þtot ¼ Cð2Þm þCð2Þim is inter-

preted as the output and the system is closed by specifying suitable
initial and boundary conditions: we take all species to have zero
concentration initially, and impose the constraint limjxj-1CðiÞm=im ¼ 0.
Note that here we restrict attention to the time-independent case,
that is, we assume g1 is only a function of x.

We will be concerned exclusively with systems at equilibrium,
where we have, for i¼1, 2,

CðiÞim ¼ KiC
ðiÞ
m , ð2Þ

with constant of proportionality

Ki ¼
ai

kðiÞimþbi

: ð3Þ

We see that the gradients of mobile and immobile species have
the same shape so it is natural to distinguish three regimes:

Ko1, K ¼ 1, K41:

The specific parameter regime can be distinguished by compar-
ing the gradients of mobile and immobile species: experiments in
Fig. 2B (right) of Berezhkovskii et al. (2009) (see Fig. 2) indicate
that the second diffusion-trapping system, involving nuclear and
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cytoplasmic phosphorylated MAPK, lies in the third regime. More-
over, by comparing the peaks of the two gradients we can estimate
the constant of proportionality. There is some noise in the measure-
ment so by estimating the minimum and maximum of the peak we
obtain an estimate of the range of the constant: K2 � 2:5�3:3. This
gives some information about the relative strengths of the binding,
release and annihilation rates: the phosphorylated MAPK species
shuttles into the nucleus at more than double the rate that it
shuttles out, for example. If data became available, one could
similarly determine in which regime the other diffusion-trapping
system, involving Torso/Trunk interactions, lies.

An important question in understanding signalling cascades,
such as the MAPK cascade, is whether the associated dose–response
curves are graded or ultrasensitive. Fig. 3 shows an example of a
graded and of an ultrasensitive dose–response curve. This provides
one of the motivations for the analysis here, which is to investigate
the effect of different choices of g2 on the gradient at equilibrium. In
particular, the previous study assumed g2 to be a simple positive
multiple of its input, i.e.

g2ðxÞ ¼ glC
ð1Þ
im ðxÞ, ð4Þ

for some constant gl40. Based on the authors’ previous experi-
ments (Coppey et al., 2007), it has been suggested that the length
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a Gaussian distribution with mean zero and variance s2 (right). For the Delta distributio

MAPK signalling kinetics. Parameters are as follows: D1¼0.5, a1 ¼ 1:5, b1 ¼

in (7) we set C0¼1.0 and n¼5 and in each case we choose the scale factors gl and gh so the
scale of the first system is much less than that of the second
(Berezhkovskii et al., 2009). However, this study did not measure
Torso occupancy directly; instead, dpERK was measured. Thus Cð2Þtot ðxÞ

was measured instead of Cð1Þim ðxÞ. When g2 is linear this should not
provide a problem, but when g2 is nonlinear the length scale may be
significantly affected. Fig. 4 shows that with ultrasensitive kinetics,
the gradient of dpERK may have a small length scale even if the
gradient of Torso occupancy has a large length scale. We are
interested in understanding whether the assumption of linearity is
consistent with experimental observations, and develop a mathe-
matical framework that allows us to do this.

The outline of the rest of this paper is as follows. In the next
section, an alternative formulation of the problem, which may still
capture key experimental findings but which is flexible enough to
explore alternatives to linear kinetics, is described. Predictions of
graded and ultrasensitive models are then compared. As a general
rule-of-thumb it is found that, compared to the linear case, gradients
formed under ultrasensitive kinetics tend to have much shorter
length scales. Next, predictions of both models are compared to
data. This allows us to suggest three key features of experimental
data that may be used in order to distinguish whether graded
or ultrasensitive kinetics are acting in a given system. A procedure
for carrying out this analysis is demonstrated on a particular
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itive (nonlinear) signalling kinetics. Input g1 is a Delta distribution on x¼0 (left), or

n input the effective length scale is reduced by a factor of n¼5 by the ultrasensitive

2, kð1Þim ¼ 0:1, kð1Þm ¼ 0:01, and s2 ¼ 1:0. For the Hill function parameters

peak is unity: gl¼0.565 and gh¼1.0576 (left), and gl ¼ 0:7586 and gh¼1.2512 (right).
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example: the MAPK cascade in the terminal patterning system of
the early Drosophila embryo, as shown in Fig. 2. Although the focus
is largely on this particular example, the framework is relatively
generic and it can be applied to understand signalling cascades that
arise in many other systems. Finally, the utility of the results is
discussed, including speculation on how they may be extended. The
major contributions and findings are summarised in the conclusion.
2. Equilibrium solution

We define

li ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Di

kðiÞmþkðiÞimKi

s
,

so that equilibrium solutions of the PDE (dropping subscripts for
ease of notation)

@Cm

@t
¼D

@2Cm

@x2
�ðkmþaÞCmþbCimþgðxÞ with Cim ¼ KCm,

and xAð�1,1Þ, tA ½0,1Þ may be studied via an ordinary differ-
ential equation (ODE)

v00ðxÞ�
1

l2
vðxÞ ¼�

1

D
gðxÞ, ð5Þ

with xAð�1,1Þ, limjxj-1vðxÞ ¼ 0 and g the given input function.
The solution v is the equilibrium solution CðiÞm to (1), from which
we immediately obtain the equilibrium solution CðiÞim from (2). The
associated Green’s function for (5) is

Gðx,zÞ ¼�1
2le�jx�zj=l,

and the solution to (5) is

vðxÞ ¼�
1

D

Z 1
�1

Gðx,zÞgðzÞ dz,

¼
1

2D
l e�x=l

Z x

�1

ez=lgðzÞ dzþex=l
Z 1

x
e�z=lgðzÞ dz

� �
: ð6Þ

The framework of Green’s functions is well-suited to this analysis
since we are interested in the ramifications of various functional
forms of the input, g. Studying various inputs is straightforward
because the same Green’s function may be applied to different
choices of g via (6). In particular, nonlinear forms of g may be
handled and the method may accommodate finite domains,
though this may require the Green’s function to be adjusted for
different sets of boundary conditions.

The main issue with the Green’s function approach is evaluat-
ing the integral. In many important special cases the integration
may be performed analytically, as we show below. Otherwise
quadrature provides an easy numerical solution, though this is
required for each x and some care must be taken with the
unbounded domain. In this model the integrand is weighted by
an exponential decay, so for physiologically reasonable choices
of g, restricting the numerical solution on a finite domain should
give very accurate results.1

2.1. Example

By choosing g1ðxÞ ¼QdðxÞ, a delta distribution on the origin, to
represent spatially restricted production, substituting into (6)
1 Even though physiologically realistic models must be finite the original

model was formulated on an unbounded domain in order to accommodate

Fourier-Laplace transforms. The identification of exponential decay behaviour in

the Green’s function provides reassurance that this original approximation was

not unreasonable because in many cases the behaviour of the model will not be

very sensitive to truncation to a large, finite domain. With this in mind, Figs. 4 and

6 are the results of computations on suitably truncated domains.
yields

vðxÞ ¼
Q

2D
le�jxj=l,

which we identify as the equilibrium solution for Cð1Þm , and recalling
(2) gives the equilibrium for Cð1Þim . Thus we recover the equilibrium
solution given in Berezhkovskii et al. (2009) Eqs. (19)–(23) therein
for the spatial gradients of the first system. Next, we may substitute
the equilibrium solution just found for Cð1Þim into g � g2, with the
authors’ linear form of g2, so that (6) now recovers the solution given
in Berezhkovskii et al. (2009) Eq. (43) therein for the spatial
gradients, Cð2Þm and Cð2Þim , of the second system. Repeating the same
procedure but this time choosing a Gaussian distribution for g1, we
recover the remaining equilibrium formula of Berezhkovskii et al.
(2009) Eq. (47) therein. Sometimes there are limited data available
on the precise details of the input distribution that is stimulating a
given system. In this case, a delta distribution may be employed as a
crude approximation to a source that is thought to be localised,
while a Gaussian distribution may be employed as an approxima-
tion to a source that is thought to be more diffuse (see Fig. 4).
2.2. Comparing graded and ultrasensitive MAPK kinetics

In the model g2 represents the dose–response properties of the
MAPK cascade. In previous work g2 was assumed to be linear, which,
in analogy with enzyme kinetics, is termed graded. However, there is
a significant body of experimental and theoretical evidence suggest-
ing that the MAPK cascade exhibits an ultrasensitive response curve,
as described in the landmark paper by Huang and Ferrell (1996).
Thus it is important also to consider an ultrasensitive form of g2.
To model ultrasensitive kinetics we choose g2ðxÞ to be

g2ðxÞ ¼ gh
1

1þðC0=Cð1Þim ðxÞÞ
n

, ð7Þ

for given gh, C040 and Hill coefficient, n (see Fig. 3). In order to
represent ultrasensitive kinetics, we require n41: in fact, Huang and
Ferrell (1996) found the Hill coefficient of the MAPK cascade to be
about n¼ 4�5, so we are especially interested in these cases.

Fig. 4 compares the gradient under graded and ultrasensitive
signalling kinetics. We plot g2ðC

ð1Þ
im ðxÞÞ with g2 from (4) for linear

signalling, and with g2 from (7) for ultrasensitive signalling. In
Fig. 4, left, the input g1 is a Delta distribution on x¼0, for which
previous analysis shows the resulting equilibrium is

Cð1Þim ðxÞ ¼
K1

2D1
l1e�jxj=l1 , ð8Þ

whilst in Fig. 4, right, the input g1 is a Gaussian, 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2
p

e�x2=2s2
,

for which previous analysis shows the resulting equilibrium is

Cð1Þim ðxÞ ¼
K1

4D1
l1e�s

2=2l2
1 ex=l1 erfc

s2þl1xffiffiffi
2
p

l1s

� �
þe�x=l1 erfc

s2�l1xffiffiffi
2
p

l1s

� �� �
,

ð9Þ

where erfc is the complementary error function. In both cases the
width of the distribution with nonlinear signalling is much
narrower than that with linear signalling, though this effect is
more pronounced on the left. Thus, if the MAPK cascade exhibits
ultrasensitive kinetics, then the length scale may be large before
passing through the cascade and small afterwards. Depending on
the parameter regime the result may look very different so it will
be important to experimentally constrain model parameters in
order to distinguish between ultrasensitive and graded kinetics,
and thus to make inferences about length scales such as l1.

Consider Fig. 4, left, in more detail. When the input is a
Delta distribution, the output is given by Eq. (8) so under linear
signalling, g2ðC

ð1Þ
im ðxÞÞ is proportional to e�jxj=l1 and thus has length
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scale l1. In contrast, for fixed l1, under nonlinear signalling,

g2ðC
ð1Þ
im ðxÞÞpe�jxj=ðl1=nÞ 1

e�jxj=ðl1=nÞ þconstant

� �
: ð10Þ

Away from x¼0, the term in parenthesis is very nearly constant so, to
a good approximation, g2ðC

ð1Þ
im ðxÞÞpe�jxj=ðl1=nÞ, and thus the effective

length scale under nonlinear kinetics is reduced by a factor of n

compared to the linear case. Thus if the MAPK cascade is ultrasensi-
tive, as predicted by Huang and Ferrell (1996), then it effectively
reduces the length scale of the second input gradient to be about
n¼ 4�5 times smaller than that of the primary input gradient.

We note that analytic expressions for the output gradient
under ultrasensitive kinetics may also be found for Delta dis-
tribution initial conditions: more details may be found in
Appendix A.
3. Examining gradient dynamics in nuclear cycles 10–14

We compare how well graded and ultrasensitive signalling
kinetics fit experimental measurements of the spatial gradient
formed during terminal patterning in Drosophila. We focus on the
data given in Fig. 3B of Berezhkovskii et al. (2009) (shown in Fig. 5)
in order to distinguish between graded and ultrasensitive kinetics.
The dots are experimentally observed intensities of dpERK levels at
different points along the embryo. A description of the protocol can
be found in Coppey et al. (2008). The Drosophila embryo develops in
stages of rapid mitotic divisions in which the number of nuclei
doubles with each cycle. For more details see, for example Coppey
Fig. 5. Fig. 3 from Berezhkovskii et al. (2009), Copyright (2009) National Academy of Sc

(A) Fluorescent images of nuclei (green, light) and phosphorylated MAPK (red, dark)

cytoplasmic) phosphorylated MAPK. The green (light, short and fat) and blue (dark, tall

and 14, respectively. Increase in the nuclear density amplifies the total level of MAPK

system. (C) Increasing the nuclear trapping rate sharpens the profile of Cð2Þtot,ssðxÞ, comput

interpretation of the references to color in this figure legend, the reader is referred to
et al. (2008), Shvartsman et al. (2008) or Wolpert et al. (2002).
The data we analyse quantify the gradient at cycles 10 and 14.

3.1. Tails of the distribution

In Fig. 3B of Berezhkovskii et al. (2009) (shown in Fig. 5), at the
late stage, in the tails of the distribution, the experimental data
(dots) lie above the line predicted by the graded mathematical
model (solid line). This is especially noticeable at the þ550 mm
end. While this is not a perfect fit, it is not unreasonable to
imagine that ultrasensitive kinetics would only exaggerate this
effect and make the fit worse because we have seen that they
tend to attenuate the signal even more sharply than linear
kinetics. For example, ultrasensitive kinetics reduce the effective
length scale of g2ðC

ð1ÞðxÞÞ, as shown in Fig. 4.

3.2. Three striking features of the gradient

Three striking qualitative features of the experimentally
recorded gradients at the early and late stages of nuclear division
shown in Fig. 3B of Berezhkovskii et al. (2009) are
(i)
ience

at tw

and t

phosp

ed w

the w
the peak of the distribution rises by about 2/3;

(ii)
 the distribution narrows by about 1/2;
(iii)
 the curvature at the peak sharpens.
This experimentally observed gradient should be identified with

Cð2Þtot � Cð2Þim þCð2Þm ¼ ð1þK2ÞC
ð2Þ
m ,
s, U.S.A. Dynamics of MAPK phosphorylation profiles in the terminal system.

o different nuclear densities. (B) Quantified gradients of total (nuclear and

hin) curves show the patterns of MAPK phosphorylation at nuclear cycles 10

horylation near the poles of the embryo and attenuates it in the rest of the

ith Eqs. (53) and (40). (D) Decreasing in the diffusivity sharpens Cð2Þtot,ssðxÞ. (For

eb version of this article.)
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and the analytic expressions derived earlier will help in compar-
ing how well this mathematical model fits the data under graded
and under ultrasensitive kinetics.2

The three features of the mathematical model corresponding
to the conditions (i)–(iii) are as follows:
(i)
2

these

Cð2Þtot , i
The height of the peak is Cð2Þtot ð0Þ.

(ii)
 One measure of the width is an effective characteristic length

scale, l. In order to estimate the change in width we crudely
approximate the gradient by ke�x=l for k40 so that the
effective characteristic length scale is estimated by reading
off from the data the x-value that gives a concentration-value
of ke�1

� k� 0:37. From Fig. 3B, at the early stage k� 0:65
while at the late stage k� 1. This procedure estimates that l
at the early stage is about twice as big as at the late stage:
crude estimates of lE (early) and lL (late) are 0.5�550 and
0:24� 550 mm, respectively.
(iii)
 The ‘curvature’ is measured by the derivative near the peak
at x¼0.
3.3. Gradient at the end of the first stage

We now check whether g2ðC
ð1Þ
im Þ can exhibit properties (i)–(iii).

Of course we should be comparing the experimental results of
Fig. 3B of Berezhkovskii et al. (2009) with Cð2Þtot , not g2ðC

ð1Þ
im Þ.

However, it is beneficial to start with a simplified example in
order to gain some insight from which to then build up to
analysing the full model. Furthermore, our goal is to provide a
framework for distinguishing graded and ultrasensitive kinetics
and this task will usually be more sensibly accomplished by
analysis of g2ðC

ð1Þ
im Þ than of Cð2Þtot . One reason for this is that diffusion

in the second stage will tend to smooth out any differences
between the distributions due to graded and ultrasensitive forms
of g2. This point is emphasised in the Discussion. In the next two
subsections, as a demonstration of the procedure we propose, we
consider a Delta distribution as an input g1, and compare graded
and ultrasensitive kinetics.
3 We take derivatives for x40 but, by symmetry, it is trivial to address the

case that xo0 and also by symmetry, at x¼0 the signs of the left- and right-hand
3.3.1. Graded kinetics are consistent with nuclear dynamics

First consider graded kinetics, for which

g2ðC
ð1Þ
im ðxÞÞ ¼

glK1

2D1
l1e�jxj=l1 :

The width of the peak is l1 and the height of the peak is
g2ðC

ð1Þ
im ð0ÞÞ ¼ glK1l1=2D1. Thus in order to match (i) and (ii) we

require that l1 decreases and that K1=D1 increases. These two
criteria are simultaneously possible, for example, by decreasing
the diffusivity D1 and/or increasing the capture rate a1. To match
the relative magnitude of the changes estimated in (i) and (ii), we
can be more precise and require that l1 decreases to about half its
original value, while K1=D1 must increase to about triple its
original value in order to compensate.

Berezhkovskii et al. (2009) observe the same principle (shown
in Fig. 5), though this is with reference to the second stage. In the
second stage, in the cytosol, the increase in the number of nuclei
from early to late stages naturally motivates the increase in a2

and decrease in D2. However, the first stage takes place at the
membrane where potential mechanisms for these changes in
a1 and D1 are perhaps more complicated, as we note in the
Discussion.
Observing that 1þK2 is merely a scaling factor it does no harm to compare

three qualitative features with, say, the immobile fraction Cð2Þim instead of the

f this is more convenient.
Finally, to investigate (iii), note that for x40, say,

d

dx
ðg2ðC

ð1Þ
im ðxÞÞÞp�

K1

D1
e�x=l1 ,

and thus by the late stage, at x¼0, jd=dxðg2ðC
ð1Þ
im ðxÞÞÞj increases to

about triple its value at the early stage, and by continuity also
increases in a neighbourhood of the peak.3 Thus all three criteria
(i)–(iii) are met by the graded model.
3.3.2. Ultrasensitive kinetics are difficult to match with nuclear

dynamics

Next, consider the ultrasensitive model. Recall (10), which
describes the gradient for a fixed l1. The behaviour away from
x¼0 is approximately proportional to e�jxj=ðl1=nÞ, so even in the
nonlinear model the length scale is still proportional to l1, though
it may be reduced. Thus in order to match (ii) we again require
that l1 halves between early and late stages.

Let rp ¼ pL=pE be the ratio of the early stage peak magnitude to
late stage peak magnitude, and let E¼ KE

1=DE
1 and L¼ KL

1=DL
1 be the

ratios of the key parameters that change from early to late stages,
respectively. We obtain

L¼ 2
ffiffiffiffiffi
rp

n
p

2
C0

l1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En

2
C0

l1

� �n

þð1�rpÞEn

n

vuuut :

We see that in the simple case where rp¼1 the ratio L=E must
double to compensate for the halving of l1, and that for rp41 the
ratio must more than double. From the estimate in (i),
rp � 1:6741 so we see that the ratio must indeed more than
double. However, due to the nonlinearity in the Hill function the
question of how much extra is required over and above doubling
depends on the relative magnitudes of C0, l1 and E. We introduce
the constant C1 ¼ ðK1l1Þ=ð2D1Þ. For C1 small (large) relative to C0

the extra amount required will be less (more) than the corre-
sponding extra amount in the linear setting. Notice that there is a
bound on the maximum increase:

rpormax ¼ 1þ
2C0

El1

� �n

:

This saturation of the response is a property of the Hill function
and it is a point of difference between the linear and nonlinear
mathematical models. If the parameter regime can be constrained
experimentally, this bound may help to distinguish the two
kinetic settings. In our example, a necessary condition for ultra-
sensitive kinetics to be consistent with the data is

0:45�
1

2

ffiffiffiffiffi
rp

n
p

o
C0D1

K1l1
: ð11Þ

Thus, if one can experimentally observe an increase in the peak of
the gradient between early and late stages that is too large, with
reference to this bound, then ultrasensitive kinetics (7) can be
ruled out.

In the absence of parameter information, we suppose that the
observed increase satisfies the bound, rpormax, so that it is
possible for ultrasensitive kinetics to simultaneously satisfy
(i) and (ii). Finally we check (iii): recall (10) but now consider
different values of l1 as well as behaviour near x¼0. We write
sided limits may not agree but the magnitude will. The derivative at x¼0 may not

exist. Thus, although we abuse notation to indicate the evaluation of a derivative

at x¼0, in order to be well-defined, we must agree to identify this as the right-

sided limit. For the purpose of this investigation we are only interested in the

magnitude, so one could just as easily choose the left-sided limit.
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For these parameters, with ultrasensitive kinetics, the peak broadens at a late stage, which is not consistent with the experimental data, (ii). Parameters for the early stage
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(10) more carefully as

f ðxÞ ¼ e�jxj=ðl1=nÞ 1

e�jxj=ðl1=nÞ þ Ĉ 01l
�n
1

 !
,

where C01 � C0=C1 and Ĉ 01 � C01=l1 is a constant not involving l1.
Notice g2ðC

ð1Þ
im ðxÞÞpf ðxÞ. Analysis presented in Appendix B shows

that in order to satisfy (iii) we have another necessary condition:

l14ln

1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĉ 01=gn

n

q
: ð12Þ

Notice that ln

1o
ffiffiffiffiffiffiffiffi
Ĉ 01

n

q
and that for nb1 a good approximation is

ln

1 �

ffiffiffiffiffiffiffiffi
Ĉ 01

n

q
, which is easy to compute. Even for moderate n, such

as n¼5, this approximation will often be within 10%, which may
be useful in practice. This may help when checking the necessary
condition (12) although we must bear in mind that Eq. (12) has
been derived from simplifying assumptions so, while it provides
some intuition about important parameter regimes, corrections
would be required in more careful applications.

Thus we have shown that the peak may actually broaden
under ultrasensitive kinetics if l1 is too small. This result is for an
input of g1 as a Delta distribution but, making use of formulae (9),
(4) and (7), Fig. 6 shows this effect of peak broadening is also
possible when the input is a Gaussian (note that in Figs. 4, 6–8
parameters are in arbitrary units and chosen merely to exaggerate
effects).

In summary, with an ultrasensitive model, it is difficult to
match the dynamics of the gradient at the end of the first stage
with the three qualitative features (i)–(iii). Two necessary condi-
tions have been derived, in Eqs. (11) and (12). Guided by these
conditions, perhaps experiments can constrain parameters in
such a way that ultrasensitive kinetics may be ruled out as not
consistent with qualitative features of the gradient. This process
of checking whether (i)–(iii) are satisfied could be repeated for
Cð2Þtot , and we begin to address this in Section 4.2, and in the
Appendix. However, as noted earlier, in many cases it will be
better to do the comparison at the level of the first stage, as
demonstrated here, because this gives the best chance of distin-
guishing between linear and nonlinear forms.

4. Discussion

For simplicity, the biochemical process that relays the signal from
one stage to the next, involving the MAPK cascade, has been
represented here by a single function g2. When drawing conclusions
about graded or ultrasensitive kinetics, note that the kinetics of the
MAPK cascade per se may be different to the kinetics of the process
that we represent here by g2. Moreover, even in the simpler setting
where the MAPK cascade is studied in isolation, it is not trivial to
definitively classify its behaviour as always being of one type, such as
always being graded. Compare, for example, notable results in
stochastic and other settings, such as those described in Huang and
Ferrell (1996), Mackeigan et al. (2005), Takahashi et al. (2010) and
Qiao et al. (2007). Given the typically high degree of uncertainty
surrounding parameters and other aspects of models in systems
biology, it has been argued that it is better to focus on qualitative and
systems-level properties rather than on the fine details of solutions
(Gutenkunst et al., 2007; Qiao et al., 2007) and these sentiments are
worth bearing in mind when we interpret the behaviour of g2 as a
proxy for the MAPK cascade. In this regard it is also worth noting that
the analysis here is not restricted to the MAPK cascade in particular
and provides a general framework for analysing linear and nonlinear
signal relays in cascades of diffusion-trapping systems. Also note that
physiologically reasonable models of signalling kinetics should even-
tually saturate. Ultrasensitive kinetics satisfy this property but with
graded kinetics, at least in the present mathematical model, the signal
may grow without bound.

In order to distinguish ultrasensitive and graded kinetics, we
focused on three key features of the gradient: (i) the magnitude of
the peak; (ii) the effective characteristic length scale; and (iii) the
curvature near the top of the peak. These were chosen because
previously published experimental results show how these fea-
tures change between nuclear cycles 10 and 14, and thus show
that it is at least possible to experimentally measure them.
However, other good choices could also be made for the key
features with which to interrogate the model. Very similar
strategies – in which the sensitivity of the chosen features to
key parameters is compared under graded and ultrasensitive
kinetics – to those proposed here could be followed.
4.1. Sensitivity analysis

Genetic perturbation studies may be employed to interrogate
the kinetics of the signalling cascade. With the analytic expres-
sions derived earlier we may assess the sensitivity of the equili-
brium distributions to perturbations in key parameters by, for
example, differentiating with respect to those parameters.
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Suppose that the length scale is an independent variable that
may be perturbed.4 Differentiate g2ðC

ð1Þð0ÞÞ as a function of l1, the
length scale of the first diffusion-trapping system, to obtain one
crude measure of sensitivity. When the input, g1, is a Delta
distribution the result shows that in the linear setting a, say,
10% change in l1 will be accompanied by a 10% change in the
height of the peak. In contrast, in the nonlinear setting, the same
10% change in l1 may be accompanied by a change in the height
of the peak that is out of proportion. Moreover there are different
ranges of l1 in which the sensitivity will be vastly different,
whereas in the linear setting the sensitivity is constant across
different ranges. This last observation suggests that small pertur-
bations in just two well-chosen ranges of l1 are sufficient to
distinguish ultrasensitive from graded kinetics.

In fact, genetic perturbation studies have been performed in
which the number of copies of the Torso gene was increased
(Coppey et al., 2008, Fig. 2). No effect on the distribution or
amplitude of the signalling output (dpERK) was observed in these
experiments, which suggests receptor numbers are not a limiting
factor. One way to represent increasing receptor numbers in the
present mathematical model is to increase a1 but this does
change the distribution (as shown, for example in previous work
by Berezhkovskii et al., 2009). A possible explanation is that the
experimental system corresponds to a parameter regime in the
mathematical model in which the output gradient at the end of
the second stage is insensitive to a1. However, reconciling this
experimental observation with the mathematical model remains
an issue for future research. Precisely identifying all of the
parameters in the model is a related issue and in this regard we
note that estimates of effective diffusion constants have been
obtained by Sample and Shvartsman (2010).
4.2. Gradient at the end of the second stage

As noted earlier, it will often be challenging to distinguish
differing forms of the relay function, g2, by examination of the
gradient at the end of the second stage because, in general,
diffusion tends to smear out any differences in an initial distribu-
tion. The larger the diffusivity in the second stage, the less
sensitive Cð2Þim will be to differing forms of the relay, g2. Analytic
4 Of course this is not strictly correct because the length scale is a function of

physically meaningful parameters such as diffusion so this example is for the

purpose of illustration only.
expressions for Cð2Þtot may aid in assessing the extent to which such
differences will be smeared out and in this way it may be possible
to extend the framework here to consider whether it is practical
to distinguish different g2 kinetics solely from measurements of
equilibrium solutions, Cð2Þtot . We begin to address this in the
Appendix. However, it is clear that as the diffusivity D2 is
increased, eventually, it will no longer be practical to distinguish
between differing forms of g2.

In order to provide a comparison with Fig. 6, which focused on
the end of the first stage, Fig. 7 shows the gradient at the end of
the second stage. The gradients shown are computed via quad-
rature on (6). Recall from (5) that the result of one such
computation is proportional to Cð2Þim . The constant of proportion-
ality (3) is not specified here because this would require more
assumptions about the parameter values of the second diffusion-
trapping system and because this particular result is only
intended to illustrate qualitative properties. The main qualitative
property to note is that, for the purposes of distinguishing
between graded and ultrasensitive regimes, differences in g2 are
not as easily recognised at this stage as they are at the end of the
first stage.

4.3. Gradients with constant shape and changing amplitude

Recently, Kanodia et al. (2009) showed that the Dorsal gradi-
ent in Drosophila is dynamic, maintaining a constant shape with
increasing amplitude. Although this result applies to a different
system to the one being studied here, some of the underlying
principles, notably diffusion-trapping involving nuclear dynamics,
are common to both. Therefore the general framework of the
diffusion-trapping model outlined in this paper may also be
applicable to the study of other signalling mechanisms and our
purpose here is merely to suggest that this may be the case.

As an indication of this generality and motivated by the
example of the gradient that maintains constant shape with
changing amplitude, we investigate the potential of our model
to exhibit similar amplification properties. We ask what input
gradients, g(x), result in purely signal amplification, giving an
output of the form rgðxÞ? In this respect observe that in (6),
solutions v are obtained by applying a linear operator to an
input function g, so it is enlightening to consider associated
eigenfunctions. For example, for special cases in which

nðl,D,rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=l2
�1=rD

q
, an input gradient of the form gðxÞ ¼

e7nx results in an output gradient rg. Clearly this is not
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a physically realisable solution. However, it does suggest that

gradients that are close, such as gðxÞ ¼ e�njxj, might also be close to
exhibiting the desired amplification property.

For example, as shown in Fig. 8, after truncation to a finite
domain, quadrature on Eq. (6) reveals that it is possible that the
input gðxÞ ¼ e�njxj results in an output vðxÞ � re�njxj, which has
approximately the same shape as the input. If the output had
exactly the same shape then the ratio vðxÞ=gðxÞ would be exactly
r, at all points x. In the example of Fig. 8, away from zero, the
ratio v=g � r. Near the peak of the gradient, the ratio v=gor.
The ratio is smallest at the peak and increasing away from zero.
This observation suggests that for experimentally observed gradi-
ents that appear to maintain a constant shape with growing
amplitude, it may be worthwhile measuring the ratio of the output
to the input gradient more carefully because similar behaviour may
be present. This could be accomplished, for example, by measuring
the ratio in two places, near the peak, and away from the peak.
5. Conclusions

Morphogen gradients play a key role in differentiation and
development. We have analysed the role of the MAPK cascade in
the mechanisms that establish such gradients and allow the
developing embryo to detect them and respond appropriately.
Cascades of two-state diffusion-trapping systems are one of the
mechanisms that establish gradients in Drosophila. Recently, the
question of how MAPK kinetics influence this spatial gradient
was raised in the literature, with particular reference to whether
the MAPK cascade exhibits graded or ultrasensitive kinetics in this
context. Previously, analytic expressions have been obtained in
the graded, linear setting. One of the major contributions of this
work is to provide a complementary framework for analysing the
same system in both ultrasensitive and nonlinear settings. One
result is an analytic expression for the spatial gradient under
ultrasensitive MAPK kinetics. The techniques developed are rea-
sonably general and the same principles can be applied to handle
various functional forms of the input gradient. Suggestions have
been made for extending the analysis to various qualitative cases,
such as those in which the length scales of consecutive diffusion-
trapping systems are approximately equal, or in which they differ
by about an order of magnitude.
As a demonstration of the utility of the approach, a case of
special biological relevance has been treated. In particular, we
show that it is difficult to match the change in shape of the
gradient between nuclear cycles 10 and 14, shown in Fig. 3B of
Berezhkovskii et al. (2009), with ultrasensitive kinetics. Thus,
compared to ultrasensitive kinetics, our analysis supports a
graded model of signal relay between the two stages as a better
fit to the data.

Finally, previous studies have concluded that the characteristic
length scale of the Torso/Trunk receptor/ligand diffusion-trapping
system is much less than that of the cytosolic/nuclear diffusion-
trapping system. While this conclusion is very reasonable, increased
confidence would come with more direct measurements. This is
because the conclusion is based on measurements of the output of
the signalling cascade (dpERK) but not on direct measurements of
Torso occupancy. However, under ultrasensitive MAPK kinetics,
dpERK may exhibit a small characteristic length scale even if the
gradient of Torso occupancy exhibits a large length scale.
For example, a useful approximation presented here is that, as a
rule-of-thumb, ultrasensitive signalling kinetics reduce the effective
length scale by about a factor of n where n is the Hill coefficient
characterizing the signalling kinetics. For the MAPK cascade, this has
been suggested to be a factor of about n¼4.
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Appendix A. Analytic expressions for the gradient under
ultrasensitive kinetics

Suppose the input, g1, is a Delta distribution, as in the first
example of Berezhkovskii et al. (2009). Recall that in this case the
equilibrium solution is

Cð1Þim ðxÞ ¼
K1

2D1
l1e�jxj=l1 :

Applying (6), (2), and (7) the equilibrium solution for Cð2Þim ðxÞ is

Cð2Þim ðxÞ ¼
ghK2

2D2
l2 e�x=l2

Z x

�1

ez=l2

1þ
C0

C1e�jzj=l1

� �n dz

0
BBB@

þex=l2

Z 1
x

e�z=l2

1þ
C0

C1e�jzj=l1

� �n dz

1
CCCA, ðA:1Þ

where we introduce the constant C1 ¼ ðK1l1Þ=ð2D1Þ to tidy up the
integral. Observing the symmetry of the problem, Cð2Þim ðxÞ ¼ Cð2Þim ð�xÞ,
it suffices to evaluate the integrals for the case that x40. In this
case, the first integral is the sum of the integrals on either side of
z¼0, with jzj replaced by 7z as appropriate. Define

m¼
l1

l2
: ðA:2Þ

With the substitutions u¼ e7 z=l1 Eq. (A.1) becomes

Cð2Þim ðxÞ ¼
ghK2

2D2
l1l2e�jxj=l2

Z 1

0

um�1

1þ
C0

C1u

� �n duþ

Z ejxj=l1

1

um�1

1þ
C0u

C1

� �n du

0
BBB@

1
CCCA
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þ
ghK2

2D2
l1l2ejxj=l2

Z e�jxj=l1

0

um�1

1þ
C0

C1u

� �n du: ðA:3Þ

The key integral we require isZ
um�1½1þðC01u71Þ

n
��1 du¼

um

m 2H1 1,7
m

n

h i
, 17

m

n

h i
,�ðC01u71Þ

n
� �

,

ðA:4Þ

where pHqðfaig
p
i ¼ 1,fbig

q
i ¼ 1,zÞ is the hypergeometric function and we

introduce the constant C01 ¼ C0=C1. We use Maple for this calcula-
tion and for (A.5), (A.9) and (A.10). Note the ‘-’ part of the solution
does not apply in the special case that m=n is an integer, so we treat
this case separately. Otherwise, when p¼ qþ1, the hypergeometric
function is defined by a power series for jzjo1 and extended to
the rest of the complex plane by analytic continuation. When
C01u71o1 we can compute (A.4) via the convergent series

um

m
17

m

n

X1
k ¼ 1

ð�Cn
01u7nÞ

k

k7
m

n

0
B@

1
CA:

For u¼1, two of the limits in (A.3) simplify to 2H1ð�, � ,�Cn
01Þ and two

more of the limits are 2H1ð�, � ,�ðC01e7 jxj=l1 Þ
n
Þ. Some care must be

taken with the limit at zero for the ‘-’ part of the solution.

A.1. Integer values of m=n

Experimentally, it has been observed that the length scale
of the first system is less than that of the second, so 0omo1, and
that the MAPK cascade operates in a regime of n¼ 4�5. Thus,
typical values of the fraction m=n are in the range 0om=no1=5,
so perhaps for biologically relevant values the case of integer
values of m=n is not critical. Nevertheless, this case can also
be accommodated in the current framework. The issue is that

pHqðfaig
p
i ¼ 1,fbig

q
i ¼ 1,zÞmay not be defined if bi is a negative integer

for some i. In the case of integer m=n, introduce the substitution
w� un, and use the following in place of (A.4)Z

um�1ð1þðC01u�1Þ
n
Þ
�1 du

¼
1

n

Z
wm=n�1

1þCn
01w�1

dw¼
1

m
wm=n 1�2H1 1,

m

n

h i
, 1þ

m

n

h i
,�

w

Cn
01

� �� �
:

ðA:5Þ

As usual, the limits must be adjusted for the substitution.

A.2. Systems with widely differing length scales

The case l2bl1 is of special importance because it has been
observed experimentally that the length scale of the second
system is much larger than that of the first. A convenient
approach to this case is to change the definition of (A.2) to
m¼ l2=l1 and use the substitutions u¼ expð7z=l2Þ. In this case,
up to sign changes, the integrals in (A.1) transform to

l2

Z
ð1þCn

01u7mnÞ
�1 du, ðA:6Þ

which may also be evaluated with (A.4) by replacing n by nm, C01

by
ffiffiffiffiffiffiffi
C01

m
p

, and m by 1.

A.3. Comparing graded and ultrasensitive kinetics

In order to compare the spatial gradient under graded and
under ultrasensitive signalling kinetics of the MAPK cascade,
we may compare (A.1) with the solution obtained in the linear
setting. Following the procedure outlined in Example 1, we obtain
the solution in the linear setting as, for l1al2,

Cð2Þim ðxÞ ¼
glK1K2l

2
1l

2
2

2D1D2ðl
2
1�l

2
2Þ
ðl1e�jxj=l1�l2e�jxj=l2 Þ, ðA:7Þ

or, for l¼ l1 ¼ l2, as

Cð2Þim ðxÞ ¼
glK1K2l

2

2D1D2
e�jxj=lðlþjxjÞ: ðA:8Þ

Thus, for a particular value of the Hill coefficient, n, we evaluate
(A.1) via (A.4) and compare the result with (A.7), if the length scales
are different, or (A.8) if the length scales are the same. As noted, for
the MAPK cascade, important values of n are 4–5. To illustrate this
process we now fix n¼4 and consider three special cases in which
the length scales of the two stages are approximately the same, the
length scale of the first is much larger than that of the second, and
vice versa. The following examples are merely to illustrate the sorts
of issues that may arise in this process.

A.3.1. The case of l1 ¼ 10l2

This corresponds to the choice m¼10 in (A.2). Following the
procedure outlined above we obtain an expression for the
equilibrium solution under ultrasensitive kinetics:

Cð2Þim ðxÞ ¼
ghK2

2D2
l1l2 e�x=l2 �

1

2
C3C10

01þ
1

2
C8

01�
1

6
C4

01þ
1

10

	�

�
1

6

C4
1

C10
0

ð�3C4
1 c2

0þC6
0þ3C4C6

1þ3C4
1 C2
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01e2x=l1 ÞÞ
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þ
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30C10
1

ex=l2 f�5C4
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1 e�6x=l1þ3C10
1 e�10x=l1þ15C8

0 C2
1 e�2x=l1

�15C10
0 arctanðC�2

01 e�2x=l1 Þg

i
, ðA:9Þ

where C3 ¼ arctanðC�2
01 Þ and C4 ¼ arctanðC2

01Þ. Compare this with
the linear setting in (A.7). The constant of proportionality,
l1l2K2=2D2, is very similar, though the parts corresponding to
the first stage, such as K1=2D1, now turn up inside the integral via
C1 because of the nonlinearity. The exponential decay in the
solution persists via the term expð�x=l2Þ. Further simplification
of the arctan terms is possible by recalling that the arctan
function resembles a Hill function, though the upper and lower
asymptotic limits are adjusted to 7p=2, so for large 7x two of
the arctan terms may be replaced by these constant limits.

A.3.2. The case of l2 ¼ 10l1

As noted, it has been suggested that the length scale of the first
system is much smaller than that of the second (Berezhkovskii
et al., 2009). This corresponds to the choice m¼ 1=10 in (A.2),
but it is more convenient to change this definition and evaluate
the integral instead via (A.6), as discussed. Integrals similar toR
ð1þu40Þ

�1 du arise and have expressions in terms of simple
trigonometric and log functions.

A.3.3. The case of l2 ¼ l1

Consider the case that the length scales are approximately the
same, i.e. that l¼ l1 ¼ l2, which corresponds to m¼1 in (A.2).
Again, it is possible to give an expression for the integral but it
involves many terms. Some insight is obtained by considering the
key integrals involved:

Z
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ffiffiffi
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p
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01
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ffiffiffi
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C01ez=lþC2
01

 !"

þ2 arctan 1þ

ffiffiffi
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p
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 !
�2 arctan 1�
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The integralZ
ez=l

1þ
C0

C1e�z=l

� �4
dz,

is the same as (A.10) minus the first term (l expðz=lÞ), with C01

replaced by 1=C01 and with the sign of the remaining three terms
swapped. We may substitute these expressions into (A.1) and
compare with (A.8). Notice that for large 7z the logarithm term
is approximately zero. Further simplification is possible for large
negative z because the sum of the arctan terms is also approxi-
mately zero, while for large positive z their sum is approximately p.

A.4. Gradient at the end of the second stage

Applying (A.1), (A.6) and (A.4) in that order, the magnitude of
the peak is

Cð2Þim ð0Þ ¼
ghK2

D2
l2

2

Z 1

0
ð1þCn

01u�mnÞ
�1 du,

¼
ghK2

D2
l2

2 u2H1 1,�
1

mn

� �
, 1�

1

mn

� �
,�ðC1=m

01 u�1Þ
mn

� �� �1

0

:

ðA:11Þ

Some care with limits is required because this is an improper
integral but this suggests how the framework may be extended to
check, for example, feature (i) of Section 3.2 if required. Another
nice aspect of the Green functions approach is that it provides a
framework for devising numerical solutions, which, as we show in
Fig. 7, is not an unreasonable way to investigate the behaviour of
the gradient at the second stage.
Appendix B. Comparing the dynamics

For x40,

hðx,l1Þ �
@f

@x
¼

n

l1
ðf 2�f Þ:

By symmetry we also obtain the derivative for xo0. As noted
previously, the derivative at zero may not exist. However, the
limit from one side does exist. Moreover, although the left- and
right-sided limits may not agree at x¼0, the magnitude will. Thus
when evaluating h at x¼0, bear in mind that we define this to be
the right-sided limit of @f=@x. Notice 0o f 2o f o1 so ho0. Also,
h-0 as l1-1 and as l1k0. Together with the observation that h

is not constant we deduce that, for each fixed x, h has at least one
minimum.

In order to understand how changes in the characteristic length
scale, l1, relate to changes in the sharpness of the curvature near the
peak of the gradient, we differentiate with respect to l1, as if it is an
independent variable. Bear in mind the following two issues. First,
experimentally, direct perturbation is restricted to physical para-
meters, for example, the rates of uptake or diffusion. Indirectly, of
course, this may then alter the characteristic length scale, l1. Second,
in what follows Ĉ 01 is treated as a constant. However, both Ĉ 01 and
l1 depend on physical parameters such as the diffusion constant so,
in general, both change as a result of a change in one of the physical
parameters. Thus the formulae derived below apply to the special
case that Ĉ 01 is held constant. One practical example to which this
case applies is where km is experimentally perturbed.

Thus, consider @ðjhð0,l1ÞjÞ=@l1 ¼ 0 to find critical points. Let-
ting f0 � f ð0Þ critical points, ln

1, are solutions of

0¼ 2nĈ 01l
�n
1 f 2

0�ðnĈ 01l
�n
1 þ1Þf0þ1:
There exists a solution by our previous observation but we can be

more precise. Introducing the change of variables l1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĉ 01=g

n

q
reduces the equality to a quadratic in g, of which only one root is
admissible: gn ¼ ðnþ1Þ=ðn�1Þ. The unique solution is

ln

1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĉ 01=gn

n

q
:

Fig. B1 shows a plot of hð0,l1Þ, with the unique solution just

below ln

1 �

ffiffiffiffiffiffiffiffi
Ĉ 01

n

q
. Fig. B1 also shows that the peak will not

sharpen if l1 is too small.
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