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A central challenge in developmental biology is understanding the creation of robust spatiotemporal
heterogeneity. Generally, the mathematical treatments of biological systems have used continuum, mean-field
hypotheses for their constituent parts, which ignores any sources of intrinsic stochastic effects. In this paper
we consider a stochastic space-jump process as a description of diffusion, i.e., particles are able to undergo
a random walk on a discretized domain. By developing analytical Fourier methods we are able to probe this
probabilistic framework, which gives us insight into the patterning potential of diffusive systems. Further, an
alternative description of domain growth is introduced, with which we are able to rigorously link the mean-field
and stochastic descriptions. Finally, through combining these ideas, it is shown that such stochastic descriptions
of diffusion on a deterministically growing domain are able to support the nucleation of states that are far removed
from the deterministic mean-field steady state.
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I. INTRODUCTION

How spatial and temporal complexity emerges from near
homogeneity is one of the fundamental questions of develop-
mental biology that remains poorly understood, especially the
question of how robustness is maintained despite the presence
of numerous sources of noise. Thus, not only is producing
plausible theoretical models of biological heterogeneity dif-
ficult, it is further complicated by the problem of generating
robustness [1], i.e., once we can generate a pattern, how do we
ensure that this pattern is consistently reproducible in the face
of perturbation [2]?

Many mathematical models of biochemical systems have
been proposed to account for the emergence of complexity
[3,4]. In general, they have consisted of deterministic systems
of differential equations, which do not consider the stochastic
nature of chemical interactions. Hence, very few models have
considered biological systems where the active populations
have very low copy numbers, such as in the genome of the
bacterium Escherichia coli, where around 1700 important
proteins are present in small numbers. For example, there
are only 10–30 molecules of the lac repressor, which is
involved in the regulation of gene expression [5]. Thus, in such
circumstances, the continuum hypothesis breaks down and we
are forced to consider the potential stochastic effects of low
copy numbers. Due to advances in computing power we are
now able to return to these paradigm systems with the aim of
modeling the primary biological phenomena while including
stochastic effects, which, originally, would have made the
simulations prohibitively slow.

Before we consider this connection between stochastic
and deterministic dynamics, we must first clarify the type
of noise we are trying to understand. Biologically, noise
can be split into two different types, namely, intrinsic and
extrinsic [6]. Although both are sources of stochasticity, their
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mathematical treatments are very different [7]. Intrinsic noise
is generated as an inherent part of the system and is due to
random fluctuations in the population interactions [8]. Due
to its intrinsic nature, the properties of internal noise need
to be extracted from the imposed mathematical framework.
External noise, in comparison, denotes fluctuations from any
other source, e.g., domain effects or variations in temperature.
Although the action of the external noise sources on the
populations is unknown, a random variable can be applied
to mimic their effects. Thus, in the case of external noise,
since the random signal is explicitly added, the properties of
the noise are chosen and controlled [9].

Much work has been done in analyzing and simulating
the effects of external noise on reaction-diffusion pattern
formation systems [9–14]. Simple forms of intrinsic noise
have also been investigated [6,8,15]. However, until recently
[16–19], there have been few extensions to the modeling of
biological systems that have spatial or nonlinear temporal
properties. Due to the inherent difficulties involved in ana-
lyzing stochastic systems, research has focused on efficient
algorithms for simulation [20–26], thus producing statistics
through ensemble data. However, there has been little analysis
to complement these results [27,28] and any advances in theory
have frequently needed heuristic moment closure arguments
in order to allow analytic treatment [29,30].

Here we focus on diffusive systems, subject to intrinsic
noise. Diffusion of the chemical constituents is modeled as
a space-jump process [30]. The one-dimensional domain is
partitioned into compartments of equal size and each compart-
ment contains an indexed population. The individual particles
of the chemical populations are then allowed to undergo
unbiased random walks by jumping from one compartment
to the next, i.e., each particle has an equal probability per unit
time, or transition rate, of jumping to one of the neighboring
boxes. We are interested in diffusion as it is a fundamental
mechanism of transport that underpins a large number of
biological processes [31–33]. We approach the biological
system through a chemical master-equation formalism and

021915-11539-3755/2011/84(2)/021915(15) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.021915


WOOLLEY, BAKER, GAFFNEY, AND MAINI PHYSICAL REVIEW E 84, 021915 (2011)

use white-noise expansions to derive Fokker-Planck equations
that allow us to characterize the properties of the noise [6].
This then brings us to one of the aims of the paper, which is
to develop, clarify, and apply Fourier-transform techniques to
the Fokker-Planck equation. These techniques give us insight
into the potential spatiotemporal dynamics that are available
in such systems. Although, by using these methods, we will
be considering nonlinear complexity through linear analysis,
it has been shown that linear dynamics can often afford a good
approximation to the full nonlinear behavior, particularly near
homogeneous steady states [3,4,34].

Our next focus is to introduce an alternative treatment
of growing domains. Growth has been hypothesized to play
an important role in many areas of developmental biology,
e.g., alligator tooth initiation [35,36] and fish pigmentation
patterning [37]. Further, by coupling deterministic Turing
reaction-diffusion patterning systems with growing domains,
it has been shown that certain forms of growth robustly
generate doubling wave mode sequences [38]. Thus it is with a
view to considering robust pattern generation that we develop
a framework that not only captures domain growth within
stochastic systems but also enables analytical consideration of
the weak-noise limit.

Heuristic arguments have been successful in linking the
macroscopic and microscopic descriptions of growth using a
box-splitting mechanism such that when the growth reaction
occurs a compartment is chosen at random and replaced
with two daughter compartments, each of which is the same
size as the original compartment, with the original parent
population split between them. However, this description of
growth is unsuitable for considering the effects of noise on
patterning mechanisms as this operation of box-splitting does
not have a weak-noise limit (see Sec. II A). This can be
demonstrated both analytically and intuitively: The process of
splitting a population density in a single reaction is obviously
a large perturbation; thus, increasing the active populations
will produce an increase in noise, instead of a reduction.
In order to bypass this problem of linking the microscopic
and macroscopic scales we introduce a mesoscopic level of
description through mapping the microscopic domain defined
by Eulerian coordinates to a stationary Lagrangian domain,
where, instead of manipulating the spatial variables, we simply
alter the transition rates. The question of why we would want
to do this is quite pertinent. This mapping allows us to not only
link the mesoscopic and macroscopic scales without the need
of moment closure heuristics but also to use the developed
Fourier-transform theory in order to analyze complex spatial
dynamics. Further, the stochastic realizations run much faster
due to the coarser description of the domain, although by
using the mesoscopic description we lose information on
the microscopic scale. Finally, this Lagrangian description
overcomes some of the flaws of the box-splitting growth
approach. For instance, the time scale of growth is usually
much smaller than the characteristic time scale of diffusion;
thus the growth does not spontaneously affect only the
splitting population, but rather the whole Lagrangian region of
populations. The box-splitting method does have the advantage
that the domain discretization will remain valid for all times as
more spatial compartments are added as the domain grows. In
contrast, due to the discretization being fixed in the Lagrangian

description the domain will eventually become too coarse to
resolve the spatial dynamics properly, at least for unbounded
growth, and the well-mixed assumption of the Lagrangian
compartment will break down. Thus we must fix an end time
and ensure that the final size of the compartment is small
enough to resolve any spatial dynamics. This refinement of
the initial compartment size will always be possible, at least
in principle.

Although we take a view that our active species are simple
particle reagents in some biochemical system, where the
intrinsic noise arises through random thermodynamic fluctua-
tions of collisions, the developed methodology is much more
general and can be applied to any biological system in which
it is justified to assume that individuals act like interacting
particles. The intrinsic noise is then generated through some
other underlying process that causes the interactions to have
a probability distribution rather than an exact rate. Further,
if a particular population can be thought of as undergoing
random movement, then diffusion may also be a good model
for motility [39–41].

We start in Sec. II by introducing the stochastic framework
in which we will work and extend this in Sec. III using
the Fourier-transform techniques developed by McKane and
Newman [16]. These methods deserve careful examination
in order to clarify the role of complicating factors, such
as boundary conditions, which can have a big effect on
the analysis. Methods of modeling growth are discussed in
Sec. IV and used in Sec. V to justify the mapping from the
Eulerian domain, which is time-dependent, to the Lagrangian
domain, which is time-independent. Comparisons of theory
and simulation are then shown in Sec. VI, where we consider
diffusion on a deterministically growing domain. This allows
us to derive a scale parameter that indicates whether growth
is able to cause consistent spatial heterogeneity. Finally, in
Sec. VII we collect these results and interpret them with a
view to understanding the effects of stochasticity and growth
on diffusion.

II. STOCHASTIC FRAMEWORK

In this section we derive the basic methods that will allow
analytical treatment of stochastic models [6,42]. However,
before we are able to use such tools, we first need to introduce
the chemical master equation (CME).

The CME of a reactive system is an exact description
of the evolution of the probabilities of the active chemical
species being in a certain state. By deriving the CME,
the system is reduced to specifying only the populations
and interactions between them while ignoring their specific
positions and velocities. The justification for this lies in the
conditions needed for the system to be considered well-mixed.
Fundamentally, an assumption is made that the majority of
molecular collisions are nonreactive. The net effect of these
nonreactive collisions is to cause the positions of each particle
to be uniformly random in the system volume. Thus, ignoring
nonreactive collisions, only changes in populations due to
defined reactions are considered [43].

Suppose in the system there are K chemical populations
{S1, . . . ,SK} undergoing J reactions {R1, . . . ,RJ }. Since we
will be primarily concerned with spatially extended systems
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the subscript i = 1, . . . ,K indexes over both the chemical
population and its spatial location. Let Ui(t) be the integer
random variable of individuals of species Si and for simplicity
define U(t) = [U1(t), . . . ,UK (t)] to be the state vector of
the system at time t . Each reaction Rj is specified by its
stoichiometric vector νj = (ν1j , . . . ,νKj ) and the propensity
function aj (u), where u is a single realization of U [44].

Definition 1.The stoichiometric vector νj = (ν1j , . . . ,νKj )
is the state change vector of reaction Rj . Thus, if the system
is in state u and reaction Rj occurs, then the state becomes
u + νj [43].

Definition 2.The fundamental premise of stochastic chem-
ical kinetics [43] is that the propensity function aj (u) is
defined by

aj (u)dt = P, (1)

where P is the probability, given U(t) = u, that one Rj

reaction will occur somewhere inside the system in the next
infinitesimal time interval [t,t + dt).

The stoichiometric matrix

ν = {νij }j=1,...,J

i=1,...,K, (2)

and the propensity vector aT = (a1, . . . ,aJ ) follow from
these definitions. The exact form of the propensity function
is proportional to the number of combinations of active
particles available to undergo reaction Rj [45]. The constant
of proportionality, κj , which links the propensity function and
the number of combinations of active particles, is known as
the stochastic reaction rate. The rest of the theory follows from
this and the Laws of Probability [46].

By defining P (u,t) as the probability of being in a state u
at a time t then the rate of change of P over time is the net
probability flux into the state u, we obtain the general form of
the CME,

∂

∂t
P (u,t |u0,t0) =

J∑
j=1

[P (u − νj ,t |u0,t0)aj (u − νj )

−P (u,t |u0,t0)aj (u)],

def=
J∑

j=1

(Rj − 1)[P (u,t |u0,t0)aj (u)]. (3)

Note that here we are using Rj to denote the reaction path as
well as the reaction operator. This abuse of notation should not
cause confusion.

In the case of zeroth- and first-order reactions, i.e., reactions
in which zero or one active species, respectively, reacts to
form another, the CME is linear in u and can be solved
analytically [47] or by using probability generating functions,
which lead to first-order partial differential equations (PDEs)
for the moments of the probability distribution [48]. Similarly,
second-order reactions lead to second-order PDEs for the
generating function. Hence, except for very special cases,
second- and higher-order CMEs are not completely solvable
analytically due to the nonlinearities in the system.

A. Weak-noise expansion

Although we may not be able to solve the CME exactly,
except in certain special circumstances, we are able to

systematically produce an approximation of it by expanding
the equations in terms of a suitable system parameter, denoted
�, and assuming that, as this parameter is increased, the
stochastic fluctuations become lower order. This allows sepa-
ration of average, mean-field, and stochastic parts by yielding
deterministic and probabilistic equations, respectively. By
deriving equations for the mean-field dynamics and the effects
of the noise about these, we are able to compare analytic results
to ensemble data gained from stochastic simulations.

Motivated by the central limit theorem [46], we define a
random variable ηi (which is of order one as � → ∞) through
the relation

Ui = φi� + ηi

√
�. (4)

In the case of multiple spatially extended populations we define
� to be the order of magnitude of the smallest homogeneous
steady state. Thus, by making � large, we ensure that
all populations satisfy the weak-noise assumption. Here we
consider only one spatially extended population and thus we
fix � = Ui(0) = u(0) if the initial condition is homogeneous
and � is the mean value of the Ui(0), i = 1, . . . ,K , otherwise.
Thus � does not have a spatial dependence. φi is the expected
ratio of population at time t to the initial population and is a
dimensionless macroscopic variable. Since it is macroscopic
we assume it is of order one compared to �; thus the various
orders of the model can be separated. The statistics of Ui and
ηi are linked through the identification [6]

P (U,t) = �(η,t). (5)

Thus, in the limit,

lim
�→∞

U
�

= φ = (φ1, . . . ,φK ). (6)

This is consistent with the broadly accurate argument, identi-
fied by van Kampen [6], that the noise scales as square root
of the population size. Also, it encapsulates the intuitive idea
that, as the population grows, individual interactions become
less important and we can treat the population as a continuum.

Using Taylor series, we are now able to expand the
operator RjP (u,t) about this function � and the microscopic
propensity function aj (u − νj ) about the macroscopic rate
aj (φ) in terms of �. Through evaluating these expansions and
ignoring terms of order 1/

√
� and lower, we obtain from the

CME

∂�

∂t
−

√
�

K∑
i=1

dφi

dt

∂�

∂ηi

=
J∑

j=1

(
−

√
�

K∑
i=1

νij

∂

∂ηi

+ 1

2

K∑
i=1

K∑
l=1

νij νlj

∂2

∂ηi∂ηl

)

×
(

aj (φ) + 1√
�

K∑
i=1

∂aj (φ)

∂φi

ηi

)
�(η). (7)

Collecting terms of order
√

� leads to the macroscopic
equation

K∑
i=1

dφi

dt

∂�

∂ηi

=
K∑

i=1

J∑
j=1

aj (φ)νij

∂�

∂ηi

, (8)
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which is satisfied by the definition of aj (φ). Collecting terms
of order one gives rise to a Fokker-Planck equation [49], which
defines the dynamics of the probability density

∂�

∂t
=

J∑
j=1

(
−

K∑
i,l=1

∂aj

∂φl

νij

∂(ηi�)

∂ηl

+ 1

2
aj

K∑
i,l=1

νij νlj

∂2�

∂ηi∂ηl

)
,

= −
K∑

i,l=1

Ail

∂(ηl�)

∂ηi

+ 1

2

K∑
i,l=1

Bil

∂2�

∂ηi∂ηl

, (9)

where [42]

A = {Ail} = {∂[νa]i/∂φl}, (10)

B = {Bil} = ν diag(a)νT , (11)

and aT = (a1, . . . ,aJ ).

B. Spatially extended systems

In order to proceed generally we must consider how the
reactions affect the structure of the matrices A and B. Since
we are considering reaction-diffusion equations, it is important
that we define diffusion on the microscopic and macroscopic
scales. Although other descriptions are possible [24], here we
model diffusion as a space-jump process [30] (see Fig. 1).

A domain of length L is partitioned into K , one-
dimensional compartments of size 	E = L/K and each com-
partment contains an indexed population. Higher-dimensional
domains can also be considered by replacing the one-
dimensional compartments with appropriate analogs [50]. For
K compartments in a one-dimensional domain with Neumann,
zero-flux boundary conditions, each containing a species Si ,
with population Ui = �φi + √

�ηi and microscopic diffusion
coefficient dE , the reactions are

S1
dE�
dE

S2
dE�
dE

· · · dE�
dE

SK. (12)

Since these are first-order equations, the equations govern-
ing their mean values are equivalent to the deterministic
reactions [48]

dφ1

dt
= dE(φ2 − φ1), (13)

dφi

dt
= dE(φi−1 − 2φi + φi+1), i = 2, . . . ,K − 1, (14)

dφK

dt
= dE(φK−1 − φK ). (15)

FIG. 1. Diagram of the space-jump description of diffusion. Each
particle has equal probability per time unit of moving left as moving
right. If, for example, the right diffusion reaction Rj occurs, one
particle from box j moves to box j + 1.

Comparing these equations with the second-order finite-
difference approximation of the one-dimensional Laplacian
with zero-flux boundary conditions, which is derived through
Taylor expansions of the continuous formulation [51], shows
that their descriptions are equivalent if dE = D/	2

E , where
D is the macroscopic rate of diffusion [15]. Thus, because
the reactions are linear, the expected value of the populations
undergoing a stochastic description of diffusion approaches
the deterministic diffusion equation as 	E tends to zero.

Similar to simulating a discretized reaction-diffusion PDE,
if the discretized domain is too coarse the Eulerian boxes would
be too large to justify a well-mixed assumption. Thus there is a
restriction on the compartment size being too large. However,
unlike PDEs, the compartment size may be restricted from
being too small as the specific probability rate constants may
depend on the size of the compartment; thus the limit 	E → 0
is not necessarily well defined [52]. Such problematic cases
are not dealt with in the present context.

Using the matrix terminology developed in Sec. II A, the
stoichiometric matrix ν and the macroscopic transition rate a
are given by

ν =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 · · · 0 0 0 1 0 · · · 0

1
. . .

. . .
...

...
... −1

. . .
. . .

...

0
. . .

. . . 0
...

... 0
. . .

. . . 0
...

. . .
. . . −1

...
...

...
. . .

. . . 1
0 · · · 0 1 0 0 0 · · · 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

a =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

dEφ1
...

dEφK

dEφ1
...

dEφK

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (16)

ν is a K × 2K matrix. The first K × K elements are the
population change vectors of diffusion to the right, e.g. the j th
column (j < K) is the population transition of the reaction

Sj → Sj+1. (17)

Similarly, for j > K + 1, the j th column is the population
transition of

Sj → Sj−1. (18)

The two zero columns in the center show that no particles
may leave the domain, which corresponds to the Neumann
boundary conditions. The j th element of a is the corresponding
weighting probability of the j th reaction.

Using the definitions in Eqs. (10) and (11) we have

A =

⎛⎜⎜⎜⎜⎜⎜⎝

−dE dE 0 . . . 0

dE −2dE dE

. . .
...

0
. . .

. . .
. . . 0

...
. . . dE −2dE dE

0 . . . 0 dE −dE

⎞⎟⎟⎟⎟⎟⎟⎠ , (19)
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B =

⎛⎜⎜⎜⎜⎜⎜⎝

2dEφ −2dEφ 0 . . . 0

−2dEφ 4dEφ −2dEφ
. . .

...

0
. . .

. . .
. . . 0

...
. . . −2dφ 4dEφ −2dEφ

0 . . . 0 −2dEφ 2dEφ

⎞⎟⎟⎟⎟⎟⎟⎠ ,

(20)

where φ is the homogeneous steady-state solution of the
system of Eqs. (13)–(15). The symmetric, tridiagonal forms
of A and B are the key features used when deriving their
spatiotemporal Fourier transforms. Any other reactions that
are added into the one population system are assumed to act
within each compartment, thus reagents in box i can only react
with other reagents in box i. This means that any additional
reactions simply add extra terms to the diagonals of A and B;
thus we only need consider a symmetric, tridiagonal matrix
for the following analysis to be a general solution of the
Fokker-Planck equation.

III. FOURIER TRANSFORMS

The Fokker-Planck equation (9) can be converted to its
corresponding Langevin equation, which has the general form
[42,53]

dζ

dt
= Aζ + λ(t), (21)

where ζ = (η1, . . . ,ηK ) and λ = (λ1, . . . ,λK ). The λi are
specified by the covariances

〈λi(t)λj (t ′)〉 = Bij δ(t − t ′), (22)

where 〈x〉 is the mean value of x over a number of simulations.
Note that, since the λi are only uniquely defined up to
their covariances, the Langevin equation is nonunique [53].
However, since we work with only the covariances, this is not
a problem that will concern us.

Temporal and spatial Fourier-transform theory can be
applied to the Langevin equation (21) in order to discern
inhomogeneous behavior [16–19,54,55]. In this section we
recapitulate this theory, paying particular attention to the form
of expansion used and the effects of boundary conditions while
extending the theory to non-steady-state kinetics.

A. Temporal Fourier transform

In future work we will be primarily interested in the spatial
transform, as the biological patterns we study are normally
stationary. Since the temporal transform has applications in
systems with no stable steady state, e.g., limit cycles, it is
covered for completeness [56]. Further, we extend current
analytical results to nonstationary kinetics, highlighting the
importance of carefully handling the boundary conditions.

As we will see later (Sec. III B), the spatial Fourier
transform reduces the set of coupled ordinary differential
equations (ODEs) in Eq. (21) to a single uncoupled ODE.
Hence, in this section we consider only a single species S with
population U and neglect diffusion.

1. Stationary kinetics

To illustrate the difference between stationary and nonsta-
tionary kinetics, we first consider the simple system of logistic
growth

S
α
�
β/�

2S. (23)

Using the theory set out in Sec. II A, the deterministic equation
describing the mean-field dynamics of U is

φ̇ = αφ − βφ2, (24)

with stable steady state φs = α/β. Further, we can easily find
that A = A = α − 2βφs = −α and B = B = αφs + βφ2

s =
2α2/β, which allows the calculation of the Langevin equation

η̇ = −αη + λ, (25)

where λ is given by Eq. (22). At this point we would like to
apply the discrete temporal Fourier transform [57]

f̃ (ω) = 	t

M−1∑
i=0

exp(Iω	t i)f (	ti), (26)

where f is a function that has been sampled M times over
an interval [0,T ] such that 	t = T/M and I is the imaginary
unit.

The Fourier transform of η is simply η̃ and when previously
taking the temporal Fourier transform of the time derivative,
the approximation [16,54]

˜̇η = −Iωη̃, (27)

has been used. However, this does not encompass any contri-
bution from the initial and final values, as they are assumed to
be small. Here we use this approximation successfully, which
is justified later. In Sec. III A 2 the approximation fails when
it is applied to kinetics that do not tend to a stable steady state.

Applying the discrete Fourier transform to Eq. (25) and
using the approximation in Eq. (27), we obtain

−Iωη̃ = −αη̃ + λ̃, (28)

⇒ η̃ = λ̃

α − ωI
. (29)

Further,

〈λ̃(ω)λ̃(ω′)〉 = 	2
t

M−1∑
i=0

M−1∑
j=0

exp(Iω	t i)

× exp(Iω′	tj )〈λ(	ti),λ(	tj )〉,

= 	2
t

M−1∑
i=0

M−1∑
j=0

exp(Iω	t i)

× exp(Iω′	tj )Bδ(	t (i − j )),

= 	tB

M−1∑
i=0

exp(I (ω + ω′)	ti), (30)

implying

〈λ̃(ω)λ̃(−ω)〉 = 	tBM. (31)
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FIG. 2. Comparison of the power spectrum given by Eq. (32)
(dashed line) and 1000 averaged replicates of the stochastic system
(solid line), each scaled by a factor of T . The parameters are � = 100,
α = 0.1, and β = 0.2.

Thus we are able to calculate the power spectrum of the noise,

Ps(ω) = 〈|η̃|2〉
	tM

= 2α2

β(α2 + ω2)
. (32)

In Fig. 2 we compare the power spectrum Eq. (32) with
the averaged ensemble of 1000 Fourier-transformed stochastic
simulations, scaled by 	tM = T . The figure clearly shows an
extremely good fit between theory and simulation.

2. Nonstationary kinetics

Let us now consider kinetics that do not tend to a stationary
steady state, e.g., exponential growth

S
r→ 2S. (33)

Proceeding as in Sec. III A 1 and using the approximation in
Eq. (27), we derive the power spectrum to be

Ps(ω) = r

r2 + ω2
, (34)

where once again the spectrum has been scaled by a factor of
T . Comparing this to scaled simulations in Fig. 3(a) shows
that this time the comparison is not so good.

Similarly, if we consider linear growth

∅ r→ S, (35)

we obtain

Ps(ω) = 〈|η̃|2〉
T

= r

�ω2
. (36)

Qualitatively the curves in Fig. 3(b) are the same, but
quantitatively the analytic solution is quite different. Thus, in
order to obtain a better theoretical comparison to the ensemble
power spectrum, we ignore the approximation in Eq. (27) and
return to the Langevin equation.

3. Corrected Fourier transform of the time derivative

The Langevin equation arising from the weak-noise expan-
sion method is always linear. Thus, following van Kampen [6],
instead of taking the Fourier transform of the time derivative,
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(a) Ω = 1000, r = 0.01. (b) Ω = 1000, r = 10.

FIG. 3. Comparison of the power spectrum (dashed line) and
1000 averaged replicates of the stochastic system (solid line). Each
result has been scaled by a factor of T = 100. (a) Exponential growth
power spectrum Eq. (34). (b) Linear growth power spectrum Eq. (36).
The parameters are given beneath the figures.

we simply solve the linear ODE and take the Fourier transform
of the resulting covariances.

Note in the following, general, derivation we consider the
finite-time continuous transform as we expect the continuous
and discrete transforms to correspond as 	t → 0 [57]. Let

η̇ = cη + λ, (37)

where c 
= 0 is constant [58] and

〈λ(t ′)λ(t ′′)〉 def= g(t ′,t ′′)δ(t ′ − t ′′). (38)

Since Eq. (37) is linear we can integrate the system to obtain

η(t) = ect

∫ t

0
λ(t ′)e−ct dt ′, (39)

and thus

〈η(t1)η(t2)〉 = ec(t1+t2)
∫ t1

0

∫ t2

0
g(t ′,t ′′)e−c(t ′+t ′′)δ(t ′−t ′′)dt ′dt ′′,

= ec(t1+t2)
∫ min(t1,t2)

0
g(t ′,t ′)e−2ct ′dt ′. (40)

Simplifying the notation of g(t ′,t ′) to g(t ′) and applying the
temporal transform gives

〈|η̃(ω)|2〉

=
∫ T

0

∫ T

0
eIω(t1−t2)ec(t1+t2)

∫ min(t1,t2)

0
g(t ′)e−2ct ′dt ′dt1dt2,

=
∫ T

0

∫ t2

0
eIω(t1−t2)ec(t1+t2)

∫ t1

0
g(t ′)e−2ct ′dt ′dt1dt2

+
∫ T

0

∫ T

t2

eIω(t1−t2)ec(t1+t2)
∫ t2

0
g(t ′)e−2ct ′dt ′dt1dt2,

= 2
∫ T

0

∫ t2

0
cos [ω(t1 − t2)]ec(t1+t2)

×
∫ t1

0
g(t ′)e−2ct ′dt ′dt1dt2. (41)

To make further progress we assume a form for g. If the kinetics
have a stable steady state then g will be a constant,

g(t ′) = g, (42)
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whence

〈|η̃(ω)|2〉 = g(c3 + cω2)T

(c2 + ω2)2c

−g[4c2 cos(ωT ) + 4ω sin(ωT )c]ecT

2(c2 + ω2)2c

+ g(c2 + ω2)e2 cT

2(c2 + ω2)2c
− g(−3c2 + ω2)

2(c2 + ω2)2c
. (43)

Further, from the derivation of A in Sec. II A, c will be
the eigenvalue of the homogeneous system; thus, since we
are assuming stable kinetics, c will be negative and the
exponentials will decay. Considering only the long-time
solution leads to

〈|η̃(ω)|2〉 = gT

(ω2 + c2)
. (44)

Letting c = α and g = 2α2/β, we can compare this with the
power spectrum of the logistic kinetics derived in Sec. III A 1.
We see that additional terms associated with the temporal
boundary values are of lower order; thus in the long-time limit
they can legitimately be ignored.

Now suppose the kinetics are not stationary and thus c > 0.
This will then give a time-dependent g = g(t ′). In general,
Eq. (41) no longer has a closed-form solution; thus we must
consider solutions on a case by case basis.

Returning to exponential kinetics, we see that c = r and
g(t) = r exp(rt). Thus

〈|η̃(ω)|2〉 = −2rerT sin(ωT ) + ω(e2 rT − 1)

ω(ω2 + r2)
. (45)

Figure 4(a) convincingly shows that Eq. (45) is a much
better approximation than that originally derived in Eq. (34).
However, the power spectrum of exponential growth does not
tend to a limit when scaled by 1/T and so the power spectrum
is dependent on the final time value of the observed domain.

Finally, for the singular case of linear growth, the same
procedure can be followed from Eq. (37), but this time c = 0.
This leads to

〈|η̃(ω)|2〉 = 2
rT

ω2�
− 2

r sin(ωT )

ω3�
. (46)

Comparing this with the originally derived equation (36), we
find a factor of 2 that was originally missing, as well a term of
the form r sin(ωT ). From Fig. 4(b) we once again see excellent
correspondence between theory and simulation.
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FIG. 4. Comparison of the corrected power spectrum (dashed
line) and 1000 averaged replicates of the stochastic system (solid line).
Each result has been scaled by a factor of T = 100. (a) Exponential
growth. Analytic power spectrum given by Eq. (45). (b) Linear
growth. Analytic power spectrum given by Eq. (46). The parameters
are the same as in Fig. 3.

B. Spatial Fourier transform

We now consider the discrete spatial Fourier transform of a
spatially extended system with a population diffusing over the
domain (see Sec. II B). In previous work, the utilized transform
has been analogous to the temporal transform [18,54],

f̂ (k) = 	x

K∑
j=1

exp[−Ik	x(j − 1)]f (xj ), (47)

where f is a function defined over a space that has been
discretized into K uniformly spaced points with spacing 	x

such that xj = j	x .
Since our simulations employ Neumann boundary condi-

tions, which do not disappear on using the above transform, we
choose instead to use the discrete Fourier cosine expansion [57]

f̂ (k) = 	x

K∑
j=1

cos[k	x(j − 1)]f (xj ). (48)

Note that the correction (j − 1) in the cosine function is simply
to account for the fact that, spatially, we have defined our
populations to start with an index one instead of zero. In
contrast, the temporal initial condition is defined to occur at
time t = 0; thus the index for the temporal transformation
starts at zero.

Taking the discrete spatial transform of the discrete Lapla-
cian of η, with 	x = 	E , gives us

	E cos(k	E0)dE(−η1 + η2) + 	E cos[k	E(K − 1)]dE(ηK−1 − ηK ) + 	E

K−1∑
j=2

cos[k	E(j − 1)]dE(ηj−1 − 2ηj + ηj+1)

= −2dEη̂k+	E cos(k	E0)dEη1 + 	E cos[k	E(K−1)]dEηK + 	E

K−1∑
j=1

cos(k	Ej )dEηj + 	E

K∑
j=2

cos[k	E(j − 2)]dEηj ,

= −2dEη̂k + 	E cos(k	E0)dEη1 + 	E cos[k	E(K − 1)]dEηK

+	E

K−1∑
j=1

{cos[k	E(j − 1)] cos(k	E) − sin[k	E(j − 1)] sin(k	E)}dEηj
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+	E

K∑
j=2

{cos[k	E(j − 1)] cos(k	E) + sin[k	E(j − 1)] sin(k	E)}dEηj ,

= 2dEη̂k[cos(k	E) − 1] − k	2
E

cos(k	E1) − cos(k	E0)

k	E

dEη1 + k	2
E

cos[k	E(K − 1)] − cos(k	EK)

−k	E

dEηK. (49)

Taking the limit 	E → 0+ while keeping 	EK = L and k

fixed gives

lim
	E→0+

cos(k	E1) − cos(k	E0)

k	E

= sin(0) = 0, (50)

lim
	E→0+

cos[k	E(K − 1)] − cos(k	EK)

−k	E

= sin(kL). (51)

Hence, by choosing k = mπ/L, m = 0,1, . . . ,K − 1, we can
ignore the boundary terms in Eq. (49) as they are of a
lower order than the leading-order term 2dEη̂k[cos(k	E) − 1].
Further, by expanding the cosine function and remembering
that, as 	E → 0, dE	2

E = D is finite,

lim
	E→0

2dEη̂k[cos(k	E) − 1] = −k2Dη̂k, (52)

which is exactly the solution given by the continuous
transform [18].

Thus the spatial Fourier cosine transform of the Langevin
equation, generated by the space-jump description of diffusion
[Eq. (21), where A and B are given by Eq. (20)], is given by

dη̂k

dt
= 2[cos(k	E) − 1]dEη̂k + λ̂k. (53)

Notice that the spatial cosine transform has reduced a set of K

coupled ODEs in Eq. (21) to a single ODE, Eq. (53), which
can be solved for all k = mπ/L, m = 0, . . . ,K − 1.

The explicit form of 〈̂λk(t )̂λk′(t ′)〉 can be found similarly.
Since B is tridiagonal and symmetric we can completely
specify its elements by using Kronecker delta functions,

Bij = b0δi,j + b1δ|i−j |,1, (54)

where the b0 are the diagonal elements and the b1 are the
elements on the superdiagonals and subdiagonals. Once again
we use a discrete cosine transform, which, as shown above,
automatically incorporates the boundary conditions; thus

〈̂λk(t )̂λk′(t ′)〉 = 	2
E

K∑
i,j=1

cos[k	E(i − 1)] cos[k′	E(j − 1)]

× (b0δi,j + b1δ|i−j |,1)δ(t − t ′), (55)

can be then simplified to

〈̂λk(t )̂λk(t ′)〉 = 	2
EK

2
[b0 + 2 cos(k	E)b1]δ(t − t ′). (56)

We have been able to apply the spatial Fourier cosine
transform analytically due to the spatial homogeneity of the
coefficients. If the coefficients were also constant in time,
the temporal transform would cause no trouble and this case
has been dealt with successfully [16,19,54,56,59,60]. For
completeness, and as an example of using both transforms

together, in the following section we apply both techniques to
our stochastic description of diffusion.

C. Temporal and spatial Fourier cosine transforms of diffusion

In the preceding section we derived the spatial Fourier
cosine transform of the space-jump description of diffusion.
Thus, in order to use both transforms, we apply the temporal
Fourier transform to Eq. (53). Although the system tends to a
stationary steady state, meaning we could use approximation
equation (27), we derive the equation fully using the same
method as in Sec. III A 3.

If we let C(k) = 2dE[1 − cos(k	E)], then

η̂k = exp[−C(k)t]
∫ t

0
λ̂k exp[C(k)t ′]dt ′. (57)

This implies

〈̂ηk(t1)̂ηk(t2)〉 = e−C(k)(t1+t2)
∫ t1

0

∫ t2

0
〈̂λkλ̂k〉eC(k)(t ′1+t ′2)dt ′1dt ′2.

(58)

By considering the matrices in Eq. (20) and substituting the
correct values into Eq. (56), we obtain

〈̂λk(t )̂λk(t ′)〉 = 2	2
EKdEφ[1 − cos(k	E)]δ(t − t ′),

= 	2
EKφC(k)δ(t − t ′). (59)

Thus

〈̂ηk(t )̂ηk(t)〉 = 	2
EKφ

2
(1 − e−2C(k)t ). (60)

Since C(k) � 0 the long-time covariance is time-independent,

lim
t→∞〈̂ηk(t )̂ηk(t)〉 =

{
0 if k = 0,
	2

EKφ

2 if k 
= 0.
(61)

As this is constant for all spatial frequencies, k 
= 0, then, as we
would expect, the noise tends not to favor any one frequency
over another. Thus stochastic effects in the diffusion equation
do not produce a patterned state.

The temporal Fourier transform is derived by considering

〈 ˜̂ηk(ω) ˜̂ηk(−ω)〉

=
∫ T

0

∫ T

0
exp[Iω(t1−t2)]〈̂ηk(t1)̂ηk(t2)〉dt1dt2. (62)
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FIG. 5. Left: power spectra of 1000 averaged simulations. Middle: analytically derived power spectra; Eq. (64) scaled by 	ELT . Right:
analytical value minus the ensemble values. Note that (k,ω) = (0,0) is a singular point of Eq. (64); thus the analytic solution tends to infinity,
whereas averaged simulations will always be finite. This is why the difference between the two spectra is close to zero everywhere, except
near the origin. Note that, in order to see the variability around zero, we have fixed the color axis to be in the interval [−2,2]. Thus, although
the difference does become infinite near the origin, any value above 2 is colored white. The parameters used are φ = 1, dE = 1, 	E = 1/100,
T = 1000, and L = 1.

The system is completely integrable and so, by suppressing
the argument k in C(k), we obtain

〈| ˜̂ηk(ω)|2〉 = 	2
EKφ

2(ω2 + C2)2
{−(ω2 + C2)

× [cosh(2CT ) − sinh(2CT )]

+ (−4ωC sin(ωT ) + 4C2 cos[ωT )]

× [cosh(CT ) − sinh(CT )]

×ω2 − 3C2 + 2 CT ω2 + 2 C3T }. (63)

The long-time form simplifies to

〈| ˜̂ηk(ω)|2〉 = C	2
EKφT

(ω2 + C2)
,

= 2dE[1 − cos(k	E)]	EφLT

ω2 + 4dE[1 − cos(k	E)]2
, (64)

where T is the total time of simulation and L = K	E is the
length of domain. Figure 5 shows that simulation once again
compares favorably with theory. Note that (k,ω) = (0,0) is a
singular point of Eq. (64) and as such the analytic solution
tends to infinity near this point. Since the white-noise process
is uncorrelated in time and space this is the expected behavior
of the spectrum. However, the average of a finite number of
discrete simulations is necessarily finite [56] and so we would
expect that the approximation of the ensemble solution to the
analytical solution to become worse near this point. This is
clearly seen in Fig. 5(c).

IV. GROWTH

As discussed in Sec. I, growth is of fundamental importance
in the early stages of development. As such, there has recently
been interest in deriving a stochastic description of growth
in the space-jump framework [30] that is consistent with
continuum theory [38].

Growth has previously been defined through a box-splitting
operation on the populations [30]. We denote this an Eulerian
form of growth. Initially, if an interval [0,L] is split into K

boxes of length L/K and the growth reaction occurs in the j th
box, a new box of size L/K is created next to the j th box,

as in Fig. 6, and the populations are updated according to the
rules

UK �→ UK+1,

UK−1 �→ UK,

... (65)

Uj+1 �→ Uj+2,

Uj �→ �U/2
j + �U/2�j+1,

where �x� is the largest integer less than x and �x
 is the
smallest integer greater than x. Note that various other splitting
rules have been used, including splitting the population
uniformly randomly over the two boxes; however, these have
been seen to have little effect on the simulations (details not
shown).

However, although microscopically this is a description
of growth, the resulting CME that defines the operation
does not have a weak-noise limit. Because of this, we use
representations analogous to those of Crampin et al. [38] and
map the growing Eulerian domain to a stationary Lagrangian
domain where a weak-noise limit can be prescribed.

Let xE be the time-dependent Eulerian coordinate on a
uniformly expanding, one-dimensional domain [0,L(t)]. The
mean-field diffusion equation then takes the form [38,61,62]

∂φ

∂t
+ ∂

∂xE

[v(xE,t)φ] = D
∂2φ

∂x2
E

on [0,L(t)], (66)

where v(xE,t) is the flow generated by the growth. Since
growth is uniform we assume that there exists a growth

FIG. 6. Diagram illustrating domain growth. If the j th box
divides then a new box is created next to the j th box. The population
in the j th box is split as evenly as possible between the j th
and j + 1st boxes and the rest of the populations are updated
accordingly.
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function n(t) such that L(t) = L0n(t) and n(0) = 1. Thus
we can relate the Eulerian coordinates to a time-independent
Lagrangian coordinate xL through xE = xLn(t). This then
determines the local flow through

v(xE,t) = ∂xE

∂t
. (67)

Converting to Lagrangian coordinates and dropping the sub-
script L,

∂φ

∂t
+ ṅ

n
φ = D

n2

∂2φ

∂x2
on [0,L0]. (68)

Finally, by rescaling φL = φn and again dropping the subscript
L, we remove the dilution terms to obtain

∂φ

∂t
= D

n2

∂2φ

∂x2
on [0,L0]. (69)

Thus, in the mean-field, we simply reproduce the diffusion
equation with a time-dependent diffusion coefficient D/n(t)2.
We use this knowledge of the deterministic system to inform
the transition rates, or the rate of jumping between the
discretized compartments.

V. LAGRANGIAN COORDINATES

So far we have been able to formulate expressions for the
power spectra of stochastically diffusing populations using
both spatial and temporal transforms. However, with the
introduction of domain growth, the diffusion coefficient gains
a time dependence, as shown in Sec. IV. This dependence
does not take a simple form akin to those studied in
Sec. III A 2 and thus temporal Fourier transforms would have
to be calculated numerically. However, since we are primarily
considering stationary structures as models of inhomogeneous
patterning, we concentrate purely on spatial Fourier-transform
methods.

In order to model a time-dependent Eulerian domain we
construct a fixed Lagrangian domain [0,L] split into K

compartments of length 	L = L/K (see Fig. 7). Compartment

FIG. 7. Illustrating the connection between the Lagrangian de-
scription of the domain and the corresponding Eulerian description.
See text for details.

i is then able to contain a number of further subdivisions
Ni , which is identified as the number of Eulerian boxes in
Lagrangian box i. As the domain evolves with stochastic
fluctuations in the spatial variable the Lagrangian domain
remains fixed by definition, with domain growth represented
by alterations in the number of Eulerian boxes in each La-
grangian compartment. This has the immediate interpretation
of each Eulerian box corresponding to a biological cell (or
group of cells), with the number of cells varying in time
within a given Lagrangian element and thus inducing domain
growth.

The microscopic variable, Ni , corresponding to the number
of Eulerian boxes in Lagrangian box i is linked to a
macroscopic variable, ni , which defines the average ratio of
the total size of the corresponding Eulerian subcompartments,
Ni(t)	E , at a time t to Lagrangian box size, 	L, through

ni(t)
def= Ni(t)	E

	L

def= Ni(t)

θ
. (70)

Thus θ = 	L/	E and is the scaling between the Lagrangian
and Eulerian representations. Furthermore, for homogeneous
initial conditions for the domain, which are assumed below,
we have

Ni(0)	E = 	L, (71)

and thus ni(0) = 1 for all i. Similar to the Eulerian description
in Sec. II A, the population in each Lagrangian compartment is
labeled Ui , for i = 1, . . . ,K, and is related to the macroscopic
ratio φi and the stochastic variable ηi through �, the initial
average population, as

Ui = �φi +
√

�ηi. (72)

In order to write down the CME for this system we
must consider the effect of growth in the Eulerian coordinate
system and how it is translated to the Lagrangian domain.
Since the first-order term of the weak-noise expansion is the
deterministic equation, we are led to derive a stochastic analog
of Eq. (69). This is done by creating transition rates that mirror
the effect of the deterministic time dependence of the diffusion
coefficient dL/n(t)2 [see Eq. (69)].

Approaching the CME through the formalism of van
Kampen’s linear noise expansion method [6], at order

√
�

we obtain the equations

∂φ1

∂t
= dL

n2
(φ2 − φ1), (73)

∂φi

∂t
= dL

n2
(φi+1−2φi+φi−1) for i = 2, . . . ,K−1,

(74)
∂φK

∂t
= dL

n2
(φK−1 − φK ). (75)

Defining dL = D/	2
L, where D is the macroscopic diffusivity,

we can see that on taking K → ∞ or, equivalently, 	L → 0,
we retrieve the discretized diffusion PDE mapped from the
growing Eulerian domain onto a stationary Lagrangian domain
[see Eq. (69) in Sec. IV].
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VI. SPECTRA OF DIFFUSION ON DETERMINISTICALLY
GROWING DOMAINS

By using the Lagrangian formulation of growth we are
able to invoke results from Sec. III, with the identifications
	E �→ 	L and dE �→ dL/n(t)2. Thus we can analytically
derive the spatial Fourier cosine transformation of diffusion
with the generalization that the diffusion coefficient is now
time-dependent,

〈̂ηk(t1)̂ηk′(t2)〉 = exp

[
−

(
C(k)

∫ t1

0

1

n2
dt ′

)
−

(
C(k′)

∫ t2

0

1

n2
dt ′

)]
	2

LKφ

2

×
[
exp

(
2C(k)

∫ min(t1,t2)

0

1

n2
dt ′

)
−1

]
δk+k′,0.

(76)

This expression could be used to calculate the full power
spectrum by the temporal Fourier transform Eq. (26). However,
the resulting double integral would have to be evaluated
numerically. Since we are primarily interested in systems that
tend to a temporal steady state but may have inhomogeneous
spatial behavior, our main concern lies with the spatial Fourier
cosine transform that produces a complete, closed solution.

By varying the growth law we are able to derive the spatial
power spectra of exponential growth, n = ert ,

Ps(k,t)
def= 〈|̂ηk(t)|2〉

	2
LKφ

= 1

2

[
1 − exp

(
2dL

r
[1 − exp (−2rt)]

× [cos(k	L) − 1]

)]
, (77)

lim
t→∞ Ps(k,t) = 1

2

[
1 − exp

(
2dL

r
[cos(k	L) − 1]

)]
; (78)

linear growth, n = 1 + tr/θ ,

Ps(k,t) = 1

2

(
1 − exp

{
4dLθ

r

[
1 −

(
1 + r

θ
t

)−1]
× [cos(k	L) − 1]

})
, (79)

lim
t→∞ Ps(k,t) = 1

2

[
1 − exp

(
4dLθ

r
[cos(k	L) − 1]

)]
; (80)

and no growth, n = 1,

Ps(k,t) = 1

2
(1 − exp{4dLt[cos(k	L) − 1]}), (81)

lim
t→∞ Ps(k,t) =

{
0 if k = 0,
1
2 if k 
= 0.

(82)

From these expressions we note that by reducing the growth
rate, r , we reduce the difference between the growth and static
domain spectra, as expected.

From Fig. 8 we see that growth affects the active spatial
frequencies of diffusion. In the static domain case, all nonzero
wavelengths will eventually have the same strength, as can be
seen from Eq. (82), thus no spatial frequency can dominate.
However, with linear and exponential growth, the lower
spatial frequencies will have greatly reduced power for all
time. Thus we expect to see consistent spatial heterogeneity
occurring where growth is relatively fast. Individual stochastic
realizations of diffusion on domains undergoing deterministic
linear growth with different rates of growth are shown in
Fig. 9. The simulations show many transient inhomoge-
neous states but, by considering Fig. 9(e), we clearly see
consistently high population values in certain Lagrangian
boxes lasting approximately 200 or more simulated time
units that are not seen in the static domain case. This is
corroborated by Fig. 9(f), which shows that spatial frequencies
m = 2, 3, and 4 are being excited for long periods of
time.

This implies that for single realizations of the system certain
wavelengths will be excited; however, these wavelengths are
chosen randomly among all the possible excited frequencies
since we expect an averaged ensemble to smooth out individual
peaks. This idea is best seen when the system undergoes
extremely fast growth or, equivalently, for large values of r . In
Fig. 10(a) r = 100 and we see that once a heterogeneous state
is reached it lasts for all remaining simulation time. Thus,
although for a single simulation, as in Fig. 10(a), definite
wavelengths set in [see Fig. 10(b)], when an ensemble of
solutions are averaged, as in Fig. 10(d), they produce a power
spectrum that matches the analytical solution [Fig. 10(c)], as
expected.

The reason behind this persistent heterogeneity is under-
standable; initially the domain is quite small, so diffusion is
able to carry the particles between the Lagrangian boxes and,
due to the stochasticity of the simulated diffusion process, it is

FIG. 8. Spatial power spectra of diffusion on exponentially and linearly growing domains, compared to that of a static domain.
For exponential growth r = 1, for linear growth r/θ = 1, and for all simulations 	L = 1/100 and dL = 1. Note that k = mπ/L and
L = 1.
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FIG. 9. Left column: single realizations of a diffusion process on a linearly growing domain (mapped onto the Lagrangian domain) for
different rates of growth. Initially there were 100 Lagrangian boxes, each containing 100 simulated Eulerian boxes and each Lagrangian
box contained 100 particles. The growth rate r is noted beneath each figure; 	L = 1/50 and dL = 1. Right column: spatial Fourier cosine
transformation of the realizations in left column.

highly likely that the system will produce an inhomogeneous
state. If the system is not growing then this state is transient.
However, in the case of fast growth, the system grows quicker
than diffusion can transport particles. Thus each Lagrangian
box effectively becomes decoupled from the rest of the system,

causing any effects of spatial noise to be fixed for the rest of
the simulation.

Specifically, we can capture this reasoning, in the linear
growth case, by using the nondimensional parameter grouping
dLθ/r . By considering Eq. (80) and by inspection of Fig. 9 we
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FIG. 10. (a) A single realization of a diffusion process on a fast linearly growing domain. The fixed pattern is indicative of the heterogeneities
formed. (b) Power spectrum of the simulation in (a). Note that certain spatial frequencies are more excited than others. (c) Analytic power
spectrum of diffusion on a linearly growing domain Eq. (80). (d) 1000 averaged power spectra derived from stochastic simulations of diffusion
on a linearly growing domain. The parameters are dL = 1, 	L = 1/50, r = 100, k = mπ/L, L = 1, and θ = 100.

see that the persistent peaks set in for r > 0.1. Thus, for

dLθ

r
< 1000, (83)

we would expect nontransient heterogeneities to form. Other-
wise diffusion will lead to homogeneity. Thus the stochastic
structures depend on the balance of diffusion and growth,
as expected. Due to this ratio being based on observation,
Eq. (83) should only be used as an approximate value. Other
growth forms will yield similar nondimensional parameter
groupings.

To see that Eq. (83) is consistent with our physical intuition
we consider approximate orders of realistic physical quantities.
Using D = 10−6 cm2/s [33] and taking the view that each
Lagrangian compartment 	L = 1 mm is made up of a number
of Eulerian subdivisions, which can be identified with the size
of a cell, 	E = 10 μm [63], we obtain

Dθ

1000	2
L

= 10−10 × 102

103 × 10−6
= 10−5/s < r. (84)

Since 105 s is approximately one day, this suggests that if
a substance is diffusing in a one-dimensional tissue that is

uniformly growing faster than one cell per day then we would
expect inhomogeneities to form.

VII. CONCLUSION

The intention of this paper has been to introduce two
analytical methods for understanding stochastic systems.
First, we wanted to discuss and clarify the recent use of
Fourier-transform techniques on stochastic reaction-diffusion
systems [59]. We illustrated the importance of understanding
the dependence of the power spectra on the initial and final
values and using the correct discrete expansion to compensate
for the spatial boundary conditions. Using these ideas, we
were able to produce a general formula for the temporal
power spectrum of a one population system, which evolves
under either steady- or non-steady-state dynamics Eq. (41).
This result can easily be generalized to higher numbers of
populations, although it may not have a closed form. These
techniques were then further extended to the case of spatial
systems and the application of the spatial Fourier cosine
transform to a tridiagonal matrix, which introduced factors
of cos(k	x), where x = E or L depending on the scale
on which we are working. Through applying these methods
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to the case of simple diffusion on a stationary domain we
derived a spatial power spectrum, which implied that all spatial
frequencies were equally excited and thus we did not expect
patterning. Finally, by considering the full spatiotemporal
power spectrum (Fig. 5), we saw a singularity at (k,ω) = (0,0).
This showed that the simulated data were temporally and
spatially independent, as expected.

This brings us to the second aim of the paper: to introduce a
spatial transform, which allows rigorous analytical treatment
of stochastic effects on spatially extended, growing systems.
It was seen that, due to the jumping transition rates depending
on time, we were unable to obtain closed-form solutions
when using the temporal Fourier transform. However, it was
still possible to evaluate the integrals numerically and thus
we were able to consider resonating temporal frequencies,
if needed. Since the intended application of this theory
was to consider stationary inhomogeneous spatial systems,
it is appropriate to continue the development of the spatial
transform. Furthermore, the benefit of this Lagrangian for-
mulation is more important than simply being able to use
the Fourier cosine transform. We are now able to treat the
large-scale limits rigorously and thus link the mesoscopic and
macroscopic dynamics directly, without the use of moment
closure heuristics [30]. However, care should be taken to
ensure that the initial domain discretization is fine enough to
ensure that the final time compartment size will be able resolve
any apparent spatial dynamics. Furthermore, due to the loss of
information on the Eulerian domain that occurs when moving
from a microscopic to a mesoscopic level of description
(mentioned in the paper), we implicitly assume that, through

the scaling of the diffusion coefficient, the rate of diffusion on
the microscopic level is large enough to produce a statistically
uniform distribution of particles over the Lagrangian box. In
such extremes, where the diffusive length scale is larger than
the system length scale required for well-mixed assumptions,
the Lagrangian framework cannot be used.

Clearly, we have shown analytically and computationally
that stochastic effects are critical when considering diffusing
populations on a growing domain. The Fourier techniques have
allowed us to highlight in generality that stochastic systems
are able to exhibit much richer dynamics than if a system is
treated purely as deterministic. Specifically, domain growth
fundamentally changes the power spectrum of diffusion and,
further, relatively quick growth supports the nucleation of
states that are far removed from the deterministic mean-field
steady state.

In this paper we have been interested in introducing
analytical methods. In further studies [64] we extend the
applications of these methods to encompass stochastically
growing domains. These methods can then be expounded
upon in the future and applied to different biological pattern
formation systems [54,65–68] in order to gain insight into
the effects of stochasticity and growing domains on pattern
formation.

ACKNOWLEDGMENTS

T.E.W. would like to thank the Engineering and Physical
Sciences Research Council for support. P.K.M. was partially
supported by the Royal Society Wolfson Foundation.

[1] Mathematical Models for Biological Pattern Formation, edited
by P. K. Maini and H. G. Othmer (Springer-Verlag, Berlin, 2001).

[2] P. K. Maini, K. J. Painter, and H. N. P. Chau, J. Chem. Soc.
Faraday Trans. 93, 3601 (1997).

[3] J. D. Murray, Mathematical Biology I: An Introduction, 3rd ed.,
Vol. 1 (Springer-Verlag, Berlin, 2003).

[4] J. D. Murray, Mathematical Biology II: Spatial Models and
Biomedical Applications, 3rd ed., Vol. 2 (Springer-Verlag,
Berlin, 2003).

[5] P. Guptasarma, BioEssays 17, 987 (1995).
[6] N. G. van Kampen, Stochastic Processes in Physics and

Chemistry, 3rd ed. (North-Holland, Amsterdam, 2007).
[7] T. Rudge and K. Burrage, Bull. Math. Biol. 70, 971 (2008).
[8] C. W. Gardiner, Handbook of Stochastic Methods (Springer,

Berlin, 1985).
[9] C. Escudero, J. Stat. Mech. (2009) P07020.

[10] J. Garcı́a-Ojalvo and J. M. Sancho, Phys. Rev. E 49, 2769
(1994).

[11] J. Garcı́a-Ojalvo and J. M. Sancho, Phys. Rev. E 53, 5680 (1996).
[12] J. Garcı́a-Ojalvo and J. M. Sancho, Noise in Spatially Extended

Systems (Springer-Verlag, Berlin, 1999).
[13] F. Sagués, J. M. Sancho, and J. Garcı́a-Ojalvo, Rev. Mod. Phys.

79, 829 (2007).
[14] S. Scarsoglio, F. Laio, P. D’Odorico, and L. Ridolfi, Math.

Biosci. 229, 174 (2011).

[15] C. W. Gardiner, K. J. McNeil, D. F. Walls, and I. S. Matheson,
J. Stat. Phys. 14, 307 (1976).

[16] A. J. McKane and T. J. Newman, Phys. Rev. Lett. 94, 218102
(2005).

[17] A. J. McKane, J. D. Nagy, T. J. Newman, and M. O. Stefanini,
J. Stat. Phys. 128, 165 (2007).

[18] C. A. Lugo and A. J. McKane, Phys. Rev. E 78, 51911 (2008).
[19] T. Butler and N. Goldenfeld, Phys. Rev. E 80, 030902(R) (2009).
[20] D. T. Gillespie, J. Comput. Phys. 22, 403 (1976).
[21] D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).
[22] M. A. Gibson and J. Bruck, J. Phys. Chem. A 104, 1876

(2000).
[23] D. T. Gillespie, J. Chem. Phys. 115, 1716 (2001).
[24] S. S. Andrews and D. Bray, Phys. Biol. 1, 137 (2004).
[25] Y. Cao, D. T. Gillespie, and L. R. Petzold, J. Chem. Phys. 123,

054104 (2005).
[26] T. Tian and K. Burrage, J. Chem. Phys. 121, 10356 (2004).
[27] T. Leppänen, M. Karttunen, R. A. Barrio, and K. Kaski, Sup.

Prog. Theor. Phys. 150, 367 (2003).
[28] F. Zheng-Ping, X. Xin-Hang, W. Hong-Li, and O. Qi, Chin.

Phys. Lett. 25, 1220 (2008).
[29] A. Singh and J. P. Hespanha, in Stochastic Analysis of Gene

Regulatory Networks Using Moment Closure, Proceedings of
the 2007 American Control Conference (IEEE, Piscataway, NJ,
2007), pp. 1299–1304.

021915-14

http://dx.doi.org/10.1039/a702602a
http://dx.doi.org/10.1039/a702602a
http://dx.doi.org/10.1002/bies.950171112
http://dx.doi.org/10.1007/s11538-007-9286-x
http://dx.doi.org/10.1088/1742-5468/2009/07/P07020
http://dx.doi.org/10.1103/PhysRevE.49.2769
http://dx.doi.org/10.1103/PhysRevE.49.2769
http://dx.doi.org/10.1103/PhysRevE.53.5680
http://dx.doi.org/10.1103/RevModPhys.79.829
http://dx.doi.org/10.1103/RevModPhys.79.829
http://dx.doi.org/10.1016/j.mbs.2010.11.008
http://dx.doi.org/10.1016/j.mbs.2010.11.008
http://dx.doi.org/10.1007/BF01030197
http://dx.doi.org/10.1103/PhysRevLett.94.218102
http://dx.doi.org/10.1103/PhysRevLett.94.218102
http://dx.doi.org/10.1007/s10955-006-9221-9
http://dx.doi.org/10.1103/PhysRevE.78.051911
http://dx.doi.org/10.1103/PhysRevE.80.030902
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1021/jp993732q
http://dx.doi.org/10.1021/jp993732q
http://dx.doi.org/10.1063/1.1378322
http://dx.doi.org/10.1088/1478-3967/1/3/001
http://dx.doi.org/10.1063/1.1992473
http://dx.doi.org/10.1063/1.1992473
http://dx.doi.org/10.1063/1.1810475
http://dx.doi.org/10.1143/PTPS.150.367
http://dx.doi.org/10.1143/PTPS.150.367
http://dx.doi.org/10.1088/0256-307X/25/4/016
http://dx.doi.org/10.1088/0256-307X/25/4/016


POWER SPECTRA METHODS FOR A STOCHASTIC . . . PHYSICAL REVIEW E 84, 021915 (2011)

[30] R. E. Baker, C. A. Yates, and R. Erban, Bull. Math. Biol. 72,
719 (2010).

[31] A. L. Koch, in Advances in Microbial Ecology, edited by K. C.
Marshall (Plenum Press, New York, 1990), pp. 37–70.

[32] J. R. Lawrence, G. M. Wolfaardt, and D. R. Korber, Appl.
Environ. Microb. 60, 1166 (1994).

[33] R. Dillon, C. Gadgil, and H. G. Othmer, PNAS 100, 10152
(2003).

[34] E. J. Hinch, Perturbation Methods (Cambridge University Press,
Cambridge, England, 1991).

[35] P. M. Kulesa, G. C. Cruywagen, S. R. Lubkin, M. W. J. Ferguson,
and J. D. Murray, Acta. Biotheor. 44, 153 (1996).

[36] P. M. Kulesa, G. C. Cruywagen, S. R. Lubkin, P. K. Maini, J.
Sneyd, M. W. J. Ferguson, and J. D. Murray, J. Theor. Biol. 180,
287 (1996).

[37] S. Kondo and R. Asai, Nature (London) 376, 765 (1995).
[38] E. J. Crampin, E. A. Gaffney, and P. K. Maini, Bull. Math. Biol.

61, 1093 (1999).
[39] J. D. Murray, E. A. Stanley, and D. L. Brown, Proc. R. Soc.

London Ser. B 229, 111 (1986).
[40] A. Okubo, P. K. Maini, M. H. Williamson, and J. D. Murray,

Proc. R. Soc. London Ser. B 238, 113 (1989).
[41] T. E. Woolley, R. E. Baker, E. A. Gaffney, and P. K. Maini

(unpublished).
[42] J. Elf and M. Ehrenberg, Genome Res. 13, 2475 (2003).
[43] D. T. Gillespie, Annu. Rev. Phys. Chem. 58, 35 (2007).
[44] D. T. Gillespie, Physica A 188, 404 (1992).
[45] C. M. Guldberg and P. Waage, J. Prakt. Chem. 19, 69

(1879).
[46] G. Grimmett and D. Stirzaker, Probability and Random Pro-

cesses (Oxford University Press, New York, 2001).
[47] T. Jahnke and W. Huisinga, J. Math. Biol. 54, 1 (2007).
[48] D. A. McQuarrie, J. Appl. Probab. 4, 413 (1967).
[49] H. Risken, The Fokker-Planck Equation: Methods of Solution

and Applications (Springer, Berlin, 1989).

[50] R. Erban, S. J. Chapman, and P. K. Maini, e-print
arXiv:0704.1908v2.

[51] K. W. Morton and D. F. Mayers, Numerical Solution of Partial
Differential Equations: An Introduction (Cambridge University
Press, Cambridge, England, 2005).

[52] A. Twomey, M.Sc. thesis, University of Oxford, 2007.
[53] D. T. Gillespie, Am. J. Phys. 64, 1246 (1996).
[54] T. Biancalani, D. Fanelli, and F. Di Patti, Phys. Rev. E 81, 046215

(2010).
[55] J. Andrew and A. J. McKane, J. Theor. Biol. 267, 85 (2010).
[56] T. Reichenbach, M. Mobilia, and E. Frey, Phys. Rev. E 74, 51907

(2006).
[57] W. L. Briggs and V. E. Henson, The DFT: An Owner’s Manual

for the Discrete Fourier Transform (SIAM, Philadelphia, 1995).
[58] We treat the singular case of linear growth separately.
[59] A. J. McKane and T. J. Newman, Phys. Rev. E 70, 041902

(2004).
[60] D. Alonso, A. J. McKane, and M. Pascual, J. R. Soc. Interface

4, 575 (2007).
[61] E. J. Crampin, PhD. thesis, University of Oxford, 2000.
[62] E. J. Crampin and P. K. Maini, Comments Theor. Biol. 6, 229

(2001).
[63] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J.

D. Watson, Molecular Biology of the Cell, 3rd ed. (Garland
Science, New York, 1994).

[64] T. E. Woolley, R. E. Baker, E. A. Gaffney, and P. K. Maini
(unpublished).

[65] R. A. Satnoianu and M. Menzinger, Phys. Rev. E 62, 113 (2000).
[66] W. Zeng, G. L. Thomas, and J. A. Glazier, Physica A 341, 482

(2004).
[67] R. A. Barrio, R. E. Baker, B. Vaughan Jr., K. Tribuzy, M. R.

de Carvalho, R. Bassanezi, and P. K. Maini, Phys. Rev. E 79,
031908 (2009).

[68] T. E. Woolley, R. E. Baker, P. K. Maini, J. L. Aragón, and R. A.
Barrio, Phys. Rev. E 82, 051929 (2010).

021915-15

http://dx.doi.org/10.1007/s11538-009-9467-x
http://dx.doi.org/10.1007/s11538-009-9467-x
http://dx.doi.org/10.1073/pnas.1830500100
http://dx.doi.org/10.1073/pnas.1830500100
http://dx.doi.org/10.1007/BF00048421
http://dx.doi.org/10.1006/jtbi.1996.0103
http://dx.doi.org/10.1006/jtbi.1996.0103
http://dx.doi.org/10.1038/376765a0
http://dx.doi.org/10.1006/bulm.1999.0131
http://dx.doi.org/10.1006/bulm.1999.0131
http://dx.doi.org/10.1098/rspb.1986.0078
http://dx.doi.org/10.1098/rspb.1986.0078
http://dx.doi.org/10.1098/rspb.1989.0070
http://dx.doi.org/10.1101/gr.1196503
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104637
http://dx.doi.org/10.1016/0378-4371(92)90283-V
http://dx.doi.org/10.1002/prac.18790190111
http://dx.doi.org/10.1002/prac.18790190111
http://dx.doi.org/10.1007/s00285-006-0034-x
http://dx.doi.org/10.2307/3212214
http://arXiv.org/abs/arXiv:0704.1908v2
http://dx.doi.org/10.1119/1.18387
http://dx.doi.org/10.1103/PhysRevE.81.046215
http://dx.doi.org/10.1103/PhysRevE.81.046215
http://dx.doi.org/10.1016/j.jtbi.2010.08.014
http://dx.doi.org/10.1103/PhysRevE.74.051907
http://dx.doi.org/10.1103/PhysRevE.74.051907
http://dx.doi.org/10.1103/PhysRevE.70.041902
http://dx.doi.org/10.1103/PhysRevE.70.041902
http://dx.doi.org/10.1098/rsif.2006.0192
http://dx.doi.org/10.1098/rsif.2006.0192
http://dx.doi.org/10.1103/PhysRevE.62.113
http://dx.doi.org/10.1016/j.physa.2004.03.089
http://dx.doi.org/10.1016/j.physa.2004.03.089
http://dx.doi.org/10.1103/PhysRevE.79.031908
http://dx.doi.org/10.1103/PhysRevE.79.031908
http://dx.doi.org/10.1103/PhysRevE.82.051929

