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1 Introduction

This document describes a vertex model used to simulate AVE migration

in the mouse embryo. The model draws on previous formulations, such as

those of Weliky and Oster (1990); Farhadifar et al. (2007); Rauzi et al. (2008);

Landsberg et al. (2009); Aegerter-Wilmsen et al. (2010). A two-dimensional

(2D) version of this model is described in Smith et al. (2011). These models

are extended by implementation on an ellipsoid surface, in order to repre-

sent a realistic geometry for the mouse embryo. A new type of junctional

rearrangement is included, allowing close vertices to join together, and facil-

itating the formation of rosettes. A migratory force is introduced to allow

the effects of migrating cells on the system to be examined, as well as a

method for modelling the barrier between the epiblast and extra-embryonic

endoderm. The model aims to capture the essential features of the migratory

process, and subsequently test how they change when the ability of rosettes

to form is disrupted. Simulations are robust to slight changes in the form of

the force equations, and a range of parameter-value combinations lead to the

observed emergent behaviour.

2 Creating an initial configuration

The icosahedron is a regular polyhedron composed of twenty equilateral tri-

angles, which meet at twelve nodes (Fig. 1(a)). Node positions can be chosen

to lie on the unit sphere. This coarse triangular mesh can be refined by sub-

dividing each triangle into four smaller triangles. The mid-points between

neighbouring nodes are found and used to create four new triangles inside

each current one. The new nodes are then projected back onto the unit

sphere. This process can be repeated ad infinitum to create as many tri-

angles as required. Fig. 1(b) shows the resultant mesh after two complete

iterations, in other words each triangle of the icosahedron is now 16 smaller

triangles.
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(a) (b)

Figure 1: (a) An icosahedron, with 20 triangular faces meeting at 12 vertices that
lie on the unit sphere. (b) The icosahedron is refined twice, so that each triangular
face becomes 16 smaller triangles, yielding 320 triangles meeting at 162 vertices.

This series of triangles is then transformed into a cell configuration, by

taking the dual of the triangular mesh. Each node of the triangular mesh

is used as the centre of a cell, and the centre of each triangle is a vertex in

the cell mesh. The number of cells is therefore equal to the number of nodes

in the triangular mesh. Fig. 2(a) shows the cell mesh dual of the triangular

mesh from Fig. 1(b). The cell mesh can then finally be stretched by a factor c

along one axis to create an ellipsoidal surface. The equation for the resultant

ellipsoid is given by

x2 + y2 +
z2

c2
= 1.

Adding some random noise to the vertex positions gives a less regular starting

condition (Fig. 2(b)).

3 Force laws

We make the simplifying assumption that the numerous forces acting on a cell

in vivo can be reduced to a few simple components, which each contribute to

one of two types of force acting on the vertices of each cell. These net forces

are the sum of their respective components, and act in the directions shown
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(a) (b)

Figure 2: (a) Taking the dual of the triangular mesh, a cell mesh on the unit
sphere is obtained. (b) By stretching the cell mesh and adding some random noise
to the vertex positions we obtain a cell mesh on the ellipsoid.

in Fig. 3(a). Forces that act along the edges connecting vertices are labelled

‘tension’ forces, with dimensionless unit direction vectors T̂c (clockwise) and

T̂a (anti-clockwise). Those forces that act in an outwards direction, bisecting

the angle φ between adjacent edges, are ‘pressure’ forces, with unit direction

vector P̂. Fig. 3(b) shows a single cell, with key parameters labelled. The cell

mesh represents the top (apical) surface of each cell, and forces act exclusively

on this level.

The tension force on each vertex consists of two components, which to-

gether represent cell-cell adhesion and contractility of the actin-myosin ring.

The first component depends on the length of the two edges connecting the

vertex to its clockwise and anti-clockwise neighbours, and is a line tension.

The second component, meanwhile, depends on the length of cell perimeter.

The tension force contribution due to a cell on a vertex is given by

T = CL

(
lcT̂c + laT̂a

)
+ CP

(
T̂c + T̂a

)
p, (1)

4



(a) (b)

Figure 3: (a) Forces acting on vertices in the model. Tension forces act along
cell edges in clockwise (T̂c) and anti-clockwise (T̂a) directions. Pressure forces
bisect the angle φ between two edges (P̂). (b) Three-dimensional schematic of an
epithelial cell, showing four key quantities used in the model; perimeter, p, area,
a, height, h, and edge length, l.

where CL and CP are constants related to the line tension and perimeter

force, respectively, lc and la are the lengths of the clockwise and anti-clockwise

edges, and p is the total length of the cell perimeter. Large tension forces are

created by large edge lengths and perimeters, and subsequently act to move

neighbouring vertices closer together, reducing local edge lengths.

The pressure force is given by

P =

[
CA
||at − a||n1+1

(at − a)
+ CHH + CD

||φ− θ||n2+1

(φ− θ)

]
P̂, (2)

where CA, CH , and CD are constants associated with the three components,

a is the cell area, at is a ‘target’ area, H is the height-to-area ratio, θ is the

average internal angle of the cell (θ = π(s− 2)/s for an s-sided polygon), φ

is the internal angle at the current vertex, and n1 and n2 are integer values,

typically set to 2. The pressure force is thus dependent on cell area, height-

to-area ratio, and local deformation. For further discussion of the meaning of

each term, see Smith et al. (2011). The third term in (2) is important as it is a

restorative force against cells becoming highly concave. During the migration
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process, cells are likely to be under large stresses and strains. It is therefore

possible that some cells, either those that are migrating or the surrounding

cells, will become concave. In vivo, concave cells arise occasionally during

migration when they are subjected to a lot of pressure, but they do not stay

in this configuration for very long. A force is therefore included in the model

to keep cells as near to a regular shape as possible.

The magnitude of the basic forces acting on each vertex can now be cal-

culated. We need, however, to think further about the unit direction vectors

T̂ and P̂ in equations (1) and (2), respectively, and how the force directions

in Fig. 3(a) translate to the ellipsoid surface. The simplest approximation

would be to use straight lines between vertices, however this would lead to

forces acting directly through the interior of the ellipsoid, as in Fig. 4(a).

A better approximation is for forces to act tangentially to the surface. To

find the appropriate tangential direction for a given vertex, its neighbours

are projected onto the tangential plane to the surface at the vertex, as in

Fig. 4(b). Directions are then calculated on this plane, so that all forces act

tangentially to the surface.

4 Equations of motion

To generate the equations of motion, we assume that inertial forces are neg-

ligible. This assumption is reasonable as viscous forces dominate in these

types of systems (Odell et al., 1981). The equations of motion are given by

F(x, t) = µ
dx

dt
. (3)

where F(x, t) is a vector of the sum of the forces from Section 3 acting on

the vertices, t is time, x(t) is the position vector of the vertices, and µ is the
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(a) (b)

Figure 4: (a) Schematic of straight-line force direction from vertex 1 to vertex
2 on ellipsoid surface. (b) Equivalent tangential force direction from vertex 1 to
vertex 2.

viscous coefficient. The time derivative in (3) can be approximated by

dx

dt
=

xt+∆t − xt

∆t
, (4)

where x is the vector of all vertex positions, and xt represents the values of

x at time t. This is the formal definition of a derivative in the limit ∆t→ 0,

and is a reasonable approximation for small values of ∆t. We therefore obtain

our discrete approximation to the equations of motion for every vertex,

xt+∆t = xt +
∆t

µ
Ft. (5)

5 Constraining vertices to the ellipsoid sur-

face

In equation (5) forces are applied freely in 3D, and vertices are therefore able

to move away from the surface of the ellipsoid. We wish to constrain vertices
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to the surface to maintain the ellipsoidal shape, so vertices must be mapped

back at each iteration. For any point (x1, y1, z1) in 3D space, the unit vector

from the origin can be found via

(nx, ny, nz) =
(x1, y1, z1)

(x1
2 + y1

2 + z1
2)

1
2

. (6)

The point at which this vector meets the surface of the ellipsoid must be

found. In other words, the point

(x̂1, ŷ1, ẑ1) = (Anx, Any, Anz), (7)

is required, such that

x̂1
2 + ŷ1

2 +
ẑ1

2

c2
= 1, (8)

for some constant A. If this constant can be found, we will know the required

point on the ellipsoid surface via equations (6) and (7). Combining (7) and

(8) and rearranging for A, we obtain

A = (nx
2 + ny

2 +
nz

2

c2
)−

1
2 . (9)

Fig. 5 demonstrates diagrammatically how a vertex is mapped to the el-

lipsoid surface. In reality it is ensured that vertices do not stray far from

the surface, by keeping the value of ∆t in (5) sufficiently small during simu-

lations. This ensures that mapping to the ellipsoid has a minimal effect on

the accuracy of the model.

6 Junctional rearrangements

As well as the force laws described above, elementary rearrangements between

vertices are also included in the model. Junctional rearrangements occur

in vivo between neighbouring vertices that are very close together. When
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Figure 5: Mapping a vertex to the ellipsoid surface. The vertex is mapped to the
point on the ellipsoid surface which meets the straight line from the origin to the
vertex.

two vertices fall below a certain threshold distance, there is a probability

of occurrence for each type of rearrangement. Junctional rearrangements

are performed on the tangential plane to the surface at a given vertex (see

Section 3), then projected back onto the surface of the ellipsoid.

6.1 T1 transitions

Fig. 6 explains a T1 transition diagrammatically. Vertices A and B are closer

than the threshold distance, and rearrangement begins. Vertices C and D

are created on a line that bisects the line AB perpendicularly. Cell 1 then

reconnects to vertex C, cell 2 to vertex D, and cells 3 and 4 share both

vertices C and D. In 3D, new vertices must be mapped back to the ellipsoid

surface, as described in Section 5.

6.2 Vertex joining

As an alternative to performing a T1 swap, close vertices can simply be

allowed to join up. The mid-point between the two vertices is used as the

basis for a new vertex, and all previous connections are joined to it. This new
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(a) (b)

Figure 6: T1 swap for two close vertices. (a) Initially cells 1 and 2 share edge
AB, which separates cells 3 and 4. (b) After the rearrangement cells 3 and 4 share
edge CD, separating cells 1 and 2.

vertex is then mapped to the ellipsoid surface. Vertex-joining permits the

formation of rosettes, if a series of vertices fall below the threshold distance

and join together. Fig. 7 shows a random initial 2D configuration, with close

vertices then joined together. Several rosettes of five or more cells are clearly

visible.

(a) (b)

Figure 7: (a) Initial 2D cell configuration with (b) close vertices joined together.
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7 Cell growth and proliferation

Each cell i has an associated volume vi, and is also given a growth speed gi,

drawn from a truncated normal distribution. Logistic growth is implemented

according to
dvi
dt

= givi

(
1− vi

VT

)
,

where vi(t) is the volume of cell i and VT is a target volume. Under this

method, over time the average height of cells must increase, as this is the

only way cells can grow without an increase in the surface area available to

them. The height-to-area forces in (2) therefore also increase, leading to a

higher outward pressure on each vertex. To compensate for this, the ellipsoid

itself is allowed to grow over time, by increasing its radius linearly with time.

Changing the radius means that (9), for mapping points back to the surface,

must also be altered. When this is implemented, we observe that the mean

height-to-area ratio of the cells is able to stay roughly constant, despite the

overall growth in the ellipsoid. This is clearly dependent on the rates of

growth of both the cells and the ellipsoid, but we are able to allow cells to

grow during a simulation without significantly altering the pressure force.

Cell division in the model occurs at regular intervals, with the largest cell

chosen to divide each time. As the numbers of cells at the start and end of

migration are approximately known, the interval can be chosen accordingly.

To implement cell division, initially two non-adjacent vertices of the cell are

chosen at random. Two new vertices are then created on the the edges

between each of the chosen vertices and their clockwise neighbours. These

two new vertices are then joined to create a new edge dividing the mother

cell into two daughter cells. Fig. 8 shows the implementation of mitosis.
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(a) (b)

Figure 8: Cell division in the vertex model. (a) Two non-adjacent vertices are
chosen at random, and (b) two new vertices inserted on the edges between the
chosen vertices and their clockwise neighbours.

8 Simulating migration

It is now possible to simulate a growing embryo, with junctional rearrange-

ments and cell proliferation. In order induce a few cells to migrate, and

examine the effect this has on the system, the balance of forces acting on

migrating cells must be altered. The migratory forces represent the dynamic

internal changes that occur when a cell migrates. It has been observed that

migrating cells often extend protrusions (Aman and Piotrowski, 2009) in the

direction of migration. To simulate this a certain vertex is designated to be

‘protruding’, and the pressure force is increased at the protruding vertex. In

the case of AVE migration it is known that cells migrate proximally, so we

choose the proximal-most vertex of the migrating cell to be the protruding

vertex.

9 Modelling the barrier

To incorporate the barrier between the epiblast and extra-embryonic endo-

derm into the model, vertices in the proximal half could simply be fixed,

rendering them completely unable to move. However, this is somewhat unre-

alistic, as observations show that the proximal half is not completely static,

12



and junctional rearrangements are able to occur in this region. The proxi-

mal half appears to simply be less labile than the distal half, so we desire

a way to represent this observation. It has also been observed that during

the migration process actin expression is greater in the proximal half of the

embryo, encompassing the complete surface of each cell. This may create a

kind of tension force on the whole cell that makes it harder for its vertices to

move. In the distal half of the embryo, meanwhile, actin is concentrated on

cell edges. This tension force is already included as part of the basic model

(Section 3). There is, however, a possible way to represent the actin shroud

in the proximal half. In the equation of motion (3), there is a parameter µ

that represents the local viscosity. This parameter can be chosen to be equal

for all vertices, or can take a different value at each vertex. To simulate the

expression of actin in the proximal half of the embryo, the viscous coefficient

in that region is therefore increased.
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