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1 INTRODUCTION

A central issue in developmental biology is the formation of pattern and form in the
early embryo. From the apparently homogeneous mass of dividing cells that exists
in the earliest stages of development emerges the vast range of pattern and structure
observed in the adult. The formation of structure is termed morphogenesis, and pat-
tern generation models are known as morphogenetic models. The role of modelling in
morphogenesis is to suggest possible scenarios as to how various physical and chemical
processes conspire to produce pattern.

Broadly speaking, there are two main types of models in embryology: chemical
prepattern models, which propose that a spatially heterogeneous pattern in some chem-
ical is set up, and in reponse to this the cells differentiate according to some interpre-
tation mechanism; and mechanical models, which propose that a spatial pattern in
cell density is set up due to the physicochemical interactions between cells and their
environment. In mechanical models cells in high density aggregates then differentiate
to form structures (see Murray, 1989, for a review).

In this paper we concentrate on a chemical prepattern model. Turing (1952) showed
that a system of reacting and diffusing chemicals could be unstable given a suitable
balance between reaction and diffusion, and could evolve to a spatially heterogeneous
pattern in the chemical concentrations. In this way a chemical prepattern could be set
up which could be interpreted by the cells, resulting in spatially-patterned cell differen-
tiation. Turing’s mechanism provides one means of generating positional information
(Wolpert, 1969).

Turing’s model for pattern formation has been extensively studied analytically and
numerically for the case in which all reacting species are assumed to satisfy the same
type of boundary condition pointwise on the boundary. Typically, these are either
zero flux or fixed at the uniform steady state concentration. The former models an
impermeable membrane, the latter a source of chemical at the boundary. We call these
boundary conditions scalar boundary conditions. In this paper, we describe some
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results for the case of non-scalar boundary conditions, wherein each species satisfies
different boundary conditions at any point on the boundary. More details are given
in Dillon, et al. (1992). In Section 2 we compare the properties of the solutions of
the scalar case with those of the non-scalar case, and in Section 3 we consider an
application to skeletal development in the limb.

2 COMPARISON OF THE SCALAR AND NON-SCALAR CASES
The two species Turing model in one space dimension takes the form

ue = vuge + f(u,v,p),  ve = vbvge + g(u,v,p), (1)
where u(é,t) and v(£,t) are nondimensionalised chemical concentrations at position
¢ and time ¢, with € € (0,1); v = Dy/wlL?® &§ = Dy/D,, where D; and D, are the
diffusion coefficients of u and v respectively, w™! is a typical reaction time scale, and
L is a measure of the domain length. The functions f and g are rational polynomials
which model the reaction kinetics and p denotes the vector of kinetic parameters.

Many properties of the solutions of the Turing model for scalar boundary conditions
are well known (Othmer, 1977). For comparison with the non-scalar case we focus on
a particular reaction diffusion system, the simplified glycolysis model (Ashkenazi and
Othmer, 1978), for which the reaction kinetics take the form

flu,v,p) = B — ku —uv?,  g(u,v,p) = ku + uv? — v, (2)
where A and « are fixed parameters.

We analyse the system with the numerical package AUTO (Doedel, 1986), which
calculates the steady states and their stability. To analyse the time evolution problem
we use a combination of linear analysis, bifurcation analysis and numerical integration.
We refer the reader to the paper by Dillon, et al. (1992) for full details. Here we simply

summarize the main results:

1. Behaviour at small L: For the scalar case, a minimum domain length is required
for a non-uniform steady state to exist. For the non-scalar case, however, it is
possible to show that a stable, non-constant, steady state can exist at arbitrarily
small length.

2. Complexity of the bifurcation diagram: For the scalar case, the bifurcation di-
agram becomes very complex as the parameter L increases. However, for the
non-scalar case, the range of admissible solutions decreases and hence the com-
plexity of the bifurcation diagram is greatly reduced.

3. Multiplicity of stable steady states: For the scalar case there are regions in pa-
rameter space wherein more than one stable steady state solution exists. For the
non-scalar case the problem of multiplicity of solutions is greatly reduced. Solu-
tions are less sensitive to changes in domain size and are more robust to changes
in other parameters.

3 APPLICATION

Here we consider the application of Turing models to the formation of skeletal pat-
terning in the vertebrate limb. Figure 1 shows the sequence of bifurcations in the
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Figure 1. Diagrammatic representation of the chick limb showing the skeletal elements.
H - humerus, R - radius, U - Ulna, II, III, IV - digits, A - anterior, P - posterior, Pr - proximal,
D - distal.

limb as it grows out. Although limb development is a three-dimensional process, t.ht?
patterning in each dimension can be decoupled to a first approximation I(see M_a.lm
and Solursh 1991 for a review). The development of pattern along the proximal-distal
axes is through a 1-2-3 transition sequence. In Figure 2 we compare the transition se-
quence for the scalar Turing system with that of the non-scalar case as the parameter

L increases.

4 DISCUSSION

A great number of Turing-type models have been proposed for spatial pattern forma-
tion and their properties have been extensively studied analytically and numerically.
They have been proposed as morphogenetic models for a wide range of developmental
phenomena. It is well-known that the patterns exhibited by Turing models are very
sensitive to initial conditions, scale, geometry and parameter variation. Hence, as they
stand, Turing models are inadequate to account for robust patterning mechanisms such
as those which underlie, for example, skeletal development in the tetrapod limb.

In this paper we have summarized the effects of boundary conditions on an one-
dimensional reaction diffusion system. From this, we can see that imposing non-scalar
boundary conditions can lead, in a robust and controlled manner, to a sequence of
transitions that closely resembles those observed in skeletal patterning in the developing
limb. Here we took domain length L as our bifurcation parameter. However, as
this parameter occurs in the dimensionless parameter v = Dy fwL?, the sequence of
transitions observed above could be generated by changes, for example, in diffusion
coefficients. This could arise due to a change in gap junction permeability (Mehta at
al., 1989; Briimmer et al., 1991). Some results from a model that incorporates this are
analyzed in Dillon and Othmer (1993).

Our model does not capture the anterior-posterior asymmetry of the limb. However,
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Figure 2. The subintervals of (0, 1) in which the v-component of the solution to the glycolysis
model exceeds a fixed threshold concentration, as a function of L. (a) The scalar case where
u and v satisfy zero flux boundary conditions; (b) The non-scalar case in which u satisfies
zero flux boundary conditions and the concentration of v is fixed to zero on the boundary.
Clearly for (b) a simple threshold mechanism can reliably produce the sequence 1-2-3- ... of
pattern elements as the parameter L increases, whereas this is impossible for the standard
case with scalar boundary conditions.

recently Maini et al. (1992) have shown that introducing biologically realistic spatial
variation in chemical diffusion coefficients can reproduce this asymmetry.

In summary, boundary conditions have a marked effect on the steady state patterns
exhibited by reaction-diffusion models in one-dimension. We would expect this effect
to be even more pronounced in two- and three- dimensions, in part because there are
more combinations of the different types of boundary conditions.
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