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Abstract In this paper we present a comprehensive computational framework within
which the effects of chemical signalling factors on growing epithelial tissues can be
studied. The method incorporates a vertex-based cell model, in conjunction with a
solver for the governing chemical equations. The vertex model provides a natural
mesh for the finite element method (FEM), with node movements determined by
force laws. The arbitrary Lagrangian–Eulerian formulation is adopted to account for
domain movement between iterations. The effects of cell proliferation and junctional
rearrangements on the mesh are also examined. By implementing refinements of the
mesh we show that the finite element (FE) approximation converges towards an accu-
rate numerical solution. The potential utility of the system is demonstrated in the
context of Decapentaplegic (Dpp), a morphogen which plays a crucial role in devel-
opment of the Drosophila imaginal wing disc. Despite the presence of a Dpp gradient,
growth is uniform across the wing disc. We make the growth rate of cells depen-
dent on Dpp concentration and show that the number of proliferation events increases
in regions of high concentration. This allows hypotheses regarding mechanisms of
growth control to be rigorously tested. The method we describe may be adapted to a
range of potential application areas, and to other cell-based models with designated
node movements, to accurately probe the role of morphogens in epithelial tissues.
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1 Introduction

Several recent studies have examined the effects of cell proliferation, rearrangements
and mechanical forces on tissue growth and epithelial packing (Farhadifar et al. 2007;
Rauzi et al. 2008; Bittig et al. 2008; Aegerter-Wilmsen et al. 2010). Concurrently, there
has been much interest in the role played by chemical signalling molecules known
as morphogens, which form gradients in many developmental systems in order to
coordinate tissue patterning and stimulate growth (Affolter and Basler 2007). To date,
however, there has been little attempt to combine these strands into a single coherent
modelling framework.

Aegerter-Wilmsen et al. (2007) used a tissue-level model to show that net growth
of the Drosophila imaginal wing disc can be regulated by a combination of morpho-
gen gradients and mechanical forces. In their model, growth factors initially stimulate
growth in the middle of the wing disc, leading to a stretching of the lateral regions.
This, in turn, induces growth in those areas via mechanical feedback, which eventually
causes compression back at the center of the disc, inhibiting growth. Their model cru-
cially accounts for the termination of growth when the wing disc reaches a certain size.
More recently, the same authors (Aegerter-Wilmsen et al. 2010) used a vertex model
and showed that, by including mechanical feedback as a regulator for cellular growth,
they could faithfully reproduce the experimentally observed polygon distribution of
the wing disc tissue. Hufnagel et al. (2007), meanwhile, also use mechanical feedback
within a vertex model, with cell-growth rate dependent on the height of each cell,
which acts as an indicator of the stress it is under. Growth can only occur, however,
when a minimum threshold of the morphogen Decapentaplegic (Dpp) is exceeded,
with the Dpp gradient imposed as a simple radial function, exponentially decaying
with a constant characteristic length.

Wartlick et al. (2011) implemented morphogen dynamics in a vertex model by
assigning molecule numbers for two morphogens to each cell and solving a system
of coupled differential equations representing production, degradation, and transport.
They showed experimentally that the concentration and signalling gradients of Dpp
in the Drosophila wing disc scale with tissue size during development, and that an
increase in signalling levels by 50% induces cell division. By implementing these
observations in the vertex model they showed that temporal changes in Dpp levels
could be an important mechanism in regulating growth.

Vertex models have been used in several other recent studies of growth. Landsberg
et al. (2009), for example, showed that the antero-posterior compartment boundary
of the Drosophila wing disc can be maintained by a 2.5-fold increase in tension at
cell edges near the boundary. They were also able to confirm experimentally that
this increase in tension is realistic. Farhadifar et al. (2007), meanwhile, examined
the effects of proliferation, and found regions of parameter space where their vertex

123



Incorporating chemical signalling factors into cell-based models 443

model accurately represents the packing geometry of the growing wing disc. Rauzi
et al. (2008) used a vertex model to show that anisotropy of cortical tension can drive
tissue elongation. This was achieved by including an angle dependence in the tension
force (see Sect. 2.1).

Here we describe a novel method for dynamically incorporating chemical signal-
ling into vertex models, using an arbitrary Lagrangian–Eulerian (ALE) formulation
in conjunction with the finite element (FE) method (FEM) to solve equations for
chemical concentration. Some of the models described above include basic represen-
tations of morphogen gradients, but none feature a complete dynamic description of
the spreading of chemical signalling factors. The method described in this paper is
the first complete framework that models the mechanical properties of cells along
with an accurate, realistic description of morphogen concentration. It also exhibits
key physical properties such as conservation of mass, and is able to account for the
movement and growth of the domain as well as important cellular processes such as
proliferation and junctional rearrangements. The method has applications in many
biological systems as it can be adapted to any process in which a chemical spreading
across an epithelium interacts with the mechanical properties of a cell.

Section 2 begins by describing the vertex model, including descriptions of the force
laws, equations of motion, junctional rearrangements, cell growth and proliferation.
Section 3 then goes on to describe the morphogen spreading model, in particular
the ALE formulation and FE approximation to the solution. Section 4 examines the
convergence properties of the FE approximation, while Sect. 5 discusses the length
of time taken to form and solve the governing matrix system of equations. Meth-
ods for dealing with mitosis and junctional rearrangements in the FE scheme are
described in Sect. 6. In Sect. 7 the method is applied to Dpp in the Drosophila wing
disc, and some initial results are presented, before the summary and discussion in
Sect. 8.

2 The vertex model

Two-dimensional (2D) networks of polygons have long been known to successfully
capture the packing geometry of epithelial tissues (Honda 1978). Shape, size, and
movement of cells emerge from the application of forces to polygon vertices (Weliky
and Oster 1990; Nagai and Honda 2001). Typically, forces represent cell–cell adhesion,
actin-myosin contractility, elasticity, pressure, and protrusion. These are dependent on
the basic properties of each cell, such as perimeter, area, height, and deformation. As
well as basic force laws, junctional rearrangements, growth, and proliferation can be
included. The model described here consists of two types of forces, which act in the
directions shown in Fig. 1a.

2.1 Tension forces

In this model, stress on each cell edge manifests as a tension force on the vertices at
the ends of the edge. The first component of this force is a line tension, dependent
on the edge length, which represents effects of cell–cell adhesion and actin-myosin
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(a) (b)

Fig. 1 a Direction of tension (T̂) and pressure (P̂) forces acting on vertices in the model. Tension forces,
representing cell–cell adhesion and actin-myosin contractility, act along cell edges in clockwise (T̂c) and
anti-clockwise (T̂a ) directions. Pressure forces, representing cell elasticity, elongation and deformation,
bisect the angle φ between two edges. b Three-dimensional schematic of an epithelial cell, showing four
key quantities used in the model; perimeter, p, area, a, height, h, and edge length, l

contractility. Stronger adhesion or reduced contractility leads to reduced stress on
the edge, and thus lower tension and larger edge lengths. The second component,
meanwhile, depends on the length of the cell perimeter and represents contractility of
the actin-myosin ring.

Within a given cell each vertex belongs to two edges and experiences forces in the
direction of the two tension unit vectors shown in Fig. 1a. The contribution from a cell
to the tension on a vertex is given by

T = CL

(
lcT̂c + laT̂a

)
+ CP

(
T̂c + T̂a

)
p, (1)

where CL and CP are constants related to the line tension and perimeter force, respec-
tively, lc and la are the lengths of the clockwise and anti-clockwise edges, T̂c and
T̂a are unit vectors in the direction of the clockwise and anti-clockwise vertices, and
p is the total length of cell perimeter (see Fig. 1b). The constants CL and CP have
units of force over distance (e.g. N m−1). The tension force acts to decrease the length
of edges and perimeters. Larger edge lengths and perimeters generate larger tension
forces, which act to move neighbouring vertices closer to each other, thus shrinking
local edge lengths.

2.2 Pressure forces

The pressure force, meanwhile, is dependent on cell area, height-to-area ratio, and
local deformation. It is given by

P =
[

CA
|at − a|n1+1

(at − a)
+ CH H + CD

|φ − θ |n2+1

(φ − θ)

]
P̂, (2)

where CA, CH , and CD are constants associated with the three components, a is the
cell area, at is a ‘target’ area, H is the height-to-area ratio, θ is the average internal
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angle of the cell (θ = π(s − 2)/s for an s-sided polygon), φ is the internal angle at
the current vertex, n1 and n2 are integer values, and P̂ is a unit vector in the direction
of the pressure force (see Fig. 1a). The first and third terms are written in this way to
ensure that the sign of the force is correct regardless of whether n1 and n2 are even or
odd.

The first term represents the elasticity of the cell. CA, which has units of force per
distance to the power 2n1 (e.g. N m−2n1 ), is the elastic coefficient. The second term
represents the effect of a cell opposing being squeezed or squashed and elongating
in the direction normal to the surface. Each cell is assigned a volume, drawn from a
normal distribution, which can be allowed to grow over time (see Sect. 2.6). Knowing
the volume and area of every cell, heights can then be calculated. The constant CH

has units of force times distance.
The third term in (2) represents the reaction of the internal components of the

cell to being subjected to an external force. In vivo, concave cells arise occasionally
when they are subjected to significant pressure, but will not stay in this configuration
for very long. This is not a natural state for cells to be in, and therefore we include
a force in the model designed to keep cells as near to their regular shape as possi-
ble. The constant in this case, CD , has units of force per angle to the power n2 (e.g.
N rad−n2 ).

Figure 1b shows a three-dimensional (3D) epithelial cell, demonstrating the key
quantities used in the model. In this model forces act on the top (apical) surface. The
model is not fully 3D, in the sense that we do not take account of the fact that apical
surfaces of neighbouring cells may not be at the same level. We do, however, consider
cells to be 3D objects with both volume and height.

2.3 Boundary force

An extra force is implemented to ensure integrity of the tissue is maintained and edges
of non-adjacent cells are unable to overlap on the boundary. This force only applies
to vertices on the boundary, which can be identified by the fact that they belong to a
maximum of two cells, and takes the form

B=CB1
|φB − θB |n3+1

(φB − θB)
P̂B +CB2

( |lBc−L|n4+1

(lBc − L)
T̂Bc+ |lBa −L|n4+1

(lBa − L)
T̂Ba

)
, (3)

where CB1 and CB2 are the boundary force constants, φB is the internal angle at the
boundary vertex, θB is the ideal internal angle, given by θB = π(NB − 2)/NB for NB

boundary nodes, P̂B, T̂Bc and T̂Ba are unit vectors in the direction of the pressure- and
tension-like forces, lBc and lBa are the lengths of the clockwise and anti-clockwise
edges, respectively, L is the mean edge length, and n3 and n4 are integers.

This force tends to make the boundary smooth and circular, and keep boundary
edges from shrinking. Junctional rearrangements (Sect. 2.5) are unable to occur on
the boundary, so it is important that edges do not become very small, hence there is
a difference between the edge-dependent force here and that in the tension Eq. (1).
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The angle-dependent force is similar to that in the pressure–force Eq. (2), which keeps
cells as close to regular as possible.

2.4 Equations of motion

In generating equations of motion, it is assumed that viscous forces dominate and iner-
tial considerations may be neglected (Odell et al. 1981). For a vertex i the equation of
motion is given by

μi
dxi

dt
= Fi , (4)

where μi is the viscous coefficient, xi is the vertex position, and Fi is the sum of all
forces acting on the vertex. We define a discretisation in time over the range (0, T ],
given by ∪n=NT

n=1 (tn−1, tn], where T is the final time, NT is the number of time-points,
and tn − tn−1 = �t for all n. The system can be solved iteratively at each time-point
using the forward Euler method as follows:

xn+1
i = xn

i + �t

μi
Fn

i .

2.5 Junctional rearrangements

In addition to the force laws described above, an elementary rearrangement of vertices
known as a T1 transition is included in the model. Junctional rearrangements occur
between neighbouring vertices that fall below a certain threshold distance. This type
of transition has been used by other authors in previous vertex models (Weliky and
Oster 1990; Farhadifar et al. 2007). Figure 2 explains a T1 transition diagrammati-
cally. Vertices A and B have moved closer together than the threshold distance, and
rearrangement begins (a). Vertices C and D are created on a line that bisects the line
AB perpendicularly. Cell 1 then reconnects to vertex C, cell 2 to vertex D, and cells 3
and 4 share both vertices C and D (b).

2.6 Cell growth and proliferation

To accommodate a method allowing cells to grow and subsequently divide, each cell
k is given a growth speed, gk , drawn from a truncated normal distribution. Growth is
then implemented logistically over time according to

vn+1
k = vn

k

(
1 + gk�t

(
1 − vn

k

VT

))
, (5)

where vn
k is the volume of cell k at time tn and VT is a target volume.

To implement cell division, firstly an angle of mitosis is chosen. This can simply
be drawn from a uniform distribution, or biased in a certain direction if desired to
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(a) (b)

Fig. 2 A T1 transition for two close vertices. a Initially cells 1 and 2 share edge AB, which separates cells
3 and 4. b After the rearrangement cells 3 and 4 share edge CD, separating cells 1 and 2

Fig. 3 Cell division in the vertex model. a The initial cell, with a cross at the center. b A straight line
is drawn through the cell center at an angle drawn from a uniform distribution, and two new vertices are
formed where the line meets cell edges

investigate directed proliferation. A straight line is then drawn, passing through the
centroid of the cell at the prescribed angle. Two new vertices are created at the points
where the line intercepts cell edges. Figure 3 demonstrates this process: (a) shows the
initial cell that has been chosen to divide, with the cross indicating the centroid of the
cell. In (b) the cell has divided into two daughter cells.

Cells are allowed to divide with probability based on the ratio of their current
volume to the target volume. This ensures that cells close to the target volume are
likely to divide, whereas those which are much smaller have very little chance of
proliferating.

We now have a complete physical model of cell behaviour. We have seen the force
laws, junctional rearrangements, as well as cell growth and proliferation. In the next
section we will develop a model of chemical signalling factors. We will see how the
chemical concentration can feedback into the equation for cell growth (5), which is
currently independent of any morphogen concentration.
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3 Modelling morphogen concentrations

3.1 Diffusion equation and ALE formulation

Kicheva et al. (2007) stated that, regardless of the actual mechanism of transport, mor-
phogen spreading can be captured by the physics of molecules produced in a central
strip of cells, which spread non-directionally and are degraded at some rate. The con-
centration of morphogen across a domain can therefore be represented by a diffusion
equation with source term, of the form

∂c

∂t
− ∇ · (D∇c) = f in Ω(t), (6)

where c(x, t) is the concentration at point x on domain Ω(t) at time t, D(x, t) is the
diffusion coefficient, and f (x, t) is some known source/degradation function. The
initial condition is c(x, 0) = c0(x), whilst the boundary condition is represented
by

∂c

∂n
= −cv · n

D
on ∂Ω(t),

where v(x, t) is the domain velocity, and n is the unit outward normal.
The arbitrary Lagrangian–Eulerian is a reference frame that combines features of

the traditional Lagrangian and Eulerian frames. The Lagrangian frame, often used
in solid-structure problems, corresponds directly to points within the structure and
deforms with it. The Eulerian frame, meanwhile, is fixed in space, and allows aver-
age values of fluid passing a given region to be easily calculated. The ALE frame,
meanwhile, is an arbitrary reference frame, able to move in space whilst permitting
the flow of particles through the mesh (Belytschko and Kennedy 1978; Hughes et al.
1981; Donea et al. 1982).

Following Nobile (2001), we adopt a weak form of the ALE formulation of (6).
We allow the movement of cells, which takes place at speed w(x, t), to define the
ALE frame. In this model the diffusing morphogen is external to the cells, and is not
affected by their movement. Frameworks in which cells ingest the diffusing chem-
ical, leading to advection terms in the governing equations, will be considered in

future work. The problem can be stated as follows: find c ∈ H1(Ω(t)) :=
{

y :∫
Ω(t)

(|∇ y|2 + y2) dx < ∞
}

such that for any test function v ∈ H1(Ω(t))

d

dt

∫

Ω̂

v̂ĉ|Jt | dx̂ +
∫

Ω(t)

∇v · (cw) dx +
∫

Ω(t)

∇v · (D∇c) dx =
∫

Ω(t)

v f dx, (7)

where Ω̂ is a static reference frame, with x̂ a point on this reference domain and con-
centration denoted by ĉ(x̂, t). Jt is the Jacobian of the mapping from Ω(t) to Ω̂ . The
test functions in the static frame are denoted v̂.
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(a) (b)

Fig. 4 a A cell configuration and b its counterpart FE mesh. The center of each cell is used as an additional
node-point along with the cell vertices to create a triangular tessellation of the domain

3.2 Fully discrete approximation

We replace the continuous infinite-dimensional problem (7) with a discrete finite-
dimensional approximation. A set of N (t) node-points {yi }N (t)

i=1 in Ω(t) are connected

to form a mesh of the domain consisting of M(t) triangular elements {τi }M(t)
i=1 . The

triangles are such that int(∪iτ i ) = Ω(t) and τ i ∩ τ j for i �= j is either a node,
an edge, or is empty. We define Vh(Ω(t)) to be a finite-dimensional subspace of
H1(Ω(t)), consisting of continuous functions that are linear within each element τi .
A basis of Vh(Ω(t)) is given by the functions {φi (x, t)}N (t)

i=1 , where for each i, φi is
a continuous piecewise linear function such that φi (y j , t) = δi j (the Kronecker delta
function). To create the triangular FE mesh, we take the pre-existing cell vertices,
and use the center of each cell as an additional node-point. This is demonstrated in
Fig. 4, which shows an original vertex ‘mesh’ (a) and its corresponding triangular FE
mesh (b).

The FE approximation to c(x, t), denoted ch(x, t), is defined by

ch(x, t) =
N (t)∑
i=1

αi (t)φi (x, t),

where ch(x, t) ∈ Vh(Ω(t)), and αi (t) is a real number that weights each basis function
within the approximation.

We now define a discretisation in time over the range (0, T ] to match that of the
vertex model (Sect. 2.4), given by ∪n=NT

n=1 (tn−1, tn], where T is the final time, NT

is the number of time-points, and tn − tn−1 = �t for all n. The time-discrete FE
approximation to c(x, t) is given by

cn
h(x) =

N n∑
i=1

αn
i φn

i (x).
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Integrating the first term of (7) in time between tn−1 and tn yields

tn∫

tn−1

⎛
⎜⎝ d

dt

∫

Ω̂

v̂ĉ|Jt | dx̂

⎞
⎟⎠ dt =

∫

Ωn

vncn dx −
∫

Ωn−1

vn−1cn−1 dx,

where a superscript n on a function indicates that it is evaluated at t = tn . Approx-
imating the remaining terms in (7) as piecewise constant in each interval (tn−1, tn]
and integrating over this time range, we obtain the fully discrete weak form

N n∑
i=1

αn
i

⎛
⎝

∫

Ωn

vnφn
i dx + �t

∫

Ωn

∇vn · (Dn∇φn
i ) dx + �t

∫

Ωn

∇vn · (φn
i wn) dx

⎞
⎠

= �t
∫

Ωn

vn f n dx +
N n−1∑
i=1

αn−1
i

∫

Ωn−1

vn−1φn−1
i dx. (8)

The left-hand side can be written as a row vector, containing the term within the outer
brackets evaluated for each φi , multiplied by a column of the αi values. The right-hand
side is a single number. To solve this problem at each time point n for N n unknown
αn

i values, we must substitute in N n test functions vn . The most obvious choice is to
use the basis functions {φn

j }N n

j=1. A series of rows is obtained, each using a different
φ j , multiplied by the column vector of αi values. The system can thus be written as a
matrix equation of the form

(Ln + W n)αn = Rn, (9)

where Ln and W n are N n x N n matrices, while αn and Rn are N n x 1 column vectors.
The elements in each matrix are given by

Ln
ji =

∫

Ωn

(
φn

j φ
n
i + �t∇φn

j · (Dn∇φn
i )

)
dx,

W n
ji = �t

∫

Ωn

∇φn
j · (φn

i wn) dx, (10)

Rn
j = �t

∫

Ωn

φn
j f n dx +

N n−1∑
i=1

αn−1
i

∫

Ωn−1

φn−1
j φn−1

i dx.

4 Convergence properties of solution

Simulations of the morphogen spreading model can now be run, using Matlab’s
backslash operator to solve the system of matrix equations (9). We have not yet dis-
cussed the effect on the FE solution of T1 transitions or proliferation, and this will be
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dealt with in Sect. 6. Before moving on, however, we test the convergence properties
of the FE approximation by comparing it to a more accurate solution. Since it is not
possible to obtain analytical solutions for such complex systems, we choose to com-
pare the coarse mesh approximation to a highly refined (in time and space) reference
solution. This comparison is made by considering the error function (11)

⎛
⎜⎝

T∫

0

∫

Ω(t)

|c(x, t) − c′(x, t)|2 dx dt

⎞
⎟⎠

1/2

, (11)

where c(x, t) is the approximation and c′(x, t) is the accurate numerical solution.
The FE mesh shown in Fig. 4b can be refined by sub-partitioning each triangle.

New nodes are added at the mid-point of each triangle edge and joined to con-
struct four smaller similar triangles. This process can be repeated ad infinitum, cre-
ating a highly refined mesh. By also using a small value of the time-step, �t , we
can find the accurate numerical solution with which other approximations can be
compared.

In order to run these simulations, an initial configuration of cells must first be cre-
ated. This is achieved using the Voronoi tessellation of a series of 2D points. The points
are chosen in such a way that the initial width of the tissue is approximately one, and
most cells are hexagons. The initial average area of each cell is given by∼1/Nc, where
Nc is the total number of cells, and the initial average cell width is∼1/

√
Nc, assuming

the overall shape of the configuration is roughly a square. To assign initial volumes, it
is assumed that the cells are roughly cuboidal, and we take mean volume ∝ mean(cell
area)3/2.

In these simulations a random initial cellular configuration of 100 cells relaxes to
mechanical equilibrium. Each simulation is identical from the cellular point of view,
with the various FE solutions superimposed. Simulations are kept as simple as possible
at the cellular level, with no junctional rearrangements, cell growth, or proliferation
allowed.

Setting f = 0 in (6) yields the standard diffusion equation given by

∂c

∂t
= ∇ · (D∇c) in Ω(t). (12)

With no source or sink terms, the total quantity of morphogen in the system, CΩ(t),
approximated by

CΩ(t) =
∫

Ω(t)

ch dx =
∫

Ω(t)

N (t)∑
i=1

αiφi dx =
N (t)∑
i=1

αi

∫

Ω(t)

φi dx,

remains constant for all t .
Simulations are run beginning with a step function for the chemical concentration

that takes a value of one in a small strip at one edge of the tissue and zero everywhere
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(a) (b) (c)

(d) (e) (f)

Fig. 5 a–c Initial random cellular configuration of 100 cells relaxing to mechanical equilibrium. d–f
Chemical concentration, represented by height of the plot, diffusing on the same domain from an initial
step function, with one iteration of mesh refinement. Images show t = 0 (a, d), t = 0.1 (b, e), t = 1 (c, f)

Table 1 Parameter values used in simulations in this section

Parameter CL CP CA CH CD

Value 2 × 10−4 1 × 10−4 1 1 × 10−5 5 × 10−4

Parameter CB1 CB2 n1 − n4 μ D

Value 5 × 10−3 0.1 2 1 × 10−3 0.1

All parameters, other than space- and time-steps for the FE solver, are the same in all simulations. See text
for further details

else. The evolution of the tissue, as well as the concentration profile of the diffusing
chemical, can then be observed over time (Fig. 5). Parameters used are given in Table 1.
The relative values of the force constants are chosen such that each component has,
on average, an approximately equal effect on each vertex. The time-steps, �t , are
sufficiently small that the movement of each vertex is small, relative to the average
edge length, during each iteration.

We implement four test simulations, corresponding to four levels of mesh refine-
ment, with the space- and time-steps each halving as the level number increases. The
first level corresponds to no refinement of the mesh, i.e. the standard mesh shown in
Fig. 4b, and a �t of 1/500. The next levels correspond to one, two, and three refine-
ments, with time-steps of 1/1000, 1/2000 and 1/4000, respectively. Each simulation
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Table 2 Value of the error
function for each level of
refinement. Space- and
time-steps each halve as the
refinement level increases

Refinement level Error function

1 2.0 × 10−4

2 6.8 × 10−5

3 2.7 × 10−5

4 1.0 × 10−5

is run for t ∈ (0, 1]. The accurate numerical solution is created with four levels of
refinement, and a �t of 1/8000. The value of the error function for each simulation is
shown in Table 2.

We observe a clear convergence as the size of the space- and time-steps decrease. For
each increase in refinement level, the error function decreases by a factor of between
2.5 and 2.9.

5 Simulation run time

To get an idea of how simulation time of the numerical scheme scales with tissue size,
we run three test simulations with tissues of 100 cells, 1000 cells, and 10,000 cells,
respectively. The initial condition and parameter values are the same as in Sect. 4, and
each simulation is run for 1000 iterations, corresponding to a �t of 1/1000, with no
refinement of the FE mesh. At each iteration, the time taken to form and solve the
matrix equations is recorded, and we subsequently take the average time over the 1000
iterations.

Simulations are performed in Matlab, with matrices formed in C++-based mex
functions. The matrix system (9) is solved using the Matlab backslash operator.
Simulations are performed on a ‘no name’ brand machine with 4 AMD (Advanced
Micro Devices) Phenom(tm) II 945 processors (3GHz clock speed, 2MB L2 cache,
6MB L3 cache), 64-bit kernel running Ubuntu Linux 10.04 LTS. Results are shown
in Table 3.

We observe that as the number of cells increases by a factor of 10, the mean time
taken per iteration increases by a factor between 12 and 15. For tissues with up to
tens of thousands of cells it is therefore possible to accurately simulate in reasonable
time-frames. These cell numbers correspond to most systems of interest biologically.
We have not tested the scheme for much larger tissue sizes, of the orders of hundreds
of thousands or millions of cells, which may show much larger increases in time as the
cell number increases. These orders of magnitude may be relevant in some application
areas, however in these cases continuum models might be more appropriate than the
cell-based approach we take to modelling the tissue.

Table 3 Average time taken to
form and solve the system of
matrix equations for chemical
concentration for tissues of 100,
1000, and 10,000 cells

Number of cells 100 1000 10,000

Number of nodes 340 3130 30,400

Number of elements 600 6000 60,000

Mean time per iteration (s) 5.7 × 10−3 6.7 × 10−2 1.0
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6 Effects of cellular rearrangements on the FE mesh

6.1 Proliferation

As cell vertex positions are used to create the FE mesh, when a cell divides the mesh
necessarily changes. The concentration of morphogen at the new vertices created by
the division must therefore be found. Figure 6 shows the effect of mitosis on the mesh
within the dividing cell from Sect. 2.6. The original mesh in the cell (a), consisting of
six elements, changes to that shown in (b), with ten.

Since the FEM provides a continuous approximation in the spatial domain to the
concentration c(x, t), we may interpolate to find the concentration at the two new
nodes that are also cell vertices. For example, the concentration at node 9 can be cal-
culated from the known concentrations at nodes 3 and 4. If di j represents the distance
between nodes i and j , then the concentration at node 9 is given by

c9 = c3 + d39

d34
(c4 − c3). (13)

These new vertices also affect the FE mesh within cells adjacent to the dividing cell
that share the edges on which the new vertices have been created. For example, in this
case the cells that share edges 1–6 and 3–4 will each gain an extra element. There are
also two extra new nodes in the FE mesh at the centers of the new cells (10 and 11
in this example), while the node at the center of the previous cell (node 7), no longer
exists.

The total concentration Ck(t) in a cell k is estimated by integrating the FE approx-
imation to c(x, t) over the cell, i.e.

Ck =
∫

k

ch dx =
∫

k

Lk∑
l=1

αlφl dx =
Lk∑

l=1

αl

∫

k

φl dx, (14)

where l is a local node index and Lk(t) is the number of nodes in cell k. Now, suppose
at a given time-point t = tn the total concentration Cn

k in a cell is known, along with

Fig. 6 Finite elements corresponding to hexagonal cell before and after mitosis. The cell in a contains six
triangular elements, whilst the two daughter cells in b each contain five for a total of ten. The concentration
at the four new nodes (8–11) must be calculated
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Fig. 7 Temporary FE mesh used during mitosis. This mesh contains the two new nodes that correspond to
the two new cell vertices, but still has a node at the center of the mother cell, rather than the two new nodes
at the centers of the two daughter cells

the values at all nodes apart from one. Assume without loss of generality that this is
node Ln

k . The total concentration in cell k at this time can be written

Cn
k =

Ln
k −1∑

l=1

αn
l

∫

k

φn
l dx + αLn

k

∫

k

φLn
k

dx,

and thus an expression for the value at node Ln
k is obtained:

αLn
k

= Cn
k − ∑Ln

k −1
l=1 αn

l

∫
k φn

l dx∫
k φLn

k
dx

. (15)

Therefore, after division, if the total concentration in each of the new cells is known,
the concentration value at the new central node can be found. The only remaining
question is what the total concentration in each cell should be. The simplest method
would be to find the total concentration in the mother cell and divide it equally between
the two daughter cells. However, this neglects two important considerations. The first
is that the areas of the daughter cells are not necessarily equal, and a larger cell is more
likely to have a greater total concentration of morphogen. The second is that the cell
could be sitting on a sharp gradient of morphogen, in which case the concentration in
one section of the mother cell could be significantly greater than the rest of the cell,
and this should be reflected in the daughter cells.

In order to solve this problem a temporary mesh for each of the new cells is adopted,
as shown in Fig. 7, in order to calculate an approximation to the previous total con-
centration in the section of the mother cell now taken up by each daughter cell. This
temporary mesh includes the two new cell vertices created during mitosis, but not the
two new central nodes. The different shaded regions represent the two new cells. The
values at all nodes are known, so (14) can be used to find the total concentration in
each shaded region. Finally, we can apply (15) to find the values at the central nodes
of the new cells.
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6.2 T1 transitions

T1 transitions also alter the FE mesh, though not as dramatically as proliferation events.
In the example shown earlier in Fig. 2, cells 1 and 2 each lose an element, whereas
cells 3 and 4 gain an extra element each. As this type of rearrangement only occurs
on very short edges, the concentrations at nodes C and D are taken to be equal to the
average of those at A and B.

7 Morphogen dependent growth

In simulations to this point the diffusing chemical has been de-coupled from the
mechanical properties of cells. By making cell growth explicitly dependent on mor-
phogen concentration, we can begin to probe the role of the Dpp in the Drosophila
imaginal wing disc, which has often been used as a model system for the study of
morphogens. The disc grows from an embryonic primordium consisting of about 55
cells to reach a final size of roughly 30,500 (Martín et al. 2009). Growth is sigmoidal,
with an average cell doubling time (CDT) of roughly 10–12 h (Garcia-Bellido and
Merriam 1971), and is uniform across the disc.

Dpp is a morphogen that acts as an important growth-promoting factor in the wing
disc. When Dpp expression is reduced, smaller wings are observed (Spencer et al.
1982), and large discs occur when Dpp is over-expressed (Burke and Basler 1996).
The exact mechanism by which Dpp controls growth is unknown. One particular
mystery is how a morphogen that forms a gradient can lead to uniform growth in
the wing disc. Many theories have been postulated, none of which fully explain the
observed phenomena (Serrano and O’Farrell 1997; Day and Lawrence 2000; Rogulja
and Irvine 2005; Aegerter-Wilmsen et al. 2007; Hufnagel et al. 2007; Wartlick et al.
2011).

The framework developed in this paper can be used to test some of the hypotheses
regarding the mechanisms by which Dpp controls growth. The first step towards this
goal is to set up a steady gradient of Dpp across the cellular domain and allow the
growth rate of cells to be dependent on the concentration of Dpp at the center of the
cell. We expect proliferation to occur preferentially in regions of high Dpp concentra-
tion. We focus on this application in the rest of the paper. In order to examine growth
regulation, changes to the application can be made to find those that elicit the desired
uniform growth.

Equation (5) can be modified to be dependent on Dpp concentration as follows

vn+1
k = vn

k

(
1 + gk(1 + λck)�t

(
1 − vn

k

VT

))
, (16)

where ck is the concentration of Dpp at the central node of cell k, and λ is a parame-
ter representing the strength of the effect of morphogen concentration on the growth
rate.
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7.1 Radial Dpp gradient

A radial Dpp gradient can be set up by including source and degradation terms in
system (11). Representing the source term as piecewise linear on the FEs, we can
write

f (x, t) =
N (t)∑
i=1

fi (t)φi (x, t),

A subset of basis functions within a radius r of the center of the tissue are designated
to be source-producing, and their fi values set as follows:

fi =
{

S |xi | < r
0 |xi | > r

, (17)

where S is the magnitude of the source and xi is the position of node i . Degradation of
Dpp, meanwhile, is implemented by multiplying the final term of (8) by a constant d,
with 0 < d < 1. The equation for the vector R in the matrix equations (11) therefore
becomes

R j = �t
N n∑
i

f n
i

∫

Ωn

φn
i φn

j dx + d
N n−1∑
i=1

αn−1
i

∫

Ωn−1

φn−1
j φn−1

i dx.

Figure 8 shows a sequence of images from a simulation, with parameter values given
by Table 4. In this simulation the final number of cells Nc(t = T ) = 1011.

As growth is made dependent on Dpp concentration, it is expected that cells in
central regions will grow faster than those on the outside, and subsequently proliferate
more frequently. However, as shown by Fig. 9a, this is not immediately clear from a
histogram of mitosis locations in terms of distance from the center of the tissue. A
correction must be made for the fact that the total number of cells in a region between
radii r and r +dr for small dr is approximately proportional to r . As there are therefore
more cells at larger radii, there will be extra proliferation events, so a direct compari-
son is misleading. The histogram data are therefore divided by the radius at the center
of each bin. As the tissue is growing, only cell divisions that occur within its original
radius are considered. The relative number of divisions at greater radii will be small
as cells only exist in these regions for part of the simulations. Figure 9b shows the
corrected histogram, with the trend for more divisions closer to the center of the disc
clearly visible.

7.2 Dpp produced in a central strip

The FEM solver can be used to represent Dpp produced in a central strip of cells, thus
setting up a gradient along the horizontal (x) axis. This is achieved in a similar manner
to (17), however in this case the function depends on distance along the axis rather
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Fig. 8 Simulation of tissue growth with radial Dpp gradient. a–c The tissue evolves with proliferation and
junctional rearrangements along with force laws. Cell growth is driven by the Dpp concentration in the cell.
d–f The Dpp concentration is initially zero everywhere, before source is produced in a small radius around
the center of the disc and diffuses throughout the domain

Table 4 Parameter values used in simulations of Drosophila wing disc

Parameter Nc(t = 0) CL CP CA CH CD CB1 CB2

Value 225 2 × 10−4 1 × 10−4 10 5 × 10−8 1 × 10−4 1 × 10−3 0.1

Parameter n1 − n4 μ �t λ D S r d

Value 2 1 1 2 1 × 10−4 0.01 0.15 0.99
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Fig. 9 Histograms of mitosis locations for simulation of tissue growth with radial Dpp gradient. a Mitosis
locations in terms of distance from center of tissue. b Mitosis locations corrected for total number of cells
at each radius
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Fig. 10 Simulation of tissue growth with Dpp produced in central strip. a–c The tissue grows through
time by Dpp-driven cell growth and subsequent proliferation. d–f The Dpp concentration is initially zero
everywhere, before source is produced in a small strip in the center of the disc and diffuses throughout the
domain

than radial distance from the center of the tissue. As before in (16), growth is made
dependent on the concentration of Dpp. The parameters used in this simulation are the
same as those in Table 4. In this case Nc(t = T ) = 1129. Figure 10 shows that
the tissue then grows inhomogeneously, with greater growth in the central regions.
The tissue is elongated along the vertical axis in comparison with the horizontal, as
cells are pushed vertically due to the excess proliferation near the central source of
morphogen. This effect can also be observed by plotting the xy-ratio, a measure of
the maximum width in the x-axis over the maximum height in the y-axis (Fig. 11).

This elongation of the tissue is a consequence of the growth rate of cells being
dependent on the Dpp concentration, which is greater in these regions. As cells are
growing faster in this region they reach the target volume more quickly, and subse-
quently divide more often. A histogram of mitosis locations along the x-axis shows
a distribution that peaks in the central regions, as expected (Fig. 12a). However, it
should be expected that proliferation is roughly even in the outer regions, and this
is not the case. The reason for this is that it must again be considered that there are
more total cells centrally, so mitosis is more likely to occur here anyway. Considering
a circle centered at the origin, at a given x-value, the length of a vertical chord is
2(r2 − x2)1/2. For a circular tissue the number of cells at a given x-value is propor-
tional to this length, so the histogram data must be divided by this number to obtain
the corrected values (Fig. 12b). Only mitosis events within the original radius of the
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Fig. 11 Plot of xy-ratio for tissue growing under the influence of Dpp produced in a central strip. The
xy-ratio represents the ratio of the width to the height of the tissue. The xy-ratio decreases over the simulation
as growth is faster in a central strip of vertical cells and thus elongates in the y-axis

−1.0 −0.5 0.0 0.5 1.0
0

5

10

15

20

25

x−Location

F
re

qu
en

cy
 (

%
)

(a)

−0.5 0.0 0.5
0

5

10

15

20

25

x−Location

F
re

qu
en

cy
 (

%
)

(b)

Fig. 12 Histograms of mitosis locations for simulation of tissue growth with Dpp produced in a central
strip. a Mitosis locations along the x-axis. b Mitosis locations corrected for total number of cells at each
x-value

tissue are considered, as explained in the previous example. The corrected distribution
shows that cell division is roughly uniform in the outer regions, with a peak near the
central strip, consistent with expectations.

In vivo, growth across the Drosophila imaginal wing disc is uniform. More com-
plex examples are therefore required to shed insight into mechanisms that control
growth. Suggested hypotheses include threshold models, where growth and prolifer-
ation are stimulated above a certain minimum concentration; gradient models, where
cells respond to the local steepness of the Dpp gradient; mechanical feedback models,
where stress and stretching as well as morphogen concentrations feedback into growth;
and multiple-gradient models, where two or more morphogens combine to regulate
growth. Our simulations have demonstrated that tissue-level effects can be elucidated
by enabling a feedback between morphogen concentration and growth. Future work
can focus on resolving which types of model faithfully replicate the observed
phenomena.
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8 Discussion

A method for incorporating the dynamics of diffusing chemical substances within the
framework of a vertex-based cell model has been described. In this type of model
cells are represented as two-dimensional polygons, with forces acting on polygon
vertices. Forces depend on quantities such as cell area, perimeter and deformation.
Cells are also able to grow and divide and undergo basic junctional rearrangements.
We have shown that by adopting an arbitrary Lagrangian–Eulerian formulation of
diffusion-like equations, the FEM can be integrated smoothly into the vertex model to
simulate morphogen spreading. Crucially, our set-up allows the chemical concentra-
tion to feedback into the vertex model and influence variables such as the growth rate of
cells, the mechanical forces, or the angle of proliferation. This allows the relationship
between mechanics and morphogens to be studied more accurately.

We implemented refinements of the spatial mesh and created an accurate numeri-
cal solution for the morphogen concentration in an example diffusion simulation. We
defined an error function and showed that as space- and time-steps halve the error
function decreases by a factor of between 2.5 and 2.9. We showed that the time taken
to form and solve the system of matrix equations using Matlab’s backslash operator
scales well with cell number over orders of magnitude comparable to real systems of
interest. Due to the size of the systems currently considered the backslash operator is a
relatively fast and efficient solver. In future large-scale problems iterative solvers may
need to be employed. In our simulations the time-step was chosen to be small due to
the explicit nature of cell movement, not due to restrictions imposed by the numerical
morphogen concentration solver. This is physically reasonable as the cell movements
capture processes such as T1 transitions, which require precise knowledge of when the
length of an edge falls below a certain threshold. In future work an adaptive scheme
might be implemented, in which the time-step decreases if there are edge lengths in
the system approaching the threshold, but can be much larger at other times.

We showed an example in which the growth rate of cells was made dependent on the
concentration of a chemical representing Dpp in the Drosophila imaginal wing disc. It
was shown that this led to a higher rate of proliferation in areas of the disc where Dpp
chemical concentration was greatest. This example demonstrates a potential utility
of the system, where simple hypotheses regarding the nature of growth factors can
be tested to check if the results are consistent with what is known about growth of
the tissue. Further work is required to decipher how uniform growth can result in the
presence of a morphogen gradient. Our framework allows this kind of question to be
examined systematically.

There are several possible extensions to the model that could be considered in future
publications. The first of these is to incorporate cell death. This has been included in
previous vertex models, and will also need to be dealt with in the morphogen model.
We also hope to include a more sophisticated mesh refinement that can be imple-
mented when necessary during simulations, based on the local deformation of the
mesh, and can cope with the various rearrangement processes. Thirdly, cell surfaces
contain receptors that bind with the diffusing chemical and lead to cellular ingestion.
This process could be modelled, allowing cells to have an internal concentration that
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moves with the cell and affects its growth. This will require a system of two coupled
equations, for the diffusing and internal chemical concentrations.

Our basic model is adaptable to many other systems. Dpp, which is just one exam-
ple of a morphogen, is a crucial component in many developmental processes, in both
Drosophila and other species. As simulations become more sophisticated, the potential
for them to be adapted to solve problems in other areas will increase. It will also be
possible to adjust the model to work with other types of cell representations. As long
as the cell-domain can be broken up into elements for the FE mesh, and the movement
of the domain is prescribed by rules between iterations, the formulation we propose
can be implemented.
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