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a b s t r a c t

Striae distensae, otherwise known as stretch marks, are common skin lesions found in a variety of clinical
settings. They occur frequently during adolescence or pregnancy where there is rapid tissue expansion
and in clinical situations associated with corticosteroid excess. Heralding their onset is the appearance
of parallel inflammatory streaks aligned perpendicular to the direction of skin tension. Despite a consid-
erable amount of investigative research, the pathogenesis of striae remains obscure. The interpretation of
histologic samples – the major investigative tool – demonstrates an association between dermal lympho-
cytic inflammation, elastolysis, and a scarring response. Yet the primary causal factor in their aetiology is
mechanical; either skin stretching due to underlying tissue expansion or, less frequently, a compromised
dermis affected by normal loads. In this paper, we investigate the pathogenesis of striae by addressing the
coupling between mechanical forces and dermal pathology. We develop a mathematical model that
incorporates the mechanical properties of cutaneous fibroblasts and dermal extracellular matrix. By
using linear stability analysis and numerical simulations of our governing nonlinear equations, we show
that this quantitative approach may provide a realistic framework that may account for the initiating
events.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Striae distensae, commonly known as stretch marks, are benign
skin lesions associated with considerable cosmetic morbidity. Her-
alding their onset is the appearance of parallel inflammatory
streaks aligned perpendicular to the direction of skin tension.
The evolution of striae is characterised by at least two phases: an
initial inflammatory phase known as striae rubra and a later,
chronic phase known as striae alba [1]. Striae may occur in a wide
variety of clinical settings but most commonly develop initially in
either adolescence [2] or pregnancy [3]. Striae may also occur in
conditions where the dermis is abnormal: Cushing’s syndrome
[4], prolonged application of topical steroids [5], or Marfan’s syn-
drome [4] are examples. Finally, striae may develop in association
with changes to body habitus such as weight loss [6], cachexia [7],
obesity [8], or body-building.

Despite their ubiquity and considerable investigation into their
origins, the pathogenesis of striae distensae remains unknown.
Genetic factors are likely to be important since striae have been ob-
ll rights reserved.

nt of Mathematical Sciences,

re), vaughabn@ucmail.uc.edu
adzvamuse), maini@maths.
served in monozygotic twins [9]. Much emphasis has been placed
on the effects of skin stretching in the pathogenesis of striae [10]
since the lesions are found to be aligned perpendicular to the direc-
tion of skin tension. Some investigators have suggested that
mechanical rupture of dermal components is an important initiat-
ing event. However, there is some debate about the relative impor-
tance of skin stretching in the aetiology of striae: one group could
not find any relationship between striae and the increase in
abdominal girth among pregnant females [11] and it has been
noted that striae are rare over the extensor surfaces of joints (re-
gions of skin over a joint that is stretched when the joint is flexed)
where the skin is subject to physiologic stretching [12]. Less con-
troversy exists regarding the possible role of glucocorticoids in
the pathogenesis of striae. This is largely due to the known associ-
ations between alterations to hormonal status observed in preg-
nancy, weight changes, and adolescence on one hand and the
more obvious effects of hormonal changes observed in Cushing’s
syndrome and topical steroid application on the other. In addition,
the catabolic effect of both adrenocorticotropic hormone (ACTH)
and cortisol are well known. These hormones may modulate fibro-
blast activity directly leading to reduced mucopolysaccharide
secretion, possible changes to elastic fibres, and reduced collagen
via either reduced production or increased collagenase secretion
or both. Finally, increased levels of steroid hormones and their
metabolites have been found in patients exhibiting striae [13].
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From the pathologic perspective, the earliest changes are sub-
clinical and are only detectable by electron microscopy. These
changes involve mast cell degranulation (the release histamine
along with other molecules from granules in the mast cell’s cyto-
plasm into the extracellular space) and the presence of activated
macrophages in association with mid-dermal elastolysis [14].
While mast cell activation has been reported in association with
elastolysis in actinically affected skin (pigmentary changes and
elastolysis secondary to chronic UV exposure), anetoderma (cir-
cumscribed areas of slack skin due to loss of dermal elastin) has
been reported in skin affected by mastocytosis. These findings sup-
port the concept that the release of enzymes, possibly elastases
(enzymes that are capable of degrading the elastin molecule within
the dermis), from mast cells plays a very early and important role
in the pathogenesis of striae [14]. When lesions initially become
visible, collagen bundles begin to show structural alterations,
fibroblasts become prominent, and mast cells are absent [14].

On light microscopy, the earliest changes in striae rubra involve
dermal oedema, perivascular lymphocyte cuffing (the appearance
of lymphocytes in the surrounding small blood vessels within the
dermis), and an associated increase in the glycosaminoglycan con-
tent of the dermis [15]. Examination of early lesions shows fine
elastic fibres predominating throughout the dermis in association
with thick and tortuous fibres toward the periphery [16]. An inte-
gral component of elastic fibres, fibrillin microfibrils, are found to
be reduced in striae rubra [17]. In contrast to early inflammatory
lesions, striae alba are characterised by epidermal atrophy, loss
of appendages, and a densely packed region of thin eosinophilic
collagen bundles aligned horizontal to the surface. Later stage le-
sions are thus indistinguishable, from the perspective of light
microscopy, from a dermal scar.

A number of studies suggest that fibroblasts play a key role in
the pathogenesis of striae. Compared with normal fibroblasts,
expression of fibronectin and both type I and III procollagen were
found to be significantly reduced in fibroblasts from striae, sug-
gesting that there exist fundamental aberrations of fibroblast
metabolism in striae distensae [18]. From a bio-mechanical per-
spective, ex-vivo fibroblasts from patients with early striae disten-
sae were found to exhibit high levels of alpha-smooth muscle actin
and were able to generate higher contractile forces in comparison
with fibroblasts from later stage striae [19].

Taken together, the foregoing discussion suggests at least two
major factors play important roles in the aetiology of striae disten-
sae: mechanical stretching of the skin and pre-existing dermal
pathology. The relative effects of these factors are unknown. For
example, it is unknown to what extent steroid hormones in preg-
nancy or adolescence may pre-condition the skin such that it may
be predisposed to developing striae when subjected to stretching.

In this paper we develop a mathematical model that attempts
to capture early changes in striae distensae development. We are
encouraged by the success of similar models used to describe
wound healing [20] and earlier contact guidance models of straie
by Murray [21] and Hariharan [22] and we are motivated by the
ability of mathematical models to incorporate the postulated rele-
vant elements of early striae development including fibroblast con-
tractility, fibroblast motility and remodelling of the extra-cellular
matrix. Our model allows us to quantify the degree of mechanical
stretching (given by a single parameter) and dermal stiffness (gi-
ven by an independent parameter) so that we are able to explore
the relevant contributions of skin stretching and glucocorticoid-af-
fected skin [23,24]. Finally, as a model of pattern formation in the
skin, we are able to investigate how microscopic events may lead
to macroscopic patterns.

The remainder of this paper is organised as follows: Section 2
describes the derivation of our model and a non-dimensionalisa-
tion of our governing equations. In Section 3, we perform a linear
stability analysis and investigate mode selection. Section 4 de-
scribes our numerical results of the full nonlinear model. We con-
clude this paper in Section 5 with a discussion of our results and
the implications for pathogenesis.

2. Model description

Our model is based on the simple assumption that in the pre-
clinical phase of striae development there exists spatial inhomoge-
neity in the density of one or more constituents of the dermis. We
thus focus on its two most important components: fibroblasts and
the extracellular matrix (ECM). Fibroblasts are spindle-shaped cells
embedded within the ECM; they play an essential role in dermal
homeostasis, wound healing, and recently have been shown to ex-
press a Hox code that accounts for the regional specificity of the
epidermal phenotype [25]. Proteoglycans and mucopolysaccha-
rides constitute the ECM. While collagen gives the skin its tensile
strength, the proteoglycans and mucopolysaccharides are gel-like
substances that trap water, thus facilitating molecular diffusion
and cell transport.

Since striae are frequently observed to align in a direction per-
pendicular to the direction of skin tension, they are found to devel-
op as parallel inflammatory streaks in the skin. Hence, without loss
of generality, we can reduce a potential two-dimensional problem
to a one-dimensional problem since the patterning is translation-
ally invariant in the direction perpendicular to the direction of skin
tension. We thus consider a one-dimensional model, definedon a
periodic domain, similar to the model developed by Oster et al.
[26] and modified by Vaughan, Jr. et al. [27] where the skin is trea-
ted as a visco-elastic medium. The model derived below and the
model in Vaughan, Jr. et al. [27] generalise the model discussed
in Oster et al. [26] and Murray [21] by keeping the inertial terms
and writing the governing equations in the material frame of refer-
ence. This derivation keeps the nonlinear terms that arise from
transformation from spatial to material frames of reference in
the spatial derivatives, which increases the range of parameters
where the solution evolves to a bounded steady state [27].

The model consists of conservation equations for the fibroblast
cell density, ĉ, and the ECM density, q̂, in a deformed frame of refer-
ence coupled through a force balance equation governing the
mechanical interaction of the fibroblasts with the ECM, which is de-
fined in the undeformed (reference) frame. In this formulation, we
will transform the equations governing the cell and ECM densities
from the deformed frame to the reference frame, which will simplify
the methods used to solve this model numerically. Note that vari-
ables with a hat denote a variable in the deformed frame of refer-
ence and variables without a hat are defined in the reference frame.

The stress tensor, r, satisfies the force balance equation in the
reference frame,

q0
@2u
@t2 ¼

@

@x
rþ s ĉ; q̂ð Þð Þ þ q0F; ð1Þ

where u is the material displacement, s ĉ; q̂ð Þ is the traction due to
cell-ECM interactions and depends on the cell and ECM densities
in the deformed frame of reference, q0 is the ECM density in the ref-
erence frame, and F is an external body force. We follow the Oster–
Murray–Harris model [26] and treat the ECM as a linear, isotropic,
visco-elastic material. Hence, the stress tensor in one dimension is

r ¼ A
@2u
@t@x

þ B
@u
@x
: ð2Þ

Here, A ¼ l1 þ l2, where l1 and l2 are the shear and bulk viscosi-
ties of the ECM, respectively, and

B ¼ E
1� mð Þ

1þ mð Þ 1� 2mð Þ ;
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where E is the Young’s modulus and m is the Poisson’s ratio of
the ECM. It is assumed that the ECM material is attached to
the subcutaneous fascia by fibrous bands that resist the lateral
displacement of the overlying dermis. We model this attach-
ment as a linear spring and the body force in the force balance
equation, (1), is

F ¼ �su; ð3Þ

where s is a positive spring constant.
We model the traction exerted by the cell-matrix interactions in

the deformed frame of reference as

s ĉ; q̂ð Þ ¼ s0
ĉ

1þ kĉ2 q̂þ b0
@2q̂
@x̂2

 !
; ð4Þ

where s0 is the traction strength, k is a constant that accounts, in a
phenomenological way, for contact inhibition, b0 is the strength of
the long-range traction that arises from the fibrous nature of the
ECM, which can extend the range of the traction force exerted by
the fibroblasts, and @=@x̂ is the spatial derivative in the deformed
frame of reference.

We assume that there is no production or degradation of the
ECM, so we can relate the ECM density in the deformed frame to
the ECM density in the reference frame using the relation
q0 ¼ Jq̂, where J ¼ 1þ @u=@x is the Jacobian of the deformation
gradient and q0 is a constant. Likewise, we transform the cell den-
sity from the deformed frame to the reference frame using the
same relation, c ¼ Jĉ. Here, c is not assumed to be constant since
we will allow for the movement of cells by diffusion.

We transform the derivatives in the long-range traction force
into the reference frame by taking the derivative of the definition
of the displacement, u x; tð Þ ¼ x̂ x; tð Þ � x, with respect to the spatial
coordinate in the reference frame, to obtain

@

@x̂
¼ 1

1þ @u=@x
@

@x
: ð5Þ

Hence, the traction force in the reference frame is

s c; @u=@xð Þ ¼ s0
cq0

1þ @u=@xð Þ2 þ kc2

� 1þ b0
@

@x
1

1þ @u=@x
@

@x
1

1þ @u=@x

� �� �� �
: ð6Þ

See Appendix A for the details of the derivation of this term.
Inserting (2) and (6) into (1), the resulting force balance equa-

tion in one dimension is

q0
@2u
@t2 ¼

@

@x
A
@2u
@x@t

þ B
@u
@x
þ s c;

@u
@x

� �" #
� sq0u ¼ 0: ð7Þ

It is assumed that fibroblasts move randomly and are advected
with the medium. Thus the governing equation for the cell density,
ĉ, in the deformed frame of reference is

@ĉ
@t̂
þ @

@x̂
ĉvð Þ ¼ D

@2ĉ
@x̂2 ; ð8Þ

where v ¼ @u=@t is the velocity of the medium, D is the diffusion
coefficient and t̂ is time in the deformed frame. Relating the cell
density in the deformed configuration, ĉ, with the cell density in
the initial configuration, c, using the relation c ¼ J�1ĉ and the
change in the spatial derivative, (5), and the change in the temporal
derivatives due to the change in frame,

@

@t
¼ @

@t̂
þ v @

@x̂
; ð9Þ

we obtain
@c
@t
¼ D

@

@x
1

1þ @u=@x
@

@x
c

1þ @u=@x

� �� �
: ð10Þ

Next, we non-dimensionalise Eqs. (10) and (7) using the
relations:

x� ¼ x
L
; t� ¼ t

T
; c� ¼ c

c0
; u� ¼ u

L
;

k� ¼ kc2
0; a� ¼ 1

sT2 ; a� ¼ A

L2Tsq0

; b� ¼ B

L2sq0

;

d� ¼ DT

L2 ; s� ¼ s0c0

L2s
; b� ¼ b0

L2 ;

ð11Þ

where L is the characteristic length scale and T is the characteristic
time scale. The non-dimensionalised equations, after dropping the
stars, are:

@c
@t
¼ d

@

@x
1

1þ @u=@x
@

@x
c

1þ @u=@x

� �� �
ð12Þ

and

a
@2u
@t2 ¼a

@3u
@x2@t

þb
@2u
@x2

þs
@

@x
c

1þ@u=@xð Þ2þkc2
1þb

@

@x
1

1þ@u=@x
@

@x
1

1þ@u=@x

� �� �� �" #
�u: ð13Þ

Note that we generalise the Oster–Murray–Harris model by
keeping the inertial term, a@2u=@t2. Even though the a term is
small for physically relevant parameters, the acceleration of the
medium, @2u=@t2, can be large in the numerical simulations and
it would not be appropriate to neglect this term for all time.

The above equations for the dimensionless fibroblast density, c,
and the material displacement, u, are coupled with appropriate
boundary conditions. Since striae occur as parallel lines and are
translationally invariant in the transverse direction, we assume
in this paper that the solution is periodic in space and, hence,
we enforce periodic boundary conditions on the ends of the
domain.

3. Linear analysis

The linearized versions of Eqs. (12) and (13) around the normal-
ized steady state c ¼ 1 and u ¼ 0 are

@c
@t
¼ d

@2c
@x2 �

@3u
@x3

 !
ð14Þ

and

a
@2u
@t2 ¼ a

@3u
@x2@t

þ b� 2
s

1þ kð Þ2

 !
@2u
@x2

þ s 1� kð Þ
1þ kð Þ2

@c
@x
� sb

1þ k
@4u
@x4 � u ¼ 0: ð15Þ

By defining sk ¼ s= 1þ kð Þ2 and bk ¼ b 1þ kð Þ and looking for solu-
tions of the form

c

u

� �
¼ zertþikx; ð16Þ

where z is the eigenvector, r is the linear growth rate, and k is the
spatial wavenumber, we require Aj j ¼ 0, for

A ¼
rþ dk2 �idk3

�isk 1� kð Þk ar2 þ ak2rþ B k2
� �

2
664

3
775; ð17Þ

where
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B k2
� �

¼ skbkk4 þ b� 2skð Þk2 þ 1: ð18Þ

The characteristic equation is

ar3 þ aþ adð Þk2r2 þ B k2
� �

þ adk4
� �

r

þ dk2 B k2
� �

þ s 1� kð Þk2
� �

¼ 0: ð19Þ

If we ignore inertial forces (a = 0) and cell diffusion (d = 0), we re-
cover the characteristic equation for the basic Oster–Murray–Harris
model.

If we take the ratio sk=b as the bifurcation parameter, the real
part of r can become positive in three ways as sk=b. Applying
the Routh–Horwitz conditions to (19),

B k2
� �

þ adk4
< 0;

d – 0 and B k2
� �

þ sk 1� kð Þk2
< 0;

or

adk2 B k2
� �

þ sk 1� kð Þk2
� �

P aþ adð Þk2 B k2
� �

þ adk4
� �

ð20Þ

are the conditions necessary for linear instability.
The first case, B k2

� �
þ adk4

< 0, will occur when

sk

b
>

1
2
; and b� 2sk½ �2 ¼ 4 skbk þ adð Þ: ð21Þ

The critical wavemode in this case is

k2
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

skbk þ ad

s
: ð22Þ

The presence of diffusion has a stabilizing effect in this case by
increasing the critical value of sk required for a bifurcation from

sk ¼
b
2
þ 1

2
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 2bþ bð Þ

q� �
; ð23Þ

in the original Oster–Murray–Harris model to

sk ¼
b
2
þ 1

2
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 2bþ bð Þ þ 4ad

q� �
: ð24Þ

The second case, d – 0 and B k2
� �

þ sk 1� kð Þk2
< 0, will occur

when

sk

b
>

1
1þ k

and b� 1þ kð Þsk½ �2 ¼ 4skbk: ð25Þ

The critical wavemode is
Fig. 1. Dispersion relation as the bifurcation parameter s is increased. The other two roots
are real except for a narrow region (shown in the inset), 0 6 k2

6 2� 10�4 for s ¼ 2:5933
complex.
k2
c ¼

ffiffiffiffiffiffiffiffiffi
1

skbk

s
: ð26Þ

Note that this case only arises if there is cell diffusion, d – 0.
The third case will occur when

sk

b
>

1
2þ ad

a 1� kð Þ
and b� 2þ ad

a
1� kð Þ

� �
sk

� �2

¼ 4 skbk þ d aþ adð Þð Þ: ð27Þ

The critical wavemode is

k2
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
skbk þ d aþ adð Þ

q
: ð28Þ

Note that when k P 1þ 2a=ad, this case never produces a bifurca-
tion as sk is increased.

If k – 1, diffusion causes the system to be able to reach a bifur-
cation for different values of critical sk, which depend on the
parameters b; b;a; a, and d. When k ¼ 1, the bifurcation conditions
in the second case, (25), are reached first for all values of b; b;a; a,
and d and are identical to the bifurcation conditions for the original
Oster–Murray–Harris model.

The fixed, dimensional parameter values we use for this system
are [28–30,21,31,32]

A ¼ 105 poise; D0 ¼ 10�9 cm2

s
; b ¼ 10�2 cm2;

s ¼ 102 1
s2 ; c0 ¼ 104 cell

cm3 ; q0 ¼ 10�1 g
cm3 :

ð29Þ

Using the length scale L ¼ 1 cm and the time scale T ¼ 10 s, these
correspond to the non-dimensional parameters

a ¼ 10�4; a ¼ 103; d ¼ 10�8; b ¼ 10�2: ð30Þ

We set k = 1 and the two parameters, b and s, are chosen so that the
uniform steady state is linearly unstable to small random perturba-
tions. Fig. 1 shows the dispersion relation for the root of (19) with a
positive real part for various values of s with b ¼ 1:012
(B ¼ 10:12 dynes=cm2). A bifurcation occurs for s > 2:469
(s0 > 2:469� 10�5 dynes cm4=cell mg) where only one root has a
positive real part for k2 – 0 and the other two have negative real
parts for k2 – 0.

For k2 ¼ 0, the three roots are r ¼ 0;�i=
ffiffiffi
a
p

. The r = 0 root cor-
responds to a uniform increase/decrease in the cell density. Since
we can scale any perturbations in the total cell density out, we
can neglect this root. The r ¼ �i=

ffiffiffi
a
p

roots correspond to oscilla-
tory translation of the medium. These oscillations do not affect
of the characteristic Eq. (19), r2 and r3, are not shown and R r2;r3f g 6 0. The roots
, where the roots are complex with a negative real part. For k2 ¼ 0, the root is purely
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the cell/ECM densities and do not contribute to the nonlinear
dynamics of the system.

For k2 – 0, the root with a positive real part has a zero imagi-
nary part except for a thin region, 0 < k2

< 2� 10�4. This narrow
range of wavemodes are not admissible unless the domain is of
sufficient length and are not admissible for biologically relevant
domain sizes in this paper.
4. Numerical results

We numerically solve Eqs. (12) and (13) using finite differences
in space and the backward Euler method in time. We take the do-
main to be periodic with length 2pcm discretised using a mesh
with 300 grid points and a time step of Dt ¼ 10�1. The uniform
steady state solution for u and c is perturbed using a uniform ran-
dom function with mean zero and the amplitude of the perturba-
tions are 10�2. The numerical solutions are independent of grid
size for grids that are sufficiently refined to resolve the significant
spatial frequencies in the problem and are independent of the ex-
act random initial condition subject to a phase shift.

From a biological point of view, we suggest the precursors of
clinically evident striae may appear as regions of ECM density that
are below the uniform steady state value (u ¼ 0; q ¼ c ¼ 1). Fig. 2
shows the dilation and the ECM density after four days for
b ¼ 1:012 (B ¼ 10:12 dynes=cm2) and s ¼ 2:593 (s0 ¼ 2:593�
10�5 dynes cm4=cell mg). In the ECM density, we can see the
development after four days of regions where there is a significant
decrease in density (minq � 74%q0). This corresponds to a
2:6� 10�2 g=cm3 decrease in ECM density at the minima. The crit-
ical wavemode is kc ¼ 3 and this corresponds to an interlesional
distance of approximately 2:09 cm. The above numerical solution
is not a steady state solution. There is a second phase of growth
that is due to the diffusion of fibroblasts. We can see slow growth
Fig. 2. Numerical solution of Eqs. (12) and (13) after 4, 45, and 90 days for b̂ ¼ 1:012 and
frame of reference. The minima after four days represent a 26% decrease in ECM densit
in the displacement and cell/ECM densities at 45 and 90 days. Here,
the maximum cell density has increased by a total 2% after 90 days.
Any appreciable effect due to this slow growth will occur over a
long time frame and since we are interested in the onset of pat-
terns that can become precursors of striae distensae, we will focus
on the initial development of patterning.
5. Discussion

We have described in detail a mathematical model proposed to
capture the earliest events in the pathogenesis of striae distensae.
Motivation for the model is twofold: first, we are interested in
exploring the relative contributions of both skin stretching and
corticosteroid effects in the pathogenesis of striae; and second,
we are interested in the process of pattern formation in striae.
Since stretch marks are frequently observed to align perpendicular
to the direction of skin tension, it is likely that the effects of tissue
forces play an important role in the genesis of striae, and in deter-
mining the patterns that form. These considerations naturally lead
to a mechanochemical type model.

In this paper, we have reformulated Murray’s mechanochemical
modelling approach [21] by stating the equations in a common
frame of reference. In the limit of small displacements this reduces
to the original model, but crucially, the model is now applicable
over a much wider range of parameter space and boundary condi-
tions [27]. The work by Hariharan [22] (under the supervision of
one of the authors) lists some preliminary results on this problem,
but these are significantly extended.

We have shown that an intuitive model incorporating the den-
sity of fibroblasts, the density of extracellular matrix, and a force
balance equation that accounts for the contractile forces generated
by fibroblasts is able to predict, for biologically realistic parame-
ters, periodic solutions for ECM density. In this periodic spatial
ŝ ¼ 2:593. The ECM and cell densities are in the deformed variables in the deformed
y and the interlesional distance is approximately 2:09 cm.



146 S.J. Gilmore et al. / Mathematical Biosciences 240 (2012) 141–147
pattern, the precursors of striae are postulated to appear in close
proximity to regions of ECM density at their maximal densities.

As discussed in Section 1, an important unresolved issue with
regard to the pathogenesis of striae distensae is the relative contri-
butions of skin stretching on one hand, and endocrine factors on
the other. While some investigators have suggested that striae
may simply result from tissue rupture due to mechanical loads,
endocrine changes are present in association with many of the
clinical situations in which striae are encountered [12]. In our
model, we are able to quantify the degree of stretch imposed on
the skin by our parameter s0 (which is a measure of the contractile
force exerted by fibroblasts on the surrounding extracellular ma-
trix) since the fibroblasts respond to external mechanical force
by opposing that force. Furthermore, we are able to characterize
the skin stiffness by adjusting B, a parameter proportional to the
Young’s modulus. Since it is recognised that corticosteroid expo-
sure may increase skin extensibility [23,24], we can model the ef-
fects of corticosteroid excess by reducing B. Our results suggest
that the uniformity of cutaneous extracellular matrix may be ren-
dered unstable by either increasing s0 or decreasing B. We obtain
solutions that are qualitatively identical via two distinct mecha-
nisms, and these distinct mechanisms correspond to either stretch-
ing of the skin or increasing the extensibility of skin. From the
clinical perspective, these results suggest that either factor alone
can induce striae. For example, in adolescence striae may develop
simply as a result of skin stretching (increasing s0); abnormal
endocrine factors and changes to skin extensibility are not needed.
Conversely, the application of potent topical steroids to the skin re-
sults in a reduction in the mucopolysaccaride content [33] – and
this may account for the increases in skin extensibility reported
[24] – with the subsequent development of striae under normal
skin tension. Indeed, the skin is not subject to increased stretch
in a number of clinical situations where striae distensae arise: ca-
chexia (a wasting syndrome associated with malignancy or chronic
infection) and other causes of severe weight loss are two examples
where decreased dermal substrate and the resultant increased
extensibility of skin may be the sole aetiological factor. Interest-
ingly, of seven patients treated with high dose intravenous cortico-
steroid for alopecia areata (an autoimmune disease associated with
circular patches of hair loss in the scalp) [23] one patient devel-
oped striae distensae on the thighs within four days of the infusion.
In this study skin extensibility was measured and was shown to in-
crease within hours of the infusion, reaching a maximal extensibil-
ity at around four days. In ageing skin it has been reported that
there is a decrease in extensibility [34] (corresponding to an in-
crease in B in our model) and perhaps explaining why striae are
only rarely observed to develop in mature adults. Finally, our mod-
el is not inconsistent with both increased stretch and dermal
changes acting together in the genesis of striae. For example, in
pregnancy lesions may arise due to the synergistic effect of both
increased skin extensibility on one hand, and the increased
mechanical forces acting on the skin secondary to a rapidly dis-
tending abdomen on the other.

Striae distensae in the skin often exhibit typical patterns.
Although the individual lesions are linear and usually 5–10 cm
long, multiple lesions are the norm and are always aligned perpen-
dicular to the axis of skin tension. Striae develop on the back of
adolescent males as parallel streaks perpendicular to the direction
of vertical growth. Conversely, striae on the breasts in females of-
ten have a radial pattern indicating that the lines of tension in the
skin in an enlarging breast are circumferential. Although our model
is one-dimensional, we are able to predict the existence of periodic
solutions that arise parallel to the direction of tension, consistent
with the clinical observations noted above. We have shown the
dimensional value for the wavelength of our solutions can be ad-
justed to approximate 1 cm. This result is in good agreement with
the average distance found between striae that are aligned in a par-
allel arrangement.

Although we have demonstrated that increases in the contrac-
tile forces exhibited by fibroblasts or increases to skin extensibility
may lead to dermal inhomogeneity of ECM density, we have been
unable to provide a definite link between these changes and the
mast cell degranulation that is known to be an early event in the
pathogenesis of striae. However, it is known that increases in
GAG (glycosoaminoglycan) density is a very early finding in striae
rubra [15], and it is unclear at present whether these changes pre-
date, coincide with, or follow the mast cell associated elastolysis.
Our model, in predicting periodicity in ECM density along the axis
of skin tension, adds weight to the hypothesis that local increases
in GAG density (since the GAG is part of the ECM) may precede
mast cell degranulation. Since fibroblasts in early striae are known
to exhibit aberrant gene expression profiles, one possible patho-
genic mechanism is apparent: secreted fibroblast products may ex-
ist locally in higher concentrations where the ECM density is
higher and thus lead to spatially dependent mast cell recruitment
and subsequent elastolysis.

In summary, we present a conceptually simple but mathemati-
cally complex model that attempts to account for the earliest
events in the pathogenesis of striae distensae. We suggest that
the results are sufficiently robust enough to provide evidence for
the existence of an important symmetry breaking mechanism that
is able to distinguish between two fundamentally different and
clinically relevant causes.
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Appendix A. Transformation of the traction force into the
material frame of reference

We begin with the traction force exerted by the fibroblasts on
the ECM in the spatial frame of reference:

s ĉ; q̂ð Þ ¼ s0
ĉ

1þ kĉ2 q̂þ b0
@2q̂
@x̂2

 !
; ðA:1Þ

where the hats designate the spatial frame of reference. We trans-
form ĉ and q̂ from the spatial frame to the reference frame using
the Jacobian of the deformation gradient, J ¼ 1þ @u=@x, to get

ĉ ¼ c
1þ ux

and q̂ ¼ q0

1þ ux
; ðA:2Þ

where ux ¼ @u=@x. Substituting (A.2) into (A.1) and simplifying
yields the equation
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1þ uxð Þ2 þ kc2
1þ b 1þ uxð Þ @

2

@x̂2

1
1þ ux

� � !
: ðA:3Þ

Next, we convert the spatial derivatives to the reference frame
using

@

@x̂
¼ 1

1þ ux

@

@x
; ðA:4Þ

to obtain the traction force in the reference frame:
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