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Abstract—Motivated by a family of related hybrid multiscale
models, we have built an object-oriented framework for devel-
oping and implementing multiscale models of vascular tumour
growth. The models are implemented in our framework as
a case study to highlight how object-oriented programming
techniques and good object-oriented design may be used
effectively to develop hybrid multiscale models of vascular
tumour growth. The intention is that this paper will serve as a
useful reference for researchers modelling complex biological
systems and that these researchers will employ some of the
techniques presented herein in their own projects.

Keywords-multiscale; hybrid; object-orientation; vascular tu-
mour growth; modelling.

I. INTRODUCTION

Object-orientation was originally heralded as a “silver
bullet” [1] for dealing with the software crisis, which was
characterised by, amongst other things, the high complexity,
low productivity, and poor reliability of software systems.
Object-oriented programming (OOP) [2] promises to en-
courage code re-use, maintainability, understandability and
extensibility for those systems which are amenable to object-
oriented design. However, producing an object-oriented sys-
tem or program with long term re-usability, extensibility and
maintainability requires considerable investment of time and
effort at the start of the project, for what at first may seem
like little return; it is an art-form, often requiring years of
experience and/or a time-consuming trial and error approach.
Nevertheless, the potential benefits of a good object-oriented
design are well worth the time and effort spent.

OOP today remains the most popular programming
paradigm world wide, being used extensively by both soft-
ware engineers and mathematical modellers. However, OOP
is often used poorly or inappropriately, particularly by
mathematical modellers, who may not have a background
in computer science and little experience with OOP. This
issue is compounded by the fact that modelling academics
are under tremendous pressure to produce and publish results
from implemented models quickly, before competing groups
beat them to the punch. This inherently leads to little time

and effort being put in to the design of model code, which
might have ensured that the model implementation would be
more understandable and could be more easily maintained
and extended at a later date.

In this paper, we advocate the use of good object-oriented
techniques for developing multiscale models of vascular
tumour growth. Motivated by models proposed by Alarcón
and co-workers [3], [4], [5], [6], [7], [8], we have developed
an object-oriented modelling framework in which a range
of hybrid multiscale models of vascular tumour growth are
implementable. To date, the functionality of the framework
focusses around the methodologies employed by Alarcon
and co-workers. However, by employing an object-oriented
framework, and designing it with re-usability and extensi-
bility in mind, our framework could be extended to allow
for additional functionality with relative ease.

Our paper focuses on the aspects of OOP which make
it appropriate for developing models of complex biologi-
cal systems, using the models of Alarcón and co-workers
as a case-study. We exploit good object-oriented design
principles, describing the models abstractly and decoupling
the framework design from model implementations. These
aspects of our work may have implications for increasing the
trust-worthiness of model execution by remote users and im-
prove the prospects for model re-use in the modelling com-
munity. By decomposing models into collaborating classes
of biological entities and behavioural algorithms, we also
enable the rigorous validation of models and a test-driven
approach to model development to be implemented.

The remainder of the paper is structured as follows. In
Sections II and III, we briefly introduce the application
domain and some basic concepts of OOP. We also ad-
dress what aspects of the paradigm make it appropriate
for developing the complex multiscale biological models
which we consider. In Section IV, we present the results of
an exemplar simulation whose implementation was realised
using the object-oriented framework we have developed. We
then discuss the implications of our work and avenues of
future work in Section V, before concluding in Section VI.
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II. THE APPLICATION DOMAIN

The entry of a tumour into its vascular growth phase
marks the transition from a phase in which the tumour is
essentially harmless to one in which it is potentially fatal [9].
During avascular growth, tumours are limited in size because
they rely on diffusion to obtain nutrients. As a tumour grows,
parts of it become deprived of oxygen, resulting in some of
the tumour cells becoming quiescent and expressing various
angiogenic factors. These tumour angiogenic factors (TAFs)
diffuse throughout the surrounding tissue and, upon reaching
a blood vessel, stimulate the formation of new vessel sprouts
which migrate towards the tumour. After flow has been
established in the new vasculature the surrounding tissue
has increased access to nutrients, allowing the tumour to
continue growing and to invade the adjacent healthy tissue.
This process is known as tumour-induced angiogenesis.
Once vascularised, the tumour also gains its own transport
network by which tumour cells may be transported around
the body to form metastases in any part of the host organism.

There is a large body of literature devoted to mod-
elling both avascular tumour growth and tumour-induced
angiogenesis. Broadly speaking such models can be placed
into three categories: continuous, discrete and hybrid. For
extensive reviews, see [10], [11].

Multiscale modelling involves the integration of several
biological models, each describing a certain process at a
particular time and length scale. Furthermore, each process
may be represented using different mathematical modelling
methodologies. For example, coupled ODEs may be used
to describe subcellular processes and protein interaction
networks and PDEs may be used to describe the diffusion
of nutrients or chemical signals through tissues, while cell-
cell interactions may be modelled discretely using on- or
off-lattice techniques. Multiscale models allow modellers
to capture the interdependence of biological phenomena
which occur at different biological scales. They offer a
natural framework for studying biological phenomena, such
as angiogenesis and tumour growth, which are inherently
multiscale in nature, and thus appear to offer the cutting-
edge with regards to potential predictive power and clinical
applicability. As such, multiscale models of angiogenesis
and vascular tumour growth have gained in popularity over
the last decade and have begun to show promise at the
clinical level. It is for these reasons that we too focus on
multiscale models of vascular tumour growth in this work.

Alarcon, Byrne, Maini and co-workers were one of the
first groups to develop a vascular tumour model which
incorporated multiple biological scales in a systematic way
[3], [4], [5]. Their hybrid multiscale model has continued
to develop through contributions from Betteridge [6], Owen
[7] and Perfahl [8], amongst others. This family of models
couples biological phenomena that include vascular adap-
tation and remodelling, blood flow, nutrient and vascular

endothelial growth factor (VEGF) diffusion throughout the
extracellular space and the cellular and subcellular dynamics
of normal and cancerous cells. The mathematics that under-
pins the model implementations is described in the original
papers and, for brevity, is not repeated here. Other notable
multiscale models of tumour growth are presented in [12],
[13]; for a further review, readers may consult [14].

One of the best hopes for developing increasingly com-
plex models of vascular tumour growth that span multiple
biological scales is by re-using and extending existing mod-
els. However, the integration or extension of existing models
of vascular tumour growth (or elements of those models)
currently represents a substantial technical challenge in
the field. At present, mathematical models of cancer are
often implemented by hand, in the language of choice of
a modeller, with little or no thought given to how code
may be re-used or models extended at a later date. This
means that modellers must be familiar with the code in order
to manipulate and evaluate simulation runs. Additionally,
modellers are met with significant issues when they wish
to re-use, extend, or maintain model code. As such, the
development of cancer models and the success of the cancer
modelling community as a whole is severely hindered. These
are the principal factors which have inspired our work.

III. OBJECT-ORIENTED DESIGN FOR IN SILICO MODELS
OF VASCULAR TUMOUR GROWTH

The way in which we think about and describe the world
usually involves looking at it in terms of objects and the
interactions between those objects. For complex biological
systems, such as a growing tumour, verbal modelling does
not enable us to describe or communicate aptly the complex
non-linear feedback interactions which characterise those
systems [15]. For this, we need mathematics. OOP strives
to describe systems in terms of objects and the interactions
between those objects computationally, thus enabling the
quantitative mathematical analysis of complex biological
systems. By describing systems in a way with which we are
familiar, OOP promotes both an understanding of the system
which we are trying to model and also an understanding of
the model code itself; OOP helps us to manage the essential
complexity [1] associated with real-world modelling.

Many of the object-oriented techniques described in this
section help modellers to accurately describe the world
in a way which is natural and understandable to others.
This is particularly important within the field of biological
modelling. Not only is it desirable for other modellers and
programmers to understand our code, so that they may
easily use, re-use and extend our models, but it is extremely
desirable for experimentalists to be able to understand the
system described through the code. This is because systems
biology and the development of accurate and validated
complex multiscale models heavily rely on the co-operation
between experimentalists and modellers. Making computa-
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tional models easier to understand for experimentalists, who
may have little programming experience, will promote the
closer collaboration of experimentalists and modellers.

A. Objects, classes and modularity

Objects in the context of OOP are complex data structures
which contain data fields (attributes) and a complete set of
operational methods to which that object may respond (its
interface). In this way, objects represent a convenient data-
centric way of decomposing systems into understandable and
manageable sets of modules. In OOP, one actually usually
designs classes, not objects. These classes, then, form the
templates from which multiple objects may be instantiated
and exist concurrently inside a program at run-time. Classes
may be developed and tested individually before being
integrated into larger systems being developed by a team or,
in our case, potentially a larger community of programmers.
Designing classes appropriately may make possible their re-
use in other applications.

Simply by enforcing boundaries and structure on a pro-
gram or model, objects as modules increase the main-
tainability of code. In software design, low coupling and
high cohesion are often highlighted by programmers as
qualities which a re-usable, extensible and maintainable
piece of software should possess. Broadly, coupling refers
to the interdependencies between different modules and
cohesion refers to how strongly related the functions within a
module are. High cohesion is an important quality because
it increases the understandability of code. Low coupling,
where one module interacts with another through a stable
and well-defined interface and independently of the internal
structure of the other module, increases maintainability, re-
use and extensibility of code. Designing a library of classes
with these properties is technically demanding and time-
consuming but the benefits are invaluable, especially later
in the life-cycle of a project.

B. Encapsulation and information and implementation hid-
ing

The wrapping up of operations and attributes into a class,
so that those attributes may only be manipulated through
or accessed via the operations provided by the class, is
encapsulation. Good encapsulation hides the details of an
object’s internal attributes and implementation of operations
from modellers using that object [2]. These techniques are
known as information hiding and implementation hiding,
respectively, and their use is essential for promoting the
understandability of code in our framework.

Many complex algorithms are employed in the models im-
plementable in our framework, none more so than the struc-
tural adaptation algorithms used to determine the pseudo-
steady-state radii of vessels and haematocrit distribution in
a vessel network (see [3] for details). However, by packaging
the operations and parameters required by this algorithm into

Figure 1: UML [16] diagram illustrating the class hierarchy for
biological entities in our framework.

a single StructuralAdaptationAlgorithm class
and providing a single operation by which the entire algo-
rithm may be implemented, we ensure that modellers may
easily run the structural adaptation algorithm on a simulated
vessel network without necessarily knowing the detailed
mathematics involved in the algorithm. By encapsulating all
parameters associated with the structural adaptation algo-
rithm in this class, we also reduce the possibility of intro-
ducing errors into model implementation. This is established
by ensuring that these parameters may only be accessed from
a single point in the code and thus may not inadvertently
affect other parts of the model implementation. In this
way, encapsulation facilitates model code maintainability
and changeability as well as understandability.

C. Class and containment hierarchies

In the real world, objects are often related by is-a type
relationships. This type of relationship is also realisable in
OOP languages by using class inheritance. For instance,
in the models which motivate our work vessels and cells
are the primary biological entities of interest. Additionally,
we consider two types of cells: cancerous and normal.
These relationships are represented in OOP using inheri-
tance to define class hierarchies, such as that in Figure 1.
The classes CancerousCell and NormalCell inherit
from the class Cell, which in turn inherits from the
BiologicalEntity class. The class of Vessel also
inherits from the BiologicalEntity class. In this way,
appropriate relationships, which mimic real-world relation-
ships, are defined between some classes of objects in our
modelling domain. Furthermore, class inheritance provides
a powerful mechanism by which code may be re-used. By
inheriting from an existing class, such as our Cell class,
the subclasses (CancerousCell and NormalCell) au-
tomatically get all of the functionality (operations) and at-
tributes defined in the Cell class. Moreover, new operations
and attributes may be defined in the subclasses. In this
way, inheritance allows programmers to define classes as
incremental variations of more basic and abstract classes.

In OOP, inheritance also enables substitutability. In our
example, this means that objects of type CancerousCell
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Figure 2: Containment hierarchy for major biological classes in our modelling framework.

or NormalCell, if defined appropriately, may be provided
at run-time in any context where an object of type Cell
is expected without affecting the correctness of the model
implementation. This property of an object-oriented system
imposes strict rules on class inheritance, namely that any
class inheritance hierarchy must follow the principle of type
conformance [2]. Similarly, the Liskov substitution principle
[17] defines the appropriate use of subtyping relationships.
The ability to substitute classes dynamically at run-time is
hugely advantageous and we expand on this idea in Sections
III-D and III-E.

OOP also allows objects to be contained within other
objects. This is what is meant by a containment hierarchy. A
simple example, implemented in our framework is shown in
Figure 2. This hierarchy reflects the fact that vessel networks
comprise many vessels which are connected at nodes in
that vessel network and also that a cell population contains
cells, each of which contain a set of intra-cellular chemicals,
whose concentrations may dictate that cell’s behaviour.

The construction of containment hierarchies is a useful
technique, particularly for multiscale modelling. Objects
contained within other objects may be used to represent
nested levels of organisation, naturally mimicking the biol-
ogists’ view of their systems. This technique also provides
an intuitive mechanism for simplifying the implementation
of individual submodels at the specific biological scale(s)
with which that submodel is concerned. More complex con-
tainment hierarchies may be constructed to model biology
at increased levels of detail, as demonstrated in [18].

In a wider context, certain classes of objects may be
re-used by allowing instances of those classes to form
components of more than one type of composite object.
Class composition and inheritance may also be combined
effectively in order to promote further re-use and extensibil-
ity of model code. This is best exemplified by the strategy
pattern which is explained in Section III-E2.

D. Polymorphism

There are two distinctly different types of polymorphism
in OOP: static polymorphism and dynamic polymorphism.
Static polymorphism is also known as overloading and
involves defining operations with the same name, but which
take different types and/or numbers of input arguments.
An appropriate example of overloading would be when
requesting that a CellPopulation provide access to a
Cell contained within that population. We may wish to
access a Cell object by providing the CellPopulation
object with either a unique id number, which each cell
possesses, or with the location of the cell. In order to
implement these requirements we define two operations
inside the CellPopulation class, each called GetCell,
which each return a pointer to the Cell object of interest:

1) GetCell( int idNumber ) returns the Cell
with id equal to idNumber.

2) GetCell( coordinate cellLocation )
returns the Cell with location equal to
cellLocation.

This technique aids in program design and model imple-
mentation by providing a uniform and intuitive interface by
which object attributes may be accessed or manipulated [19].

Dynamic polymorphism, or overriding, is closely related
to the concepts of inheritance and substitutability (Section
III-C). We have already noted that inheritance guarantees
that a subclass will contain at least the same operations
that are defined in that class’ superclass and sometimes
more. OOP also allows the implementation of inherited
operations to be redefined in a subclass: this is overriding.
Calls to an operation which have been overridden in a
subclass generally perform a slightly modified function.
The functionality executed by a program then depends
on what type of object the method is actually called on
at run-time. This technique empowers modellers to create
implementations which are very malleable and extensible
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by allowing interchangeable classes within a class hierarchy
to perform moderately different functions in response to the
same operation call. Such polymorphism plays an important
role in the design patterns discussed in the next section.

E. Design patterns

Whilst design patterns are not strictly a part of OOP, the
terms object-oriented design and design patterns became
almost synonymous after the “Gang of Four” published
their book, Design Patterns: Elements of Reusable Object-
Oriented Software [20], in 1994. Design patterns represent
elegant and re-usable solutions to problems commonly en-
countered in software design. Simply using a design pattern
can improve code readability and understandability, espe-
cially for programmers and modellers who are familiar with
the pattern used. Utilising these tried and tested solutions to
software development problems may prevent subtle issues
that may not have been considered but which could cause
problems at a later stage in the life-cycle of a development
process. From a biological modelling perspective, certain de-
sign patterns, for example the visitor pattern (Section III-E1),
enable programmers to separate out biological structure from
algorithms which determine the behaviour of the biological
entities in a modelling domain. Such design patterns further
promote model understandability for biologists.

We do not intend to explain or provide an exhaustive list
of design patterns here, but instead present two behavioural
design patterns that are used extensively throughout our
framework: the visitor pattern and strategy pattern. We have
also made use of the factory pattern, the template method
pattern and the null object pattern in our code but do not
present full descriptions of these additional patterns here.

1) Visitor pattern

The main appeal of using the visitor pattern is that it
allows programmers to add new algorithms which operate
over a class hierarchy without having to modify that class
hierarchy, i.e., by adding operations specific to that algorithm
to each member of that hierarchy. Implementation of this
pattern involves defining two class hierarchies: one for the
classes of objects being operated on (elements) and one
for visitors which define the operations on elements. A
dynamically polymorphic accept operation is defined in
the element hierarchy which accepts a visitor object as
an argument. A visited element responds to an accept
operation call by calling the visit operation on the pro-
vided visitor, giving itself as an argument. Generic visit
operations defined in the visitor hierarchy are overridden
and overloaded in each member of the hierarchy, in order
to define the behaviour of each algorithm on each element
class, respectively. By grouping together related operations
on one class hierarchy within a separate class hierarchy, we
simplify both the class of objects carrying out a specific
behaviour and the implementations of the various algorithms

which determine that behaviour. In our framework, this
pattern is used extensively to implement models for the
behaviour of the vasculature, diffusible substances and cells.
We will describe the visitor pattern as implemented in the
context of modelling cell behaviour to better illustrate its
use.

In our framework, populations of cells are modelled
using an agent-based approach, where the behaviours of the
cells are modelled by the application of rules, which may
differ according to the type of cell to which the rule is
being applied. We model three aspects of cell behaviour:
movement, death, and proliferation. In addition we also
model subcellular events. Models for subcellular processes
include rules which dictate how the cell-cycle progresses;
when cells should undergo apoptosis, when they should enter
a quiescent state, when they should divide and how VEGF
is produced and released. A number of subcellular models
have been implemented in our framework, including a model
in which division occurs after a fixed period of time [3],
a simple oxygen dependent phase model [21], and a more
complex subcellular model, first introduced in [4], involving
the solution of seven coupled ODEs which represent how
various intra-cellular chemicals evolve in time and account
for the effect of local oxygen concentrations on cell-cycle
progression. Similarly, different submodels dictate how cells
should move and proliferate and also how and when a cell
should die, e.g., in response to the presence of a drug [5].

Following the template outlined above, we define a Cell
class hierarchy and a CellVisitor class hierarchy, whose
members define the algorithms which determine various as-
pects of a Cell object’s behaviour (Figure 3 (a)). Dynamic
polymorphism allows the different types of CellVisitor
classes to modulate the type of cell behaviour which the
visitor executes by responding to the same visit operation
calls. Static polymorphism allows the same CellVisitor
to implement slightly modified behaviours depending on
what type of Cell object that visitor is operating on. In
this way, an algorithm used to determine the behaviour of
multiple cell types may be encapsulated inside a single
class. Additionally, algorithm specific data structures and
parameters are encapsulated within the visitor classes thus
making the code more understandable and maintainable.

We extend the CellVisitor hierarchy in order to
account for the different algorithms which may be used
to model the same aspects of cell behaviour. For exam-
ple, since we use several different types of subcellular
model in our framework, we construct a hierarchy of
SubCellularModel classes, each of which encapsulate
a particular submodel, as shown in Figure 3 (b). At run-
time, we may then choose which model we would like to
implement very easily. We expand upon this idea in Section
III-E2, where we present the strategy pattern.

It is particularly easy to vary and add functionality to our
framework using this pattern. A new type of cell behaviour
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(a) Cell and CellVisitor hierarchies.

(b) Hierarchy of classes that encapsulate the various subcellular models used in our framework.
Figure 3: Visitor pattern as implemented within the context of modelling discrete cell behaviour.

or a modified algorithm for, for instance, cell movement
may be easily added to the framework by simply creating a
new concrete class in the CellVisitor hierarchy. In this
regard, this pattern makes extending certain aspects of the
framework extremely easy and intuitive.

In general, the visitor pattern is applied only when the
element class hierarchy is unlikely to change. Adding a new
class to this hierarchy means that a new concrete implemen-
tation of the visit operation, which takes an instance of
the new class as an argument, must be added to each con-
crete CellVisitor with an appropriate implementation.
Thus, extending model code in this way can prove difficult.
This issue may be partially negated by defining appropriate
default implementations in the abstract CellVisitor
class, however, this opens the door for potential bugs to
creep in to model implementations. Nonetheless, this pattern
is both adequate and appropriate for our purposes since we
are currently interested primarily in changing the algorithms
that determine the behaviour of biological entities rather than
changing the types of biological entities that are present.

2) Strategy pattern

As well as modelling the behaviour of biological en-
tities using the visitor pattern, we have also utilised the
strategy pattern, which allows us to vary the precise al-
gorithms which determine the various aspects of biolog-
ical entity behaviour at run-time. Again, we clarify this
statement with an example. At the highest level, for the

running of simulations we utilize this pattern by defining
a Simulation class. This class co-ordinates the events
which occur during a model simulation, whilst delegating
the responsibility of carrying out specific tasks to other
classes. For example, a Simulation has a reference to the
abstract SubCellularModel class. Different algorithms
for this particular aspect of the system’s behaviour are
implemented as concrete subclasses, as shown in Figure
3(b). Due to substitutability, an instance of one such subclass
may be assigned to this reference at run-time, providing the
implementation as desired by a modeller for a particular
realisation of a model. Figure 4 displays a class diagram
which illustrates how a model simulation is constructed in
our framework. Given that some simulations may not require
a particular behaviour to be modelled, we complement
the implementation of this design pattern by additionally
implementing the null object pattern (an instance of this
pattern involves defining an additional class within a class
hierarchy which has an appropriate interface but possesses
neutral behaviour). An example showing how we construct a
simulation in our framework using this pattern is presented
in the next section.

The strategy pattern promotes the understanding of model
code by factoring out common functionality of algorithms
into a suitable superclass, and promotes code maintainability
and extensibility, allowing us to implement a large range of
different models within our framework in an intuitive way.
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Figure 4: Class diagram showing the major classes involved in a simulation of vascular tumour growth in our modelling framework.

IV. MODEL REALISATION

Due to its strongly object-oriented nature, a language
supporting object-orientation is required to implement our
framework. The nature of the models we consider also
requires a language which supports pseudorandom number
generation and multi-dimensional arrays. We chose C++ as
our programming language because it fits these require-
ments, is relatively fast and is well-known and familiar
to the scientific community. A wide range of open-source
and reliable C++ libraries are also available which provide
relevant trusted functionality and optimised algorithms. Sev-
eral Boost [22] libraries are used extensively throughout our
code, as is the Standard Template Library. We also employ
the PETSc [23] library to solve large, sparse linear systems
of equations. Simulations are visualised using Paraview [24].

Running a complex multiscale simulation of vascular
tumour growth requires the co-ordinated interactions of
many objects. One of the aims of our framework was to
make the construction and running of model simulations
intuitive and simple. An example of tumour growth in 2-
D on an embedded vascular network is shown in Figure
5. To illustrate how such a simulation is set up in our
framework we also provide a walk-through in pseudocode
of the main steps involved in Algorithm 1. The first step in
setting up this simulation is to initialise the spatial mesh. The
spatial mesh is then used to initialise a Diffusibles ob-
ject, a VesselNetwork object and a CellPopulation
object. Diffusible species of interest are added to the
Diffusibles object and the CellPopulation ob-
ject is populated with cells, each of which contain vari-
ous intracellular chemicals: proteins involved in the cell-
cycle and species which diffuse throughout the model do-
main. A StructuralAdaptationAlgorithm object
is then created and appropriately customised. Finally, a
Simulation object is instantiated to which the various
model elements are added before the simulation is run.

There is considerable scope for changing parameters in
submodels and for removing and adding submodels. By em-

Figure 5: Two snapshots from a 2-D simulation of vascular
tumour growth. Cell distributions are shown in the left-hand-
side (cancerous cells are red and normal cells blue). The oxygen
distributions, in terms of dimensionless concentrations, are shown
in the middle panels and vessel networks in the panels on the right.
Vessel colours correspond to the haematocrit level inside a vessel
and the radius of a vessel is represented by its relative thickness.

ploying C++’s class templating capabilities in our framework
design, we have also ensured that simulations may be carried
out in 3-D by varying a template parameter representing the
dimensionality of the system. 3-D simulations of vascular
tumour growth will be presented in future work.

A significant advantage offered by our object-oriented
framework is the ability to isolate, analyse, test and validate
submodels at the various biological scales which we con-
sider. Figure 6 illustrates an example of data extracted from
a simulation which considered only the progression of the
Alarcón et al. 2005 cell-cycle model [4]. This functionality
allows us to customise submodels to experimental and/or
patient-specific data and facilitates further development.

V. DISCUSSION

In order for the full potential of in silico models of cancer
to be realised, the re-use of model code and the under-
standability of models must increase. In particular, attention
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Algorithm 1 Example simulation pseudocode.

OnLatticeMesh(latticeSiteSize,domainSize_X,domainSize_Y)
Diffusibles(OnLatticeMesh)
Diffusibles.AddDiffusibleSpecies("Oxygen")
Diffusibles.AddDiffusibleSpecies("VEGF")
HexagonallyTesselatedVesselNetworkFactory(OnLatticeMesh)
HexagonallyTesselatedVesselNetworkFactory.CreateVesselNetwork()
CellPopulation(OnLatticeMesh)
for i = 1 .. numberOfCells

Cell(location)
Cell.AddIntraCellularChemical("Cdh1")

...
Cell.SetMass(initialCellMass)
CellPopulation.AddCell(Cell)

end for
StructuralAdaptationAlgorithm()
StructuralAdaptationAlgorithm.SetHaematocritCalculator(HaematocritCalculator())
Simulation(CellPopulation,VesselNetwork,Diffusibles)
Simulation.AddCellMover(Betteridge06OccupationBasedMover())
Simulation.AddSubCellularModel(Alarcon05OxygenDependentModel())
Simulation.AddDiffusionCalculator(OxygenCalculator())

...
Simulation.SetDuration(simulationRunTime)
Simulation.SetTimestep(timestep)
Simulation.Run()

Figure 6: Time-evolution of intra-cellular chemical concentrations
involved in the Alarcón et al. 2005 cell-cycle model [4] for a
normal cell exposed to a dimensionless oxygen concentration of
one.

must focus on closing the gap between experimentalists
and modellers in order to encourage greater collaboration
between them. An object-oriented approach to modelling
cancer is ideally suited to these endeavours. That being
so, motivated by the multiscale models of vascular tumour
growth developed by Alarcón and co-workers, we have
developed an object-oriented framework for developing and
implementing multiscale models of vascular tumour growth

which is both flexible and intuitive to use. Object-orientation
has been used to describe elements of the application domain
in a way which should be understandable to both experi-
mental biologists and mathematical modellers with relatively
little programming experience. We have provided a hierarchy
of biologically-based classes which model populations of
cells and vasculature, and several physics- and rule-based
class hierarchies which describe how those biological en-
tities behave and interact. We have focused on ensuring
that code in our framework is understandable and main-
tainable, and that models implementable in our framework
are easily extensible. This was accomplished by exploiting
various object-oriented techniques, which have formed the
focus of this paper, and by the application of several well-
known design patterns, in particular, the visitor and strategy
patterns. We have found that, by employing this design, we
are able to move from one model implementation to another
simply by defining a few new classes in pre-existing class
hierarchies. This drastically reduces the development time
required to produce a novel model implementation.

The development of our framework has been use-case
driven, the primary use-cases being that the models of
Alarcón and co-workers must be implementable in our
framework. By basing our design around these models, we
ensure that it will be more useful than a purely abstract
design. Additionally, this family of models employs a diverse
range of interchangeable algorithms for modelling various
types of behaviour at multiple biological scales. This has
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enabled us to explore the extensibility of model code in
the context of existing models. The framework provides a
convenient plug-and-play environment in which a variety of
different models may be implemented. Furthermore, models
may be easily deconstructed into their component submodels
which may be individually tested, analysed, validated and
further developed before being re-integrated into the larger
models of vascular tumour growth. Thus, our framework si-
multaneously addresses what we consider to be the two main
challenges in cancer modelling; it facilitates the validation
of complex multiscale models of cancer and their extension
to incorporate novel data and new functionality.

Other groups have adopted similar approaches to develop
multiscale modelling frameworks. In [25], an object-oriented
framework was constructed in C++ to support the simulation
of avascular tumour growth using an agent-based hybrid
approach, and, using another object-oriented framework,
Gao et al. [26] implemented a hybrid model of avascular
and vascular tumour growth. To the best of our knowledge,
however, our investigation is the first to explicitly explore
the extensibility of model code in the domain of in silico
oncology.

In wider biological fields, CompuCell3D [27] and Vir-
tual Cell [28] are both well established and widely used
frameworks, which aim to facilitate the simulation of models
and re-use of model code. Chaste is another object-oriented
mathematical modelling and simulation framework whose
development to date has focussed on cardiac physiology and
multi-cell models of tissue growth and carcinogenesis in the
intestinal crypt [29]. Chaste aims to provide a reasonably
generic framework for modelling biological systems. The
models considered herein could be implemented within
Chaste, however, the implementation would not be easily
reconcilable with the real-world system. In contrast, the
bottom up approach we employ allows us to minimise
the conceptual distance between our model code and the
corresponding real-world systems. Nevertheless, we plan to
exploit existing links with Chaste and other related projects
to advance the development of our framework.

Our current study addresses the re-use and extensibility
of model code for a set of hybrid models of vascular
tumour growth. Whilst focussing on describing the models
abstractly, we have not attempted to provide a standard
for describing or implementing models of this type. Thus,
the models implementable in our framework are not in-
teroperable with similar models from the wider modelling
community. We will address this issue by further abstracting
concepts within our application domain and developing an
XML-based description of hybrid models of vascular tumour
growth. By describing the models in a way which is not
tied to a specific programming language and by adopting a
specific ontology, perhaps extending that under development
by the National Cancer Institute [30], we aim to make our
framework accessible to the wider modelling community

and facilitate the interoperability of model components. By
choosing XML as our language of choice we will also
enable the easy incorporation of models described in similar
XML-based standards such as CellML [31] and the Systems
Biology Markup Language (SBML) [32].

This effort will prove highly complementary to the work
undertaken by the Centre for the development of a Virtual
Tumour (CViT), whose Digital Model Repository (DMR)
is now live. The CViT DMR has made great steps for-
wards in the sharing of cancer models across the entire
modelling community, however, the models contained within
the DMR are not interoperable since they are not written to
an agreed upon standard or even in a common language.
The future re-use and interoperation of models within the
repository relies heavily on the adoption of a coding standard
for cancer modelling which we hope to help establish.
Enabling cancer modellers to download markup language
(ML) descriptions of models which could be executed on
a locally available solver tool, as opposed to downloading
model executables, also offers significant advantages with
regards to the trustworthiness of a model’s execution. Whilst
executables downloaded from an online repository should all
individually be verified, since they carry the potential risk of
having a virus or trojan embedded in them, downloaded ML
descriptions need not be verified in this way because they are
not capable of supporting the embedding of such malicious
materials. Instead only a single tool, used to resolve the ML
descriptions and run the models, need be verified.

VI. CONCLUSION AND FUTURE WORK

We have described some of the OOP techniques which we
have found useful in the construction of an object-oriented
framework for modelling vascular tumour growth. We hope
that this paper will serve as a useful reference for biological
modellers who do not have large amounts of experience with
OOP, but who may benefit from employing these techniques
in their own projects. We have explained the merits of
various techniques, outlining specifically how each one may
help programmers to produce in silico models which are
extensible, maintainable, re-usable and understandable.

Our framework provides a convenient and intuitive plug-
and-play environment in which a variety of different models
may be implemented. It has laid the ground work for
the further development of an XML-based domain specific
language for modelling vascular tumour growth. The devel-
opment of this language will form the focus of our future
work. We also plan to develop a GUI in which modellers
may engage with our plug-and-play functionality directly.
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