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T cells must respond differently to antigens of varying affinity
presented at different doses. Previous attempts to map peptide
MHC (pMHC) affinity onto T-cell responses have produced inconsis-
tent patterns of responses, preventing formulations of canonical
models of T-cell signaling. Here, a systematic analysis of T-cell re-
sponses to 1 million-fold variations in both pMHC affinity and dose
produced bell-shaped dose–response curves and different optimal
pMHC affinities at different pMHC doses. Using sequential model
rejection/identification algorithms, we identified a unique, minimal
model of cellular signaling incorporating kinetic proofreading with
limited signaling coupled to an incoherent feed-forward loop (KPL-
IFF) that reproduces these observations. We show that the KPL-IFF
model correctly predicts the T-cell response to antigen copresenta-
tion. Our work offers a general approach for studying cellular sig-
naling that does not require full details of biochemical pathways.
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T-cell activation is critical for initiating and regulating adaptive
immunity (1). It proceeds when T-cell receptors (TCRs) on

the T-cell surface bind to antigenic peptides loaded on major his-
tocompatibility complexes (pMHCs). Binding of pMHC ligands to
the TCR initiates a large signal transduction cascade that can lead
to T-cell activation as measured by functional responses such as
proliferation, differentiation, target cell killing, and the production
and secretion of effector cytokines. These responses critically de-
pend on the pMHC affinity and dose. T cells are known to dis-
criminate between normal and infected or cancerous cells based on
differences in pMHC affinity (2, 3). It is also appreciated that the
pMHC dose determines, for example, the peripheral induction of
regulatory T cells (4, 5). Although the proteins that form the TCR-
regulated signaling network have been identified (6, 7), it remains
unclear how the architecture they form integrates the pMHC af-
finity and dose into T-cell activation (8, 9).
Studies performed over the last two decades have focused on

empirically mapping the relationship between pMHC affinity and
T-cell activation (5, 10–24). A number of studies have reported an
optimal pMHC affinity for T-cell activation, but other studies have
failed to observe the optimum. Interestingly, a subset of studies
have suggested that the optimal pMHC affinity may be less pro-
nounced at high pMHC doses (13, 22). The mechanism underlying
an optimal pMHC affinity (or half-life) is proposed to be a trade-
off between serial binding and kinetic proofreading, but we have
recently shown that this trade-off would lead to an optimal pMHC
affinity at all pMHC doses (9).
An accurate model of T-cell signaling pathways that can predict

the T-cell response to a broad range of antigen ligand affinity and
dose is important not only to understand physiological T-cell re-
sponses but also in the rational design of T-cell–based therapies
(25). Engineered therapeutic TCRs and chimeric antigen receptors
(CARs) have been produced to bind, for example, cancer antigens
with high affinity (dissociation constants, Kd, in the picomolar to

nanomolar range). A specific example is the NY-ESO-1 cancer
antigen, for which both high-affinity TCRs and CARs have been
produced (26, 27). The optimizing of these therapies has focused,
in part, on trying to determine the optimal receptor affinity for
clinical efficacy (20, 22, 28–30; reviewed in ref. 31).
A key challenge in the study of cellular signaling in general,

and particularly in T cells, is the organization of large amounts of
molecular information into accurate mathematical models that
can predict cellular responses (32). The reductionist approach
has been to incorporate the known biochemistry into mathe-
matical models, but it is well recognized that this relies on many
assumptions (e.g., which proteins and interactions to include,
their binding and reaction rate constants, concentrations, etc.)
leading to models whose accuracy is difficult to determine (32,
33). This may, in part, explain why canonical models of T-cell
signaling have been elusive (Fig. 1A). An alternative holistic
approach is to infer models from experimental data without any
prior assumptions (34–39) (e.g., of the known biochemistry).
In this work, we used the high-affinity engineered c58c61 TCR

that binds the NY-ESO-1 cancer antigen (27) to measure primary
human T-cell activation in response to a 1 million-fold variation in
pMHC affinity and dose. We found bell-shaped dose–response
curves with inhibition at high pMHC doses. Moreover, different
pMHCs (and hence different affinities) produced the largest
T-cell response at different pMHC doses. Without making prior
assumptions about the known biochemistry, we identified a
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unique and modular pathway architecture for cellular signaling
that reproduced these observations: kinetic proofreading with
limited signaling coupled to an incoherent feed-forward motif
(KPL-IFF). We show that the identified KPL-IFF model predicts
the outcome of pMHC copresentation experiments. These mech-
anistic insights force a revision of the serial binding and kinetic
proofreading model for T-cell activation. The revised KPL-IFF
model now predicts T-cell activation from the physiological low-
affinity regime into the high-affinity regime applicable to thera-
peutic TCRs and CARs.

Results
T-Cell Activation in Response to a 1 Million-Fold Variation in Antigen
Affinity/Dose.As a first step to identify a T-cell signaling model (Fig.
1A) we established a TCR/pMHC system with a large range of af-
finities by using the therapeutic affinity-matured c58c61 TCR that
recognizes a peptide derived from the cancer antigen NY-ESO-1 in
complex with HLA-A*02:01 (Kd ∼ 50 pM) (27). This TCR contains
14 amino acid substitutions (primarily at the contact interface) but
maintains the same binding mode as the parental 1G4 TCR (40).
Using single, double, and triple peptide mutations we produced a
panel of 11 pMHCs that span a 1 million-fold range in affinity (Fig.
1 B and C and SI Appendix, Table S1 and Fig. S1). The observed
changes in affinity were largely a result of changes in the off-rate koff.
We next transduced the c58c61 TCR into primary human CD8+

T cells and the Jurkat T-cell line (SI Appendix, Fig. S2A) before
stimulating them with a 1 million-fold range of pMHC concen-
tration. In the case of the primary T cells we measured the su-
pernatant concentration of IFN-γ or macrophage inflammatory
protein 1-β (MIP-1β) after 4 h of stimulation (Fig. 1 D and E and
SI Appendix, Fig. S2B). In the case of the Jurkat T cells we mea-
sured the supernatant concentration of IL-8 after 16 h (Fig. 1F and
SI Appendix, Fig. S2C) or the transcriptional activity of activator
protein 1 (AP-1) and nuclear factor of activated T cells (NFAT) (SI
Appendix, Fig. S2D).

Four striking features were observed. First, the dose–response
seemed to exhibit a bell shape with reduced cytokine production
at high pMHC concentrations. This bell shape was less pro-
nounced or absent for low-affinity ligands, which is consistent
with published studies reporting a sigmoidal dose–response for
low-affinity ligands (14, 15, 17, 18, 21, 23, 41). Second, the peak
amplitude of the bell-shaped dose–response was similar for
pMHCs despite large differences in their affinities. The next two
features describe the observation that the pMHC that produced
the most cytokine was dose-dependent. At higher concentrations
(to the right of the peaks) there is an obvious intersection of the
dose–response curves so that different pMHC ligands produce
the most cytokine at different doses (e.g., 4A8K or 4A5A in Fig.
1 D–F). In contrast, at lower concentrations (to the left of the
peaks) curve intersection is not apparent, so that a single in-
termediate affinity pMHC produces the most cytokine.
These four phenotypic features are summarized as follows:

i) Bell-shaped dose-response for high- but not low-affinity ligands.
ii) Peak amplitude of bell-shaped dose-response is independent

of affinity.
iii) A single intermediate affinity ligand produces largest re-

sponse at low doses (left of the peak).
iv) Different intermediate affinity ligands produce the largest

response at high doses (right of the peak).

Although a bell-shaped dose–response can be a result of acti-
vation-induced cell death (42), this is unlikely to be the case here.
We found that the dose–response for cytokine production appeared
bell-shaped at all times with continued cytokine production to the
right of the peak (Fig. 2A). Moreover, direct detection of apoptosis
by annexin V binding revealed a maximum of only 10%, which is
insufficient to explain the observed reduction in cytokine pro-
duction (Fig. 2B). Further, lower levels of cytokine observed to the
right of the peak were associated with lower levels of annexin V,
which is inconsistent with the hypothesis that lower cytokine is a
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Fig. 1. T-cell activation in response to a 1 million-fold variation in pMHC affinity and dose. (A) Schematic illustrating that the signaling architecture linking
the TCR to cytokine production is unknown. (B) Affinities (displayed as dissociation constants, Kd) and (C) kinetics of the c58c61 TCR interacting with 11 pMHC
ligands determined using surface plasmon resonance (see also SI Appendix, Fig. S1 and Table S1). T-cell activation as measured by supernatant (D) IFN-γ and
(E) MIP-1β in primary T cells after 4 h and (F) IL-8 in Jurkat T cells after 16 h transduced with the c58c61 TCR (insets show the three lowest-affinity ligands in
each experiment). Ligand color scheme is identical across all panels. Additional data, including additional concentrations, additional ligands, pMHC immo-
bilization controls, and TCR expression levels, are summarized in SI Appendix, Fig. S2.
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result of increased apoptosis at high pMHC doses. These obser-
vations suggested a reduced rate of cytokine production per cell at
high pMHC doses, which we confirmed using single-cell cytokine
production in Jurkat T cells (Fig. 2C) and in primary T cells (SI
Appendix, Fig. S2E).
We observed interdonor variability that could not be explained

by differential TCR expression or pMHC activity. For example,
the pMHC that produced the largest response to the left of the
peak varied between 4A, 5Y, and 8S (compare Fig. 1D and SI
Appendix, Fig. S2B). However, the feature that a single pMHC of
intermediate affinity produced the largest response to the left of
the peak was consistent. Therefore, although the quantitative
features of the data exhibited variability, we observed a high level
of consistency for the key qualitative phenotypic features. Similarly,
we found that Jurkat T cells required a higher amount of antigen to
produce cytokine but that the overall response exhibited the same
qualitative phenotypic features observed in the primary T cells.
Although these Jurkat T cells express CD8α, their reduced sensi-
tivity may be related to the absence of CD8β, which has previously
been shown to increase antigen sensitivity (12).

Sequential Model Rejection Identifies the KPL-IFF Model as Sufficient
to Explain T-Cell Responses. We next identified a T-cell signaling
network consistent with all key features by sequentially rejecting
models. To do this, we tested models of increasing complexity
starting with the simplest possible cellular mechanism, namely the

occupancy model, which reduces cellular signaling to a single re-
action (Fig. 3A). In this model, the pMHC ligand binds to the TCR
to form a complex that directly activates a node P that is assumed to
be linearly proportional to cytokine production. By examining the
predicted dose–response curve for this model it is clear that the
model is insufficient to explain the phenotypic features (e.g., it does
not produce a bell-shaped dose–response, feature 1) and therefore
we reject this model as a plausible model of T-cell signaling.
Bell-shaped dose–response curves can be produced by in-

coherent feed-forward motifs (Fig. 3B), which are common ar-
chitectures in transcriptional networks (43). In this model, the
TCR–pMHC complex directly inhibits P and indirectly activates
P (by activating Y, which itself is able to activate P). The model
can produce inhibition at high pMHC concentrations if the
activatory pathway (through Y) saturates, allowing inhibition to
dominate at the highest pMHC concentrations. The appearance
of the bell shape in this model can explain the observation that a
different pMHC affinity produces the largest response to the
right of the peak (feature 4). However, this model is also rejected
because it produces a bell-shaped dose–response for all pMHC
ligands independent of their affinity (feature 1).
Bell-shaped dose–response curves can be produced for high-

but not low-affinity ligands by introducing kinetic proofreading
(Fig. 3C). In this model, the pMHC ligand does not trigger sig-
naling immediately upon binding TCR but instead must remain
bound until it becomes signaling-competent (denoted as C1).
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Fig. 2. A bell-shaped dose–response is a consequence of reduced cytokine production at high pMHC concentrations. (A) T-cell activation dose–response
curves at the indicated time points (Left) highlighting the bell-shape at early times (4 h) and continued cytokine production at the largest pMHC concen-
tration (Right, Top and Bottom). (B) Percent of T cells positive for annexin V (blue, left axis) determined at the end of a 16-h functional assay where the
supernatant concentration of IL-8 was also determined (black, right axis). (C) Comparison of supernatant IL-8 production at the population level (Top) with
the corresponding single cell IL-8 production by flow cytometry (Bottom) at 16 h. Brefeldin A was added to block cytokine secretion for the last 3 h of the
assay (reducing supernatant cytokine in the cell population assay). Jurkat T cells are used to generate all panels with the indicated pMHC ligands. See SI
Appendix, Fig. S2E for single-cell cytokine production in primary CD8+ T cells.
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This delay means that low-affinity pMHCs (with faster koff) in-
duce a lower maximal concentration of C1 than high-affinity
pMHC (see SI Appendix, Fig. S3 for a plot of C1 for pMHC with
different values of koff). If this is below the level at which Y saturates
then inhibition at high pMHC concentrations will not be observed
with low-affinity pMHC. As expected, kinetic proofreading has
improved antigen discrimination by dramatically decreasing the
T-cell response to low-affinity pMHC. This model, however, is
also rejected because it predicts that the highest-affinity ligand
will produce the largest response left of the peak in contrast to
experimental observations (feature 3).
Introducing limited signaling into kinetic proofreading can

produce an optimal affinity over a range of pMHC concentrations
(9) (Fig. 3D). In this model, activated TCR–pMHC complexes
(C1) signal for a limited period before converting to a nonsignaling
state (C2), thereby introducing a penalty for pMHCs that remain
bound for long periods of time. This model is now able to explain
all key features and we therefore accept the KPL-IFF model as a
plausible signaling model for T-cell activation.

Systematic Model Identification Confirms That the KPL-IFF Model Is
Unique. Having identified the KPL-IFF model as sufficient to
explain all phenotypic features, we next determined whether
other models, with a potentially different underlying mechanism,
can also explain all phenotypic features.
We first systematically examined models of equal or lower

complexity compared to the KPL-IFF model. To do this, we
studied all combinations of three reaction arrows between Y and
P and the three receptor states (Fig. 4A). Of the 560 possible
reaction networks (16 choose 3) only the 304 networks that
contain a connection between the ligand and P were analyzed.
For each of these putative signaling networks, we performed an
exhaustive search that included a dense parameter scan followed
by optimization of the five free parameters (SI Appendix, Fig.
S4). The output of the analysis is a list of networks ordered by
their ability to reproduce the phenotypic features (Movie S1). As
expected, the first network to appear is the KPL-IFF model but,
unexpectedly, the 303 subsequent networks were all unable to
explain all phenotypic features.

We highlight three models from the network search that are
inconsistent with the phenotypic features (Fig. 4 B–D). A mir-
rored model in which activation is direct but inhibition is indirect
cannot produce a bell-shaped dose–response (feature 1) because
activation cannot saturate (Fig. 4B). A redirected model where
inhibition comes from an earlier complex not subjected to kinetic
proofreading (Fig. 4C) cannot explain a different optimal pMHC
affinity to the right of the peak (feature 4) or the observation that
the peak response is similar for different affinity ligands (feature 2).
Finally, models without an incoherent feed-forward loop but with
negative feedback, although able to produce oscillations of P in
time, cannot produce a bell-shaped dose–response (Fig. 4D and SI
Appendix, Fig. S5; see also SI Appendix for a mathematical proof).
To determine whether more complex models can explain all

key features using different mechanisms, we performed the same
systematic network analysis on models with four reaction arrows
between Y, P, and an additional node X and four receptor states
(Fig. 4E). A systematic analysis of the 26,069 networks with a
connection between the ligand and P revealed 274 compatible
networks (SI Appendix, Movie S2). However, examining these 274
networks showed that the basic mechanism underlying all com-
patible networks was KPL-IFF. For example, the incoherent feed-
forward loop could involve indirect inhibition so long as inhibition
saturates after activation as a function of ligand dose (Fig. 4F) or
it could involve both direct activation and inhibition with the net
effect being inhibition (Fig. 4G). As above, negative feedback
could not produce bell-shaped dose–response curves (Fig. 4H).
In summary, the KPL-IFF signaling network (Fig. 3D) is suffi-

cient to explain all phenotypic features. Given that the systematic
analyses implicitly include simpler models (e.g., by allowing for the
magnitude of reaction arrows to be negligible) we were able to
further conclude that the KPL-IFF model is the simplest model
able to explain all features.
The KPL-IFF model contains five parameters: kinetic proof-

reading (kp), limited signaling (ϕ), inhibition (μ), activation (δ), and
amplification (λ). We used approximate Bayesian computations
with sequential Monte Carlo to establish the set of these parame-
ters that are able to reproduce the key features (44). We found that
large variations of the parameters were possible provided that they
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Fig. 3. Sequential model rejection reveals that kinetic proofreading with limited signaling coupled to an incoherent feed-forward loop can produce
all phenotypic features. The models considered, in order of increasing complexity, are (A) occupancy, (B) occupancy coupled to incoherent feed-forward,
(C) kinetic proofreading coupled to incoherent feed-forward, and (D) KPL-IFF. All models include the reversible (serial) binding of pMHC ligands (L) to the
TCR (R) to form complexes that can regulate the activation of a protein P that is taken to be a measure of T-cell activation. See SI Appendix for computational
details and SI Appendix, Applet S1 for a tool that can be used to explore how the five parameters in the KPL-IFF model (kp, ϕ, μ, λ, and δ) modulate the
predicted dose–response for antigens of different affinities.

Lever et al. PNAS | Published online October 4, 2016 | E6633

IM
M
U
N
O
LO

G
Y
A
N
D

IN
FL
A
M
M
A
TI
O
N

A
PP

LI
ED

M
A
TH

EM
A
TI
CS

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608820113/-/DCSupplemental/pnas.1608820113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608820113/-/DCSupplemental/pnas.1608820113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608820113/-/DCSupplemental/pnas.1608820113.sapp.pdf
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1608820113/video-1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608820113/-/DCSupplemental/pnas.1608820113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608820113/-/DCSupplemental/pnas.1608820113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608820113/-/DCSupplemental/pnas.1608820113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608820113/-/DCSupplemental/pnas.1608820113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608820113/-/DCSupplemental/pnas.1608820113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608820113/-/DCSupplemental/pnas.1608820113.sapp.pdf


obeyed certain relationships (SI Appendix, Fig. S6). For example,
we found that μ and δ can vary by 1,000-fold provided that μ> δ
and that increases in ϕ can reproduce the phenotypic features
provided that kp decreased proportionally. Using the provided
applet (SI Appendix), we find that bell-shaped dose–response
curves are less pronounced when the condition μ> δ is not satis-
fied. A large variation in the parameters is tolerated because the
phenotypic features are scale-free (SI Appendix).

The KPL-IFF Model Predicts the T-Cell Response to Copresentation of
pMHC Ligands. T cells generally experience mixtures of pMHC li-
gands when becoming activated. Previous studies have shown that
copresentation of an additional pMHC can modulate the T-cell
response in various ways, including both enhancing and inhibiting
T-cell activation (45).
To address the effects of pMHC copresentation, we extended the

KPL-IFF model to include an additional pMHC ligand with dif-
ferent binding kinetics and concentrations (Fig. 5A). We used the
extended KPL-IFF model to predict the T-cell response to a titra-
tion of a lower-affinity ligand in the presence of fixed concentrations
of a higher-affinity ligand (Fig. 5B). As a result of the incoherent
feed-forward loop the model predicted a sigmoidal dose–response
when the concentration of the high-affinity ligand was left of its
peak (K0.025) and a constant response when the concentration of
the high-affinity ligand was right of its peak (J0.025). This is a
direct result of the saturating activating pathway of the incoherent
feed-forward. Surprisingly, the model predicted that T-cell activa-
tion cannot be inhibited by signals induced by the low-affinity ligand

even when the high-affinity ligand is presented at concentrations
that saturate the activation pathway of the incoherent feed-forward.
We confirmed these predictions by stimulating T cells with a titra-
tion of the lower-affinity ligand, 5P, in the presence of fixed con-
centrations of the higher-affinity ligand, 4A (Fig. 5C). As predicted
by the model, the dose–response curves appeared sigmoidal at
lower doses of 4A and largely constant at higher doses, without any
obvious inhibition of T-cell activation by 5P.

Discussion
We have measured the T-cell response to a 1 million-fold variation
in antigen affinity and dose. We found bell-shaped dose–response
curves with a different pMHC (and hence different affinity) pro-
ducing the largest T-cell response at different doses. We show,
without making prior biochemical assumptions and with the con-
straint of parsimony, that the KPL-IFF architecture is the only
model identified able to explain all phenotypic features of the
experimental data. We further confirmed predictions of the model
concerning pMHC copresentation. Remarkably, the KPL-IFF
model can explain the T-cell response to a 1 million-fold variation
in antigen affinity and dose based on a simple pathway architecture
despite the enormous molecular complexity in T-cell signaling.
The present work has uncovered two independent mechanisms that

lead to an optimal pMHC affinity. At low doses (left of the peak) we
find that limited signaling through the TCR allows a single interme-
diate affinity pMHC to dominate the dose–response curve, whereas at
higher doses (right of the peak) a different pMHC affinity produces
the most cytokine as a result of the bell-shaped dose–response curves
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Fig. 4. Systematic analyses of signaling models reveals that the KPL-IFF mechanism is unique. (A) To determine whether other models of equal (or lower)
complexity to the KPL-IFF model (Fig. 3D) are able to produce all phenotypic features we performed a systematic search of 304 network architectures with
three reaction arrows between the receptor states (C0, C1, and C2), Y, and P. The only network architecture that is able to produce all phenotypic features is
the KPL-IFF model (Movie S1). Conversely, (B) the mirrored KPL-IFF, (C) the redirected KPL-IFF, and (D) negative feedback network architectures are unable to
produce the phenotypic features. (E) To determine whether more complex models can reproduce the phenotypic features using mechanisms different from
those invoked in the KPL-IFF model, we performed a systematic analysis of 26,069 network architectures with four reaction arrows between four receptor
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in the absence of incoherent feed-forward is unable to produce the phenotypic features. See SI Appendix for computational details.
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produced by the incoherent feed-forward loop. In light of our com-
prehensive data, it is likely that discrepancies between previous studies
were a result of a limited range of tested pMHC affinity and dose.
The model may account for previous work showing a bell-shaped
dose–response in the induction of regulatory T cells (5).
Modified TCRs and CARs often target tumor-associated anti-

gens that are differentially expressed between normal and cancer
cells. Therefore, the antigen dose can be a critical determinant of
successful immunotherapy. As a result of the bell-shaped dose–
response, we find that low-affinity receptors can actually out-
perform high-affinity receptors at high antigen doses. Our model
provides a rationale for optimizing the affinity of therapeutic re-
ceptors based on the target antigen dose, as recently proposed for
a CAR (30). We provide a tool that can be used to examine the
predicted T-cell response for antigens of different affinities pre-
sented at different doses (SI Appendix, Applet S1).

A number of studies have implicated negative feedback in
TCR signaling (6), but we find that negative feedback cannot
explain the phenotypic features of T-cell activation. For example,
negative feedback cannot produce bell-shaped dose–response
curves. We note that our model does not preclude the existence of
signaling proteins with negative effects, such as tyrosine phos-
phatases that can determine, for example, the net rate of TCR
phosphorylation (kp). Negative feedback may be more important
for the short-timescale process of antigen discrimination rather
than the longer timescale process of T-cell activation that has been
the focus of the present study (1, 6).
The limited signaling mechanism is related to previous work

showing that a trade-off between serial binding and kinetic proof-
reading leads to an optimal pMHC half-life (10, 46). Serial binding
of a single pMHC to many TCRs can increase signaling when the
pMHC concentration is low and individual TCRs signal for a limited
period upon binding. Under these conditions longer binding half-
lives can reduce the number of productive TCR engagements (9).
We find that at low doses reduced signaling is only observed when
the TCR/pMHC half-life measured in solution is longer than 1 min
(e.g., low dose of 4A, 5Y, and 8S compared with 9V in SI Appendix,
Fig. S2 B and C). It follows that although limited signaling (and
hence serial binding) may not be critical for physiological TCR-
pMHC interactions, which have half-lives that last seconds, it is
likely to be important for the design of high-affinity therapeutic
TCRs or CARs for T-cell adoptive transfer therapies (25).
The internalization of TCR is known to take place upon TCR

triggering (1, 46) and it can be realized by different mechanisms.
Intracellular signaling induced by activated TCR that leads to
TCR internalization is a form of negative feedback and, as dis-
cussed above, negative feedback cannot explain the observed
phenotypic features. Limited signaling may result from the tagging of
TCR for internalization and explicitly including this internalization,
without incoherent feed-forward, does not lead to bell-shaped dose–
response curves in the steady state (SI Appendix, Fig. S8). The KPL-
IFF model may implicitly be capturing TCR surface dynamics
because directed movement (47) combined with polarized recy-
cling (48, 49) of TCR into the immune synapse may balance with
TCR internalization (46) to maintain the relatively constant TCR
concentration at the immune synapse assumed by the KPL-IFF
model, which is consistent with previous calculations (50). A re-
cent study has shown that changing the pMHC affinity can induce
a program that over a timescale of several days changes TCR
levels (51). The KPL-IFF model can explain their observation that
the higher-affinity ligand induced greater TCR down-regulation if
TCR levels are determined by the output of the KPL-IFF model.
The systematic analyses revealed that a large number of more

complex models can explain the phenotypic features (Fig. 4E).
This illustrates the broad challenge of (i) formulating unique
models based on the known biochemistry and (ii) relating the
unique model we have formulated to the known biochemistry.
Limited signaling may result from modification of the TCR
signalosome, such as ubiquitination (52) and/or its movement
into membrane environments incompatible with signaling [e.g.,
endosomes (46) or microvesicles (53)] (SI Appendix, Fig. S7B).
Kinetic proofreading can be realized by a number of different
molecular mechanisms, such as sequential or random phosphory-
lation of the TCR (54, 55) and/or the recruitment of Lck-associated
coreceptors (56) (SI Appendix, Fig. S7A). The incoherent feed-
forward loop may result from the fact that LAT can both activate
(via Grb2 and SOS) and inhibit (via Dok1/Dok2 and RasGAP) Ras
(7) (SI Appendix, Fig. S7C) or from the observation that the TCR
signalosome, by virtue of being able to associate with both a tyrosine
kinase (ZAP-70) and a tyrosine phosphatase (SHP-1), can produce
incoherent signals (2). Additionally, the positive and negative arms
of the incoherent feed-forward may represent two pathways that
converge to regulate cytokine production. Future work is required
to map the known biochemistry onto the KPL-IFF architecture.
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Fig. 5. The KPL-IFF model predicts T-cell activation in response to copre-
sentation of pMHC ligands. (A) Schematic of signal integration by two dis-
tinct populations of pMHC ligands in the context of the KPL-IFF model.
(B) The model predicts that a titration of a low-affinity ligand (k1

off = 1 s−1) in
the presence of a fixed concentration of a high-affinity ligand (k2

off = 0.001 s−1)
will be either sigmoidal or constant when the concentration of the high-
affinity ligand is left of its peak (purple, cyan, and green) or right of its peak
(orange, brown, and red), respectively. Appreciable inhibition by the low-affinity
ligand is not predicted evenwhen the activating pathway has saturated. (C) T-cell
activation as measured by supernatant IL-8 released by Jurkat T cells in response
to a titration of 5P (lower-affinity ligand) at the indicated fixed concentrations of
4A (higher-affinity ligand). The fixed concentration of the higher-affinity ligand is
indicated and labeled on the x axis as colored circles. Data are representative of
two independent experiments. See SI Appendix for computational details.

Lever et al. PNAS | Published online October 4, 2016 | E6635

IM
M
U
N
O
LO

G
Y
A
N
D

IN
FL
A
M
M
A
TI
O
N

A
PP

LI
ED

M
A
TH

EM
A
TI
CS

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608820113/-/DCSupplemental/pnas.1608820113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608820113/-/DCSupplemental/pnas.1608820113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608820113/-/DCSupplemental/pnas.1608820113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608820113/-/DCSupplemental/pnas.1608820113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608820113/-/DCSupplemental/pnas.1608820113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608820113/-/DCSupplemental/pnas.1608820113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608820113/-/DCSupplemental/pnas.1608820113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608820113/-/DCSupplemental/pnas.1608820113.sapp.pdf


The systematic search for parsimonious models that can repro-
duce phenotypic features of cellular activation, without prior bio-
chemical assumptions, produces signaling pathways with tractable
architectures. Just as subatomic details (e.g., nuclear structure) are
not necessary for atomic molecular dynamics simulations, we argue
that the correct description of signaling pathways may not require
detailed biochemical knowledge of individual proteins. These pre-
dictive pathway models provide a mechanistic understanding of the
modular network components required to integrate input signals
from the cell surface into cellular activation outputs. Although they
do not include full molecular detail, they offer an intuitive frame-
work upon which biochemical information can be mapped, which
has so far been elusive with reductionist approaches.

Materials and Methods
Protein Production and Surface Plasmon Resonance. HLA-A*02:01 heavy chain
(residues 1–278) with C-terminal BirA tag and β2 -microglobulin were
expressed as inclusion bodies in Escherichia coli, refolded in vitro in the
presence of the relevant NY-ESO-1156−165 peptide variants (SI Appendix,
Table S1), and purified using size-exclusion chromatography. All peptides
were purchased at >95% purity (GenScript). Purified pMHC was biotinylated
in vitro by BirA enzyme (Avidity). The α and β subunits of the c58c61 (Clone
113) high-affinity 1G4 T-cell receptor (27) were expressed in E. coli as in-
clusion bodies, refolded in vitro, and purified using size-exclusion chroma-
tography as described previously (17).

TCR–pMHC binding affinity and kinetics were measured by surface plas-
mon resonance using a Biacore 3000 (GE Healthcare) as previously described
(17). Briefly, biotinylated pMHCs were coupled to the CM5 surface by co-
valently coupled streptavidin with a target immobilization level of 250 re-
sponse units (RU) to minimize mass transport effects. The TCR analyte was
diluted in HBS-EP running buffer and injected over the surface at 37 °C using
a flow rate of 30 μL/min. Running buffer was injected for 4 h before the TCR
injection when measuring interaction that relies on a long dissociation phase
(i.e., high-affinity interactions) to ensure that baseline drifts were minimal.

The off-rate (koff) was determined by fitting a one-phase exponential
decay to the dissociation trace,

Y = ðY0 −Y∞Þe−kofft +Y∞,

where Y0 and Y∞ are the initial and long-time asymptotic RU, respectively.
The mean koff across concentrations was used to determine kon. When the
kinetics were such that the association phase could be resolved in time (i.e.,
sufficiently slow koff) we fit the following one-phase exponential association
to the association trace:

Y =
½TCR�Bmax

½TCR�+Kd

�
1− e−kobt

�
,

where kob = kon½TCR�+ koff. We note that for high-affinity interactions where
the dissociation trace lifetime was >15 min only a single concentration of
TCR was used. Injection of multiple TCR concentrations is possible using the
single-cycle kinetic mode but we found that these produced several in-
complete association traces resulting in larger variability in kon between
experiments. We note that multiple analyte concentrations are particularly
critical to determine the stoichiometry of the interaction. When the kinetics
were such that the association phase could not be resolved in time (i.e., fast
koff) we fit the following Langmuir binding equation to the steady-state
response units to obtain an estimate for Kd:

Yss =
½TCR�×Bmax

Kd + ½TCR� ,

where Yss is the steady-state RU. The on-rate is determined using
kon = koff=Kd. All data fitting was performed in Prism (GraphPad).

Production of Lentivirus for Transduction. HEK 293T cells were seeded into
175-cm2 flasks 24 h before transfection to achieve 50–80% confluency on the
day of transfection. Cells were cotransfected with the respective third-gen-
eration lentiviral transfer vectors and packaging plasmids using a standard
PEI (polyethylenimine) transfection protocol as follows. The medium was
replaced with serum-free DMEM. Transfer vector and the packaging plasmid
mix (17.5 μg of pRSV-rev and pMDLg/pRRE as well as 6.8 μg of pVSV-G) were
diluted in 400 μL of serum-free DMEM and a dilution of 112 μg PEI in serum-
free DMEM was prepared in another tube. Both were mixed vigorously and

incubated at room temperature for 20 min. The mixture was added drop-
wise to the cells, which were then incubated at 37 °C in 10% CO2 for 4–5 h.
Afterward, the medium was replaced with complete medium. The super-
natant was harvested and filtered through a 0.45-μm cellulose acetate filter
24 h later. Lentiviral particles were concentrated using Lentipac Lentivirus
concentrator (GeneCopoeia) according to the manufacturer’s protocol.

Transduction of Jurkat T Cells. The Jurkat E6.1 T-cell line expressing the NFAT/
AP-1 luciferase reporter and CD8α (57) were transduced with the c58c61 TCR.
To do this, 3 million cells were resuspended in 2 mL of concentrated virus fol-
lowed by centrifugation at 2,095 × g for 1–2 h. The cells were incubated at 32 °C
for 3.5–6 h and then cultured at 37 °C in 10% CO2 in DMEM supplemented with
10% (vol/vol) FBS, 100 U/mL penicillin, and 100 μg/mL streptomycin.

Isolation and Transduction of Primary T Cells. Peripheral blood mononuclear
cells (PBMCs) were isolated from healthy donor blood by density gradient
centrifugation: Blood collected in heparinized tubes was diluted 1:2 with PBS,
carefully layered onto Ficoll-Paque in 50-mL tubes and spun without brake at
400 × g at room temperature for 30 min. The PBMCs were collected from the
interphase, spun at 520 × g for 5 min, and washed once with PBS.

CD8+ T cells were isolated from PBMCs using the Dynabeads Untouched
Human CD8 T Cells kit (Life Technologies) following the manufacturer’s in-
structions. Briefly, PBMCs were resuspended in isolation buffer (0.1% BSA
and 2 mM EDTA in PBS), blocked with FBS, and unwanted cells were labeled
with an antibody mix (containing biotinylated antibodies for human CD4,
CD14, CD16, CD19, CD36, CD56, CDw123, and CD235a). Subsequently, the
PBMCs were washed and incubated with streptavidin-coated Dynabeads.
The suspension was resuspended thoroughly with isolation buffer before
the tube was placed into a magnet. The supernatant containing “un-
touched” CD8+ T cells was collected. This process was repeated twice and the
supernatants were combined.

The isolated CD8+ T cells were spun at 520 × g for 5 min and resuspended
at a concentration of 106 cells per mL in completely reconstituted DMEM,
supplemented with 50 units/mL IL-2 and 106 CD3/CD28-coated Human
T-Activator Dynabeads (Life Technologies) per mL. Cells were cultured at
37 °C in 10% CO2 overnight.

The next day, 106 purified primary human CD8+ T cells in 1 mL of medium
were transduced with 1 mL of concentrated virus supplemented with 50
units of IL-2. The cells were cultured at 37 °C in 10% CO2 and the medium
was replaced with fresh medium containing 50 units/mL IL-2 every 2–3 d.
CD3/CD28-coated Dynabeads were removed on day 5 after lentiviral trans-
duction and the cells were characterized and used for experiments once the
populations expanded to adequate sizes.

T-Cell Stimulation. Streptavidin-coated 96-well plates (Sigma-Aldrich) were
washed two times with PBS 0.05% Tween followed by one time with PBS.
Plates were incubated at 37 °C with PBS and 1% BSA for 1 h. Serially diluted
pMHCs (in PBS) were transferred to the plates and incubated at 4 °C for
90 min (volume of 100 μL per well). Plates were washed three times with PBS
following incubation. Plates were always prepared in pairs so that one plate
could be used for the stimulation assay and the other to determine the levels
of correctly folded plate-immobilized pMHC.

T-cell stimulation assays were performed by first washing and resus-
pending the cells in culture media without IL-2. T cells were then added at
50,000 cells per well in a volume of 100 μL. Plates were spun at 9 × g (4 min)
and then incubated at 37 °C in 10% CO2 for the required stimulation time.

Concentrations of supernatant cytokines were determined using com-
mercially available ELISA kits following manufacturers’ protocols: OptEIA
IFN-γ (555142; BD Biosciences) and second Generation Ready-Set Go! Kits
(Ebioscience) for MIP-1β (88-7034-88) and IL-8 (88-8086-88). Measurement of
AP1/NFAT activity in Jurkats was performed by lysing cells using ONE-Glo
Luciferase substrate (E6110; Promega) for 5 min before luminescence was
read using a PherastarPlus plate reader (BMG Lab Tec). Data were corrected
for background luminescence using unstimulated cells.

Levels of active plate-immobilized pMHCs were measured on the second
plate using mouse anti-human HLA class I antibody (Clone W6/32, 14-9983;
Ebioscience) in combination with fluorescent secondary goat anti-mouse IgG
IRDye 800CW antibody (926-32210; LI-COR). Fluorescence measurements
were performed with the Odyssey Imaging system (LI-COR). A Hill function
was fit to the fluorescence over the initial pMHC concentration (in micro-
grams per milliliter) to determine the EC50 for each pMHC using Prism. The
pMHC concentrations in the functional assays were modified to reflect dif-
ferences in the immobilization EC50 as follows: log[pMHC]corrected = log
[pMHC] + (log(ECindex

50 ) − log(EC50)) where the 9V pMHC ligand served as
the index.
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Flow Cytometry Assays.
Intracellular cytokine staining. T-cell stimulation was performed as described
above except that 50 μL of medium supplemented with Brefeldin A (2.5 μg/
mL final concentration) was added to the respective samples followed by
spinning at 520 × g for 5 min before returning the cells to the incubator for
another 2 h (primary T cells, 4-h total stimulation) or for another 3 h (Jurkat
T cells, 8-h total stimulation).

After stimulation, cells were spun at 520 × g for 5 min and resuspended
with 2 mM EDTA in PBS. After an additional spin, the cell pellets were fixed
by resuspension in 50 μL per well 4% (vol/vol) formaldehyde in cold PBS at
4 °C (10 min). Fixed cells were washed with PBS, spun down at 520 × g for
10 min, and resuspended in 100 μL per well permeabilization buffer [PBS
with 2% (wt/vol) BSA and 0.1% Triton X-100]. After 10 min at 4 °C, cells were
spun at 520 × g for 10 min and resuspended in permeabilization buffer
containing the respective antibody (E8N1 APC-conjugated IL-8 antibody or 4S.
B3 AlexaFluro647 conjugated IFN-γ antibody; BioLegend) for 20 min at 4 °C.
After washing twice with PBS (520 × g for 10 min), cells were resuspended in
100–150 μL PBS per sample and transferred into FACS tubes for analysis.
Jurkat cells had to be spun before the transfer to mitigate cell losses.
Annexin V assay. Jurkat T cells were stimulated as described above except that
100,000 cells were used per well. After 16 h of stimulation, cells were removed
first by gently pipetting them out of each well and second by washing each
well with PBS. Cells were transferred to 1.5-mL tubes and washed two times
with PBS. Cells were resuspended in annexin-V buffer (10 mM Hepes, pH 7.4,
140 mM NaCl, and 2.5 mM CaCl2) at a concentration of 1–5 ×106 cells per mL.

Cells were stained with PE-Annexin-V (556421; BD Biosciences) at a con-
centration of 5 μL per 100 μL cells and incubated at room temperature in the
dark for 15 min. After washing twice with PBS, samples were ready for
flow cytometry.
c58c61 T-cell receptor expression. 5 × 105 T cells per sample were washed with
PBS in FACS tubes (3 mL, 5 min at 520 × g) and stained with high-affinity 9V
pMHC (7 μg/mL; 200 μL per sample) for 30 min. Subsequently, they were
washed with PBS and stained with R-PE-conjugated streptavidin (STAR4A,
1:100; 200 μL per sample; AbD Serotec) for another 30 min. After washing
twice with PBS, samples were ready for flow cytometry.

All flow cytometry was performed using a FACSCalibur (BD Biosciences)
with at least 10,000 cells. All analysis was performed using the software
FlowJo (TreeStar).
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Movie S1. Systematic analysis of 304 network architectures (Fig. 4A). Each 1-s frame shows the network architecture (Left) and the network output (Right).
The network architecture displays the three receptor states (C0, C1, and C2) together with Y and P, where green arrows indicate activation and red arrows
indicate inhibition (magnitudes of inhibition arrows are in italics). The network output displays P (y axis) over the ligand concentration (x axis) for ligands with
decreasing koff (blue to red). Networks appear in ascending order of the sum of squared residuals (SSR) so that networks that are better able to produce the
phenotypic features appear first. See SI Appendix for computational details.
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Supplementary Text

Phenotypic model equations (KPL-IFF)

The ordinary-differential-equations (ODEs) corresponding to kinetic proofreading with limited signalling coupled
to incoherent feedforward (KPL-IFF, Figure 3d) are,

dL/dt = �konLR+ koff(C0 + C1 + C2)

dR/dt = �konLR+ koff(C0 + C1 + C2)

dC0/dt = konLR� (koff + kp)C0

dC1/dt = kpC0 � (koff + �kp)C1

dC2/dt = �kpC1 � koffC2

dY/dt = �y+(YT � Y )� �y�Y + �C1(YT � Y )

dP/dt = �p+(PT

� P )� �p�P + �Y (P
T

� P )� µC1P

where kon and koff are the TCR-pMHC kinetic rate constants, kp is the kinetic proofreading rate, � is the lim-
ited signalling parameter, � is the amplification parameter, µ is the inhibition parameter, and � is the activation
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parameter. We solve the system in the steady-state to obtain the following,

Ĉ0 =

✓
koff

koff + kp

◆
Ĉ
T

Ĉ1 =

✓
koff

koff + kp

◆✓
kp

koff + �kp

◆
Ĉ
T

Ĉ2 =

✓
�kp

koff + kp

◆✓
kp

koff + �kp

◆
Ĉ
T

Ŷ =
1 + �̂Ĉ1

1 + �̂Ĉ1 + �̂y

P̂ =
1 + �̂Ŷ

1 + �̂Ŷ + �̂p + µ̂Ĉ1

with

Ĉ
T

=
⇣
(L

T

/R
T

+ 1 + koff/konRT

)�
p
(L

T

/R
T

+ 1 + koff/konRT

)2 � 4L
T

/R
T

⌘
/2

where we have used ‘hat’ quantities to represent nondimensionalized concentrations and parameters: Ĉ
T

=
C
T

/R
T

, Ĉ0 = C0/RT

, Ĉ1 = C1/RT

, Ĉ2 = C2/RT

, Ŷ = Y/Y
T

, P̂ = P/P
T

, �̂ = �R
T

/�y+, �̂y = �y�/�
y

+,
�̂ = �Y

T

/�p+, �̂p = �p�/�
p

+ and µ̂ = µR
T

/�p+.

The model calculations in Figure 3d were generated using kp = 0.01 s�1, � = 0.1, �̂p = �̂y = 500, konRT

= 1,
�̂ = 10000, �̂ = 5000, and µ̂ = 50000 with the indicated variation of L

T

/R
T

(x-axis) and a variation of koff from
10�4 to 102 s�1 (coloured lines). We provide a web applet that can be used to examine the predicted dose-response
from this phenotypic model for any parameter values (Applet S1).

Systematic analysis of phenotypic model network architectures

The key objective of the systematic analysis is to determine whether other models can also produce the key features
that the kinetic proofreading with limited signalling coupled to incoherent feedforward (KPL-IFF) model is able
to produce (Figure 3d, Table 1).

We performed two systematic analyses of phenotypic models: a simpler systematic analysis looking at 304 net-
works (Figure 4a) and a more complex analysis looking at 26,069 networks (Figure 4e). Given that the method-
ology is identical for both analyses and that the simpler analysis is nested within the more complex analysis,
this section will focus on describing the more complex analysis. The methodology extends previous efforts to
systematically study pre-defined network architectures that can produce specific phenotypes (1, 2).

Defining the set of network architectures. The set network architectures that we examine are defined based on the
possible reactions that we consider. Each network has a receptor that can undergo kinetic proofreading with 4
steps (C0, C1, C2, and C3) and 3 additional nodes (X , Y , and P ). We consider all possible networks that have 4
reaction arrows (either activating or inhibiting) between the receptor, X , Y , and P (Figure 4d). Note that every
network contains the 4 kinetic proofreading states. The total number of reaction arrows is 36 and therefore the total
number of networks is 58,905 (36 choose 4). Without loss of generality we identify P as the output and remove
all networks where there is no connection between any of the kinetic proofreading states and P (either directly
or indirectly), which reduces the number of networks to 26,069. We omit networks where X , Y , or P modulate
kinetic proofreading to maintain computational feasibility. Each network contains a total of 6 free parameters; 2
kinetic proofreading parameters (kp and �) and 1 parameter for each of the 4 reaction arrows.
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A scale-free comparison measure. The large number of networks that are to be systematically examined means
that it is not feasible to manually identify (i.e. by eye) whether a specific proposed network can also produce the
output of the KPL-IFF network (Figure 3d). To automate identification we constructed a quantitative measure that
can compare the output of the KPL-IFF network to a specific proposed network.

First, we define four elementary numbers for any dose-response curve (Figure S4a): the value of P at the lowest
concentration (W1), the maximum value of P (W2), the value of P at the largest concentration (W3), and the
concentration of ligand producing half-maximal response (EC50). In cases where two values of EC50 are possible
the lower value is used (i.e. to the left of the peak in a bell-shaped dose-response).

Second, we define four metrics that capture the key qualitative features of the KPL-IFF output,

F1 = W1/W2

F2 = (W3/W2)/(W
⇤
3 /W

⇤
2 )

F3 = W2/W
⇤
2

F4 = EC50/EC⇤
50

where the superscript ⇤ refers to the values for an index ligand, which we take to be the highest affinity ligand.
These four metrics can be calculated for each ligand and plotted as a function of the ligand koff value for the KPL-
IFF network (Figure S4b-g). The first measure (F1) ensures that the dose-response curve exhibits an increase. The
second measure (F2) ensures that a bell-shaped dose-response is observed. The third measure (F3) ensures that
the peak height is similar for high affinity ligands but decreases for low affinity ligands. The fourth measure (F4)
ensures that ligands of intermediate affinity are first to increase as a function of dose. The normalisation to an index
ligand means that these measures are largely independent of the absolute values of L (dose) and P (response). Note
that these measures rely on fold-changes and therefore are independent of the absolute scale of the response (value
of P ).

Lastly, we define a single measure that can compare the similarity between F1, F2, F3, and F4 (across a wide range
of koff values) for any specific network and the KPL-IFF network,

SSR =
NX

i=1

(F i

1 � bF i

1)
2 + (F i

2 � bF i

2)
2 + (F i

3 � bF i

3)
2 + (F i

4 � bF i

4)
2 (1)

where the index i represents each ligand (i = 1 to i = N ligands with N = 12 in our example). The values of F
with a hat represent those for the KPL-IFF network whereas the non-hat values are for the specific network being
tested.

In summary, the output of any proposed network are the values of P as a function of ligand concentrations for 12
ligands with different values of koff. This output is used to calculate F1, F2, F3, and F4 for each ligand which can
then be used to compute SSR. Proposed networks with small SSR values are more likely to be compatible with the
output of the KPL-IFF network and therefore the key features.

Workflow. The workflow for the systematic analysis is shown in Figure S4h. The first step is to select one of
the 26,069 networks to analyse. The next two steps aim to determine the values of the 6 model parameters that
produce the smallest value of the SSR for the selected network. First, the method performs 1 million evaluations of
the network where the 6 model parameters for each evaluation are randomly sampled (uniform distribution in log-
space) and the SSR for each evaluation is determined. Second, the values of the 6 parameters for the 15 network
evaluations that produced the smallest values of SSR (from the 1 million that were sampled) are then used as initial
conditions for a non-linear optimisation algorithm (fminsearch in Matlab) that uses a modified simplex method to
further minimize the SSR. Finally, the 6 parameter values that produced the smallest SSR (among the 15 optimised
parameter values) are recorded along with the associated SSR for the network. The procedure is repeated for all
26,069 networks.
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Given that the analysis relies on two steps that have a stochastic element (random parameter sampling and further
optimisation) we repeated the analysis 3 times for both the simpler and complex analysis but found no difference
to the results (see below) suggesting that the search algorithm had sufficient coverage of parameter space.

Results. The output of the analysis is a list of the 26,069 networks (or the 304 networks for the simpler analysis)
ordered from the smallest to the largest SSR. We summarise this output in Movie S2 (or Movie S1 for the simpler
analysis) where each 1 second frame corresponds to a network architecture evaluated with the 6 optimised param-
eter values. By examining the movies we find that 274 of the 26,069 networks in the complex analysis (or 1 of the
304 networks in the simpler analysis) are compatible with the key features as they are able to reproduce the output
of the KPL-IFF network. Importantly, all 274 compatible networks contained the same underlying KPL-IFF mech-
anism. In many cases these more complex networks were reduced to the same KPL-IFF model shown in Figure 3d
(e.g. networks 2, 4, 7 to 21, etc) whilst in other cases the incoherent feedforward exhibited indirect inhibition (e.g.
networks 1, 3, 5, 6, etc) but operated in a parameter regime where inhibition saturated after activation.

Mathematical model. The systematic analysis relies on evaluating many network architectures. To do this, we have
implemented a single general mathematical model that can be reduced to all 26,069 networks by setting appropriate
reactions to zero.

The ordinary-differential-equations (ODEs) corresponding to the most general mathematical model are,

dL/dt = �konLR+ koffCT

dR/dt = �konLR+ koffCT

dC0/dt = konLR� (koff + kp)C0

dC
i

/dt = kpCi�1 � (kp + koff)Ci

1  i < N � 1

dC
N

/dt = kpCN�1 � (koff + �kp)CN

dC
N+1/dt = �kpCN

� koffCN+1

dX/dt = �x+(XT

�X)� �x�X

+(~�x · ~C)(X
T

�X)� (~µx · ~C)X

+(⌘y+Y + ⌘p+P )(X
T

�X)� (⌘y�Y + ⌘p�P )X

dY/dt = �y+(YT � Y )� �y�Y

+(~�y · ~C)(Y
T

� Y )� (~µy · ~C)Y

+(�x

+X + �p

+P )(Y
T

� Y )� (�x

�X + �p

�P )Y

dP/dt = �p+(PT

� P )� �p�P

+(~�p · ~C)(P
T

� P )� (~µp · ~C)P

+(�x+X + �y+Y )(P
T

� P )� (�x�X + �y�Y )P

where C
T

=
N+1P
i=0

C
i

and ~�x · ~C is the vector dot product between the parameter vector (~�x = [�x

0 ,�
x

1 , ...�
x

N+1])

and the vector of complexes (~C = [C0, C1, ..., CN�1, CN

, C
N+1]). We solve the ODE system in the steady-state
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to obtain,

C0 = ↵0(1� ↵)C
T

C1 = ↵1(1� ↵)C
T

...
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N�1 = ↵(N�1)(1� ↵)C
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,

and the equations for X , Y , and P simplify to,

0 = (1�X)� �x

m

X + (~�x

m

· ~C)(1�X)� (~µx

m

· ~C)X + (↵y

+m

Y + ↵p

+m
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m
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Y )P

where we have nondimensionalized concentrations (R by R
T

, C
i

by R
T

, X by X
T

, Y by Y
T

, and P by P
T

) but re-
tained original notation for clarity. The subscript m indicates that the parameter has been modified as a result of the
nondimensionalization process: �x

m

= �x�/�
x

+, �y
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In the case of the more complex analysis (4 nodes, 4 reaction arrows) the number of kinetic proofreading steps was
4 (N = 3). The ratio of background inhibition to background activation of X , Y , and P were fixed at 500 so that
without any ligand the concentrations of X , Y , and P were near zero (�x

m

= �y
m

= �p
m

= 500). The remaining
parameters were set to 0 with the exception of kp, �, and 4 other parameters that defined the network architecture.
The same procedure was carried out for the simpler analysis (3 nodes, 3 reaction arrows) except that the number
of kinetic proofreading steps was 3 (N = 2) and all reactions to and from X were set to zero.

The mathematical model was numerically solved using fzero in Matlab (Mathworks, MA), which allowed the code
to be translated to C++ by the Matlab Coder toolbox. We found that the solution converged rapidly when using 0
as the initial guess.

KPL-IFF model parameters compatible with phenotypic features

To determine the set of parameters in the KPL-IFF model (�, �, µ, kp, �) compatible with the key features we
utilised Approximate Bayesian Computations with Sequential Monte Carlo (ABC-SMC) (3, 4). We used the SSR
(described above) as the summary statistic and terminated the algorithm when > 10, 000 particles were found with
SSR < 1. Distributions of the 5 parameters along with their pairwise correlations are shown in Figure S6.
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Negative feedback cannot produce a bell-shaped dose-response

The systematic analysis described in the previous section (see also main text and Fig. 4) has revealed that negative
feedback, although well known to produce oscillations in time, cannot produce a bell-shaped dose-response in
the steady-state. In this section we provide further evidence for this numerical result by providing an intuitive
explanation together with an analytical proof.

First, consider a two component negative feedback (Figure S5a) whereby P activates Y and Y in turn inhibits P. As
the activator of P increases (C1 in this example), P will increase. In order to decrease P (to produce a bell-shaped
dose-response) Y needs to inhibit P more strongly at larger values of P . But a larger value of active Y (needed
for stronger inhibition of P ) requires larger value of active P . Therefore, P and Y are subjected to two conflicting
requirements which cannot be satisfied simultaneously. It follows that a bell-shaped dose-response for P cannot
be achieved in the steady-state.

In what follows we provide a mathematical proof that a bell-shaped dose-response cannot be produced with neg-
ative feedback in the steady-state. To do this, we derive an implicit expression for P and show that the first
derivative cannot be zero for any positive reaction rate constants. The non-linear coupled system of ODEs for the
two component negative feedback can be written as follows,

dŶ
dt

=
⌘

P
+

1+
⇣

⇢̂
P̂

⌘n + �Y+ �
"

⌘

P
+

1+
⇣

⇢̂
P̂

⌘n + �Y+ + �Y�

#
Ŷ (2)

dP̂
dt

= (�Ĉ1 + �P+)(1� P̂ )� �̂Y

� Ŷ P̂ � �P� P̂ (3)

where Ŷ and P̂ are non-dimensional (Ŷ = Y/Y
T

, P̂ = P/P
T

) with ⇢̂ = ⇢/P
T

, and �̂Y

� = �Y

�Y
T

. Note that all
reactions considered in the main text are based on non-saturating mass action but in this analysis we have included
a more general saturating inhibition, which can be reduced to mass action in the limit of large ⇢̂ with n = 1. In the
steady-state we find,

Ŷ =
(�Ĉ1 + �P+)(

1
P̂

� 1)� �P�

�̂Y

�

which, we substitute into the steady-state of equation (2) to obtain,

f = 1�

2

6641 +
�Y�

⌘

P
+

1+
⇣

⇢̂
P̂

⌘n + �Y+

3

775

"
( 1

P̂

� 1)� �P�

�̂Y

�

#
= 0 (4)

where  = �Ĉ1 + �P+ contains the input from Ĉ1. To determine if P can exhibit a bell-shaped dose-response as
a function of Ĉ1 we determine the value of the parameters where the first derivative of P is zero. To do this, we
differentiate P with respect to ,

df
d

= �

2

666664

�n�Y�⌘P+

⇣
⇢̂

P̂

⌘
n

dP̂
d

P̂

 
⌘

P
+

1+
⇣

⇢̂
P̂

⌘n + �Y+

!2 h
1 +

⇣
⇢̂

P̂

⌘i2

3

777775

"
( 1

P̂

� 1)� �P�

�̂Y

�

#

�

2

6641 +
�Y�

⌘

P
+

1+
⇣

⇢̂
P̂

⌘n + �Y+

3

775

"
1

�̂Y

�

 
P̂ �  dP̂

d

P̂ 2
� 1

!#
= 0 (5)
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At dP̂
d = 0, equation (5) reduces to

�

2

6641 +
�Y�

⌘

P
+

1+
⇣

⇢̂
P̂

⌘n + �Y+

3

775

"
1

�̂Y

�

✓
1

P̂
� 1

◆#
= 0

which can be satisfied when

1 +
�Y�

⌘

P
+

1+
⇣

⇢̂
P̂

⌘n + �Y+

= 0 (6)

and/or when

1

�̂Y

�

✓
1

P̂
� 1

◆
= 0 (7)

Given that all reaction rate constants and concentrations must be positive it is clear that there are no values of P̂
and reaction rate constants that satisfy equation (6). We do find that equation (7) can be satisfied when P̂ = 1 (i.e.
P̂ is maximally active) but at this value of P̂ we find that the equation for f ,

f = 1 +
�P�

�̂Y

�

2

41 +
�Y�

⌘

P
+

1+⇢̂

n + �Y+

3

5 = 0

which, as above, can never be realised because all reaction rates must be equal or greater than zero. Therefore, we
conclude that a simple negative feedback motif cannot explain the observed optimum in the dose-response curve.

We have also performed this analysis on a 3 node network with non-saturating mass action (Figure S 5d-f). As
before, C1 activates P which in this network indirectly activates the inhibitor X by the activation of Y . In this
architecture we observe oscillations in time (Figure S5e) but a bell-shaped dose-response in the steady state was
not possible (Figure S5f). In what follows we show that this model is a special case of the model presented above
and in this way we show that it cannot produce bell-shaped dose-response curves.

The system of ODEs for this model is,

dX̂
dt

= ⌘̂Y+ Ŷ (1� X̂) + �X+ (1� X̂)� �X� X̂ (8)

dP̂
dt

= (�Ĉ1 + �P+)(1� P̂ )� �P� P̂ � �̂X

� X̂P̂ (9)

dŶ
dt

= (�̂P+P̂ + �Y+ )(1� Ŷ )� �Y� Ŷ (10)

where X̂ = X

XT
, P̂ = P

PT
, Ŷ = Y

YT
, ⌘̂Y+ = ⌘Y+YT , �̂X

� = �X

�X
T

and �̂P+ = �P+PT

. In the steady-state we find,

X̂ =
(�Ĉ1+�

P
+ )( 1

P̂
�1)��

P
�

�̂

X
�

Ŷ = 1

1+
�Y�

ˆ
�P+ P̂+�Y+

,
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which can be substituted into the steady-state expression for dX̂
dt to obtain an implicit equation for P̂ in terms of

the parameters of the system,

g = 1�

2

666664
1 +

�X�
⌘̂

Y
+

1+
�Y�

ˆ
�P+ P̂+�Y+

+ �X+

3

777775

2

4

⇣

1
P̂

� 1
⌘
� �P�

�̂X

�

3

5 = 0 (11)

where again,  = �Ĉ1 + �P+ . When n = 1 the equation for f (derived above) is identical to the equation of g
with the exception of a constant. Given that the conclusions above are independent of n it follows that we can
conclude that this 3 node network with negative feedback cannot exhibit bell-shaped dose-response curves in the
steady-state. This is consistent with results from the systematic network analysis that did not find any negative
feedback networks compatible with the phenotypic features.

Predicted T cell activation by co-presentation of pMHC ligands in the KPL-IFF model

The KPL-IFF model was extended to include an additional pMHC by first calculating the fraction of TCR bound
to each ligand at steady-state using the following set of coupled ODEs,

dL1/dt = �k1onL
1R+ k1offC

1

dL2/dt = �k2onL
2R+ k2offC

2

dR/dt = �k1onL
1R+ k1offC

1 � k2onL
2R+ k2offC

2

dC1/dt = k1onL
1R� k1offC

1

dC2/dt = k2onL
2R� k2offC

2

where C1 and C2 are, respectively, the concentration of TCR bound to the first and second pMHC ligands. These
ODEs were integrated to the steady-state to determine C1 and C2, which were used to calculate P as follows,

Ĉ1
1 =

✓
k1off

k1off + kp

◆✓
kp

k1off + �kp

◆
Ĉ1

Ĉ2
1 =

✓
k2off

k2off + kp

◆✓
kp

k2off + �kp

◆
Ĉ2

Ŷ =
1 + �̂(Ĉ1

1 + Ĉ2
1 )

1 + �̂(Ĉ1
1 + Ĉ2

1 ) + �̂y

P̂ =
1 + �̂Ŷ

1 + �̂Ŷ + �̂p + µ̂(Ĉ1
1 + Ĉ2

1 )

where superscripts indicate ligand identity (1 or 2). Parameter values are identical to those used to generate Figure
3d with the ligand concentration and kinetic parameters as indicated in Figure 5.
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Model of kinetic proofreading with limited signalling followed by TCR internalisation

The following ODEs were used to model kinetic proofreading with limited signalling with constitutive and induced
TCR internalisation,

dL/dt = �konLR+ koff(C0 + C1 + C2) + �(C0 + C1 + C2)

dR/dt = �konLR+ koff(C0 + C1) + ↵� �R

dC0/dt = konLR� (koff + kp + �)C0

dC1/dt = kpC0 � (koff + �kp + �)C1

dC2/dt = �kpC1 � (koff + �)C2

where ↵ and � are the constitutive receptor recycling rates. In this model, it is assumed that C2 represents a
state where the receptor is tagged for induced internalisation so that immediately upon pMHC unbinding it is
internalised (i.e. koffC2 does not appear in the equation for R). The model is integrated to the steady-state using
the Matlab (Mathworks, MA) function ode23s with the parameters indicated in Figure S8.
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Supplementary Movies

Movie S1. Systematic analysis of 304 network architectures (Figure 4a). Each 1 second frame shows the network
architecture (left) and the network output (right). The network architecture displays the 3 receptor states (C0, C1,
and C2) together with Y and P where green arrows indicate activation and red arrows indicate inhibition (mag-
nitudes of inhibition arrows are in italics). The network output displays P (y-axis) over the ligand concentration
(x-axis) for ligands with decreasing koff (blue to red). Networks appear in ascending order of the SSR with net-
works that are better able to produce the phenotypic features appearing first. See Supplementary Information for
computational details.

Movie S2. Systematic analysis of 26,069 network architectures (Figure 4e). Movie generated as described (see
Movie S1) except that one additional receptor state and one additional node were included (see main text and
Figure 4e for details). This movie can be found at this link: https://dx.doi.org/10.6084/m9.figshare.3491792.v1

Supplementary Applet

Applet S1. A Javascript applet that can be used to examine how the 5 model parameters (kp, �, µ, �, and �)
modulate the predicted dose-response for ligands of varying affinities for the KPL-IFF model (Figure 3d). Default
parameter values in the applet are the same as those used to generate Fig. 3d. This applet can be found at this link:
https://dx.doi.org/10.6084/m9.figshare.3491807.v1

Supplementary Table

pMHC Peptide koff (s-1) SEM kon (M-1s-1) SEM KD (M) SEM
9V SLLMWITQV 8.26E-05 1.03E-06 1.17E+06 2.80E+04 7.07E-11 2.57E-12
4A SLLAWITQV 1.54E-03 1.77E-05 1.41E+06 1.15E+05 1.09E-09 1.01E-10
5Y SLLMYITQV 1.67E-03 1.18E-04 1.26E+06 3.14E+05 1.33E-09 4.26E-10
8S SLLMWITSV 1.33E-02 2.29E-03 1.03E+06 2.72E+05 1.29E-08 5.64E-09
6T SLLMWTTQV 7.14E-02 1.43E-02 8.64E+05 2.70E+05 8.27E-08 3.58E-08
5F SLLMFITQV 1.01E-01 7.08E-03 1.09E+06 2.03E+05 9.31E-08 2.39E-08
8K SLLMWITKV 8.33E-02 6.46E-03 4.10E+05 2.98E+04 2.03E-07 3.05E-08
5P SLLMPITQV 9.80E-01 7.76E-02 2.02E+06 2.39E+05 4.85E-07 9.59E-08

4A8K SLLAWITKV 1.95E+00 5.31E-02 1.10E+06 1.34E+05 1.78E-06 2.65E-07
4A5A SLLAAITQV 5.64E+00 5.62E-01 2.52E+05 5.47E+04 2.24E-05 7.10E-06

4A5P8K SLLAPITKV >1.0E-04

Table S1: Measured binding properties for the c58c61 TCR for the indicated peptide in complex with HLA-
A*02:01 (pMHC ligand). Results are averages of at least 3 measurements.
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Supplementary Figures

A

B

C

D

pMHC - 9V (WT)

pMHC - 4A

pMHC - 8K

pMHC - 5P

[TCR] (nM)

Figure S1: Representative surface plasmon resonance (SPR) measurements of TCR-pMHC interactions (Table S1).
All experiments are performed by injecting recombinant c58c61 TCR over immobilised recombinant pMHC (see
Materials & Methods). The precise protocol for determining the kinetic rate constants (kon and koff) was dependent
upon the affinity regime of the TCR-pMHC interaction. a-b) In the case of TCR-pMHC interaction with small koff,
a single concentration of TCR is injected over the surface. The value of koff is determined from the dissociation
curve (right) which is used to fit the association curve (middle) with exponential rate of kon[TCR]+koff. c-d) In
the case of TCR-pMHC interactions with a larger koff, multiple concentrations of the TCR were injected over the
surface. The value of koff was determined from the dissociation curve and the value of kon was either determined
from fitting the association curves (as in c) or by first determining the KD (kon = koff/KD, as in d). When kinetics
were too rapid to be resolved we only report the value of KD. See Materials & Methods for a detailed protocol and
mathematical analysis of the data.
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Figure S2: a) Expression of the c58c61 TCR on primary CD8+ T cells and Jurkat T cells using the biotinylated
high affinity pMHC (9V) with R-PE-conjugated streptavidin (red line) or only R-PE-conjugated streptavidin as a
staining control (grey line). The Jurkat T cells were sorted following transduction. b,c) Functional assays (top)
together with pMHC immobilisation controls (bottom) for b) primary CD8+ T cells and c) Jurkat T cells with a
larger number of higher affinity ligands. Functional assays were corrected for differences in pMHC immobilisation
(see Materials & Methods). d) The transcriptional activity of NFAT in Jurkat T cells was determined at 16 hours
for the indicated pMHC ligands revealing qualitatively similar behaviour to IL-8. This reporter of T cell activation
was not used routinely because of the poor signal-to-noise ratio of the assay. e) Activation assays with primary
T cells were performed as described in the main text for the indicated pMHC except that brefeldin A was added
to block cytokine secretion for the last 2 hours of the assay (reducing the amount of supernatant cytokine in the
cell population assay, left column) at which point intracellular cytokine levels were determined by flow cytometery
(right column). The supernatant concentration of cytokine (cell population assay) compares favorably with the
mean intensity of cytokine in the positive population (single cell assay). All data are representative of at least 3
independent experiments.
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Figure S3: The concentration of TCR-pMHC complexes that regulate the activation of P for the phenotypic model
calculations in Figure 3. The concentration of a) C0 in the occupancy model, b) C0 in the occupancy coupled to
incoherent feedforward model, c) C1 in the kinetic proofreading coupled to incoherent feedforward model, and
d) C1 in the KPL-IFF model. The maximum concentration of signalling competent TCR-pMHC complexes for
the occupancy models (a,b) is independent of the TCR-pMHC off-rate (koff) whereas for the kinetic proofreading
models (c,d) the maximum concentration of signalling competent TCR-pMHC complexes is dependent on the
off-rate.
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Figure S4: Quantitative metrics for comparing signalling network outputs. a) Schematic of a bell-shaped dose-
response showing the definition of W1, W2, W3, and EC50. b) Schematic of the network architecture of the
KPL-IFF phenotypic model where green arrows indicate activation and red arrows indicate inhibition with the
magnitude of the arrow indicated (compare to Figure 3d). c) Output of the KPL-IFF phenotypic model shown in B
with 12 pMHC ligands whose koff varies from 10�4 (red) to 10 (blue). d-g) The values of the metrics F1, F2, F3,
and F4 as a function of koff for the output in panel c. h) Workflow of the systematic network search algorithm.
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Figure S5: Negative feedback can produce oscillations in time but not bell-shaped dose-response curves in the
steady-state. a) A two node negative feedback, whereby P activates its inhibitor Y (see Figure 4d) can b) produce
oscillations in P over time but c) not bell-shaped dose-response in the steady-state. d) A three node negative
feedback, where P activates Y which in turn activates X that is able to inhibit P can (as for the two component
negative feedback) e) produce damped oscillations in P over time but f) not bell-shaped dose-response in the
steady-state. See Supplementary Information for calculation details.
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Figure S6: KPL-IFF model parameters compatible with phenotypic features. The probability density of the in-
dicated parameter is shown along the diagonal along with pairwise correlations in the off-diagonals with yellow
indicating a high frequency of occurence (scale bar indicates number of occurrences). Vertical dashed lines in the
probability densities indicate the default parameter used in Figure 3d. We find a broad range of parameter values
compatible with phenotypic features but with certain relationships amongst them. For example, we find that µ > �
but both parameters can vary more than 1000-fold provided this relationship is maintained. See Supplementary
Information for calculation details.
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Figure S7: Possible relationships between the phenotypic model modules and known T cell signalling components.
a) Kinetic proofreading can be realised by the sequential phosphorylation of the T cell receptor ITAMs and/or the
recruitment of Lck associated coreceptors (5) (not shown) followed by the recruitment and subsequent activation
of ZAP-70 (6) . b) Limited signalling of the T cell receptor may occur as a result of ubiquintination (7) and/or the
receptor entering membrane environments that are incompatible with signalling (8). c) Incoherent feedforward in
the signalling cascade initiated by the T cell receptor may occur between LAT and Ras (9). Phosphorylated LAT
provides docking sites for Grb2 which recruits the guanine nucleotide exchange factor (GEF) SOS that promotes
the formation of the active form of Ras (RasGTP) that promotes downstream signalling. However, phosphorylated
LAT also provides docking sites for DOK1/DOK2 which recruits the GTPase activating protein (GAP) RasGAP
that promotes the formation of RasGDP and hence reduces the active form of Ras. Although not depicted in the
schematic, incoherent feedforward may also arise from the TCR signalosome because it is able to associate with
both a tyrosine kinase (ZAP-70) and a tyrosine phosphatase (SHP-1) (10).
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Figure S8: Internalisation of TCR following signalling does not produce bell-shaped dose-responses in the steady-
state. a) Schematic of internalisation model that includes kinetic proofreading with limited signalling followed
by TCR internalisation (from state C2) with basal recycling of receptor at the cell surface. b) Concentration of
signalling TCR and c) total surface TCR over ligand concentrations for different ligand affinities at steady-state.
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