
Modelling longitudinal preclinical tumour size data to identify

transient dynamics in tumour response to anti-angiogenic drugs

L G Hutchinson a, H-J Mueller d, E A Gaffney a, P K Maini a,
J Wagg b, A Phipps c, C Boetsch b, H M Byrne a, B Ribba b

August 22, 2016

a. Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Ox-
ford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2
6GG, UK

b. Roche Pharmaceutical Research & Early Development, Roche Innovation Center Basel,
Switzerland

c. Pharma Research and Early Development, Roche Innovation Centre Welwyn, 6 Falcon
Way, Shire Park, Welwyn Garden City, AL7 1TW, UK

d. Pharma Research and Early Development, Roche Innovation Centre Munich, Nonnen-
wald, 82377, Penzberg, Germany

Corresponding author: Lucy Grace Hutchinson: hutchinson@maths.ox.ac.uk
+44 1865 283 874

Keywords: angiogenesis; normalization; modelling and simulation; tumour
size; preclinical

Tables: 1, Figures: 6

Word counts:
Abstract 150
Main body 4004

1



Abstract

Experimental evidence suggests that anti-angiogenic therapy gives rise to a transient

window of vessel normalization, within which, the efficacy of radiotherapy and chemother-

apy may be enhanced. Preclinical experiments that measure components of vessel normal-

ization are invasive and expensive. We have developed a mathematical model of vascular

tumour growth from preclinical time-course data in a breast cancer xenograft model. We

used a mixed effects approach for model parameterisation, leveraging tumour size data

to identify a period of enhanced tumour growth that could potentially correspond to the

transient window of vessel normalization. We estimated the characteristics of the win-

dow for mice treated with an anti-VEGF antibody (bevacizumab) or with a bispecific

anti-VEGF/anti-angiopoietin-2 antibody (vanucizumab). We show how the mathemati-

cal model could theoretically be used to predict how to coordinate anti-angiogenic therapy

with radiotherapy or chemotherapy to maximise therapeutic effect, reducing the need for

preclinical experiments that directly measure vessel normalization parameters.
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1 Introduction

Angiogenesis is the process by which blood vessels form from existing ones; it plays a key

role in tumour growth and progression. The initial development of anti-angiogenic ther-

apies was based on the premise that pruning new tumour vessels would reduce the blood

supply to the tumour, and inhibit the delivery of oxygen and nutrients to the tumour,

causing its growth to slow down or stop [1]. However, it is now clear that anti-angiogenic

therapy not only causes vascular regression, but also affects processes including vessel per-

meability, perfusion, diameter, tortuosity and pericyte coverage; and thereby normalizes

the vasculature [2]. It has been suggested that vessel normalization plays a key role in

tumour progression, since it may transiently enhance the delivery of oxygen and nutrients

to the tumour microenvironment [3]. There is evidence that anti-angiogenic drug induced

vessel normalization transiently increases the efficacy of chemotherapy and radiotherapy

[4, 5]. If this normalization window were identified for individual patients, then combi-

nation treatment schedules could be designed in which administration of chemotherapy

or radiotherapy would be coordinated with the normalization window to maximise the

therapeutic response.

Normalization has been observed in preclinical models of anti-angiogenic therapy both

from histology [6, 7] and via real-time imaging methods such as window chamber assays

[8, 9]. For reviews on the role of normalization in neovascular development, see [10]

and [11]. Evidence from mouse xenograft studies suggests that vessel normalization is a

transient effect that begins shortly after the onset of anti-angiogenic therapy and ends

a few days later [12, 13]. Furthermore, some clinical studies are consistent with anti-

angiogenic therapy stimulating a reduction in vessel permeability for glioblastoma [14]

and rectal cancer [15]. In both [12] and [13] radiotherapy was found to be most efficacious

when administered within the transient window of increased tumour oxygenation. In

particular, in [12] a synergistic tumour growth delay was observed when radiotherapy was

administered 4-6 days after the first dose of anti-angiogenic therapy. It has also been

suggested that normalized vessels allow efficient delivery of chemotherapy since improved

perfusion allows effective extravasation of small molecules [5, 16].

Bevacizumab is an anti-vascular endothelial growth factor (VEGF) antibody that has

been approved for treatment of numerous cancers including renal cell carcinoma, non-

small-cell lung cancer and colorectal cancer. Vanucizumab is a bispecific antibody that
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recognises VEGF with one arm (based on bevacizumab) and angiopoietin-2 (Ang2) with

the other arm (based on LC06, an Ang2 specific antibody). Vanucizumab is currently

in phase 2 trials to treat locally advanced or metastatic solid tumours (NCT01688206),

and in combination with FOLFOX for metastatic colorectal cancer (NCT02141295). It

is thought that since both VEGF and Ang2 promote angiogenesis, simultaneous inhibi-

tion of the ligands will result in an additive or even synergistic effect on tumour vessel

regression [7]. Anti-angiogenic therapies are principally used in combination with cyto-

toxic therapies or radiotherapy. It has been shown that the timing of such concomitant

treatments is important for the therapeutic outcome in preclinical experiments [4, 5]. In

order to further elucidate some of the mechanisms by which anti-angiogenic therapy can

improve treatment outcome when administered alone or in combination with chemother-

apy, we have developed a mathematical model of vascular tumour growth. Our model

can be used to identify a period of enhanced tumour growth that could correspond to the

vessel normalization window within which cytotoxic or radiotherapeutic efficacy may be

increased.

The development of mathematical models of angiogenesis has been driven by exper-

imental results. Continuous, discrete and hybrid models can be used to represent vessel

growth dynamics, and tumour growth, in one, two or three dimensions and may account

for intricate biological details [17, 18, 19, 20, 21] (for a review, see [22]). Without suitable

experimental data, these models can yield qualitative mechanistic insight; with appropri-

ate data, the models can be validated and parameterised and, thereby, their predictive

power increased. Mathematical models canalso be used to investigate the impact of mech-

anistic perturbations to angiogenesis and to formulate hypotheses about optimal therapy

regimens.

For model development and parameterisation, non-linear mixed effects (NLME) mod-

elling enables a data-driven approach [23]. A maximum likelihood approach is used to

estimate population and individual parameters from experimental data. The method has

been used widely to integrate tumour growth data with ordinary differential equation

(ODE) models that characterise tumour growth kinetics in the presence and absence of

cytotoxic treatments [24, 25, 26, 27, 28]. Typically these models comprise a term that

represents an empirical tumour growth law (eg. logistic, Gompertzian, or exponential

growth), and another term to represent tumour growth inhibition due to chemotherapy.

For example, in [24] a two-phase tumour growth law (exponential followed by linear) is
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modified to account for a cytotoxic therapy which acts directly to kill the tumour cells.

This model is extended in [29] to account for anti-angiogenic therapy which is assumed to

indirectly slow the tumour’s growth rate, however, there is no variable for the tumour’s

vascular density.

Building on these models, Hahnfeldt et al. proposed a simple model of vascular tu-

mour growth in which the tumour and the vasculature are treated separately. Vascular

density is assumed to regulate the equilibrium size of the tumour while the tumour is as-

sumed to promote angiogenesis [30]. In [31], Ouerdani et al. develop a model of vascular

tumour growth in which a logistic tumour growth law is assumed, and the equilibrium

tumour size is the vessel-dependent carrying capacity. The authors use preclinical and

clinical data to parameterise the model in the presence and absence of the dual cytotoxic

and anti-angiogenic drug, pazopanib. Similarly, in [27], Wilson et al. present a logis-

tic tumour growth model with a dynamic carrying capacity term that is parameterised

for administration of anti-angiogenic therapy alone and in combination with chemother-

apy. The authors use their model to predict an optimal time for the administration of

chemotherapy following administration of anti-angiogenic therapy. They suggest that vas-

cular normalization could play a key role in the identification of the optimal treatment

schedule, although normalization is neglected in their model.

It is clear that vessel normalization plays a key role in vascular tumour growth, al-

though parameters associated with normalization are rarely measured. While existing

mixed effects models have not explicitly considered the dynamics of vessel normalization,

in this paper, we are motivated by the transient dynamics apparent from the experimental

data in the KPL-4 preclinical mouse (xenograft) model of breast cancer to extend existing

mathematical models of vascular tumour growth under anti-angiogenic therapy to account

for these dynamics. Our primary goal is to combine mixed effects modelling with tumour

size data from KPL-4 mouse xenografts to characterise the transient window of increased

tumour growth following exposure to anti-angiogenic therapy. The same model could be

used to characterise normalization in clinical studies. To conclude our study, we demon-

strate how the model can be used to predict the optimal time, relative to the transient

window, to schedule chemotherapy.
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2 Methods

2.1 Preclinical data

Female SCID beige mice, aged 8 weeks, were housed in specific-pathogen-free conditions

according to committed guidelines (GV-Solas, Felasa, TierschG) and injected with a sus-

pension of 3× 106 KPL-4 tumour cells into the right, penultimate, inguinal mammary fat

pad. Treatment started 38 days after tumour cell injection, when tumours had reached a

mean size of 70mm3, and mice were randomized into control (omalizumab), bevacizumab

treatment and vanucizumab treatment groups with 10 mice per group.

Bevacizumab is an anti-VEGF antibody, vanucizumab is a bispecific anti-VEGF/anti-

Ang2 antibody that neutralises both ligands, and omalizumab was included as an isotype

control. Each antibody was administered via i.v. injection at a dose of 10mg/kg, once

per week, starting 38 days after inoculation for a total of 5 weeks.

Tumour volume, T , was calculated using the formula T = length×width2

2 where the

length and width of the tumour were the longest and shortest dimensions of the tumour

lying at 90◦ to the longest, respectively. These measurements were taken twice per week

for the treated period, resulting in a total of 10 tumour size measurements per animal.

The data are presented in Figure 1.

2.2 Model development

Untreated tumours

The structural model that we present comprises two ordinary differential equations (ODEs)

to describe time dependent tumour growth and associated vessel-dependent carrying ca-

pacity and is inspired by a model devised by Hahnfeldt et al. [30]. The tumour size

is the observed variable; the vessel-dependent carrying capacity has not been measured

experimentally. We assume that all individual parameters are distributed log-normally,

which is generally accepted for growth rates and reaction rates [32].

The biological interpretation of the carrying capacity is the maximum tumour size that

can be supported by the associated vasculature. The anti-angiogenic therapies that we

consider affect vessel growth, but are not directly cytotoxic. Therefore, we view tumour

volume, T (measured in mm3), and the carrying capacity, V (also in mm3), as distinct

dependent variables. A simple logistic growth model for T was chosen for the untreated
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case (see equation (1)). Tumour growth has been represented using a logistic or generalised

logistic growth term in several related models [31, 27, 25]. Following [30], we assume

that the carrying capacity, V , of the tumour depends on the local vascular density and

architecture. In recent publications [27, 31], the evolution of the carrying capacity was

assumed to depend only on T . We propose that it is realistic to take into consideration

the existing vascular density since new vessels sprout from existing ones. The untreated

model of tumour size and dynamic carrying capacity can be written:

dT

dt
= αT T

(
1− T

V

)
, (1)

dV

dt
= αV T β V γ , (2)

where αT is the maximal tumour growth rate, and αV is the growth rate of the vascular-

dependent carrying capacity. Since in equation (2) the exponents β and γ are not identifi-

able via model simulations, we fixed them at physiologically based values. Vessel growth is

stimulated by growth factors (such as VEGF) that are released by tumour cells in response

to hypoxia and, by a simple geometrical argument, we may assume that the proportion of

the tumour volume that is hypoxic is proportional to its surface area. This assumption is

consistent with the pO2 gradient in tumours described in [33]. Accordingly, we fix β = 2
3 .

We use a value of γ = 1−β = 1
3 to ensure that vessel growth is exponential at long times.

We note that there are several values for β and γ that could feasibly represent vessel

dependent tumour growth: the values chosen here are based on geometrical arguments.

Tumours treated with anti-angiogenic therapy

We assume that anti-angiogenic therapy has two effects: (1) it causes blood vessel re-

gression and (2) it leads to a transient period during which tumour growth is enhanced

due to increased blood flow. We start by taking only effect (1) into account, and then

suppose both effects are active. We incorporate effects (1) and (2) into our mathematical

model by including a term for vessel regression and a function that transiently increases

the carrying capacity (this change being stimulated by increased tumour perfusion during

the transient normalization window).

In the absence of pharmacokinetic data from the experiment and to avoid introducing

further unknown model parameters, we do not explicitly model drug levels in the tumour

microenvironment; we assume that from the onset of treatment, the concentration of each
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anti-angiogenic drug in the blood stream is maintained at a high enough level to ensure

maximum efficacy. The long half-life (around 8 days in preclinical models) of bevacizumab

supports this assumption [34], and we assume that vanucizumab has a similarly long half-

life. Data presented by [34] and [7], shows that a weekly dose of 10mg/kg of bevacizumab

or vanucizumab results in maximum efficacy with respect to tumour growth inhibition in

mice, further supporting our argument. The full model can be written

dT

dt
= αT T

(
1− T

N × V

)
, (3)

dV

dt
= αV T 2/3 V 1/3 − δV V, (4)

N(t) =


1 for t ≤ tnorm1 and t ≥ tnorm2,

Nmax for tnorm1 < t < tnorm2,

(5)

where the constant δV corresponds to the vessel death rate, tnorm1 and tnorm2 are the start

and end times of the window of enhanced tumour growth, respectively, and Nmax ≥ 1

is the maximum factor by which the carrying capacity is enhanced during the transient

window. For the first case, where only effect (1) is accounted for, Nmax = 1 for all time.

The initial condition for T is the experimental value of the tumour volume at the

first measurement time (day 38). We estimate the initial value of V via the parameter

K = T0

V0
, where T0 is the observed initial tumour volume (observed) and V0 is the initial

vessel dependent carrying capacity. As such we assume that V0 is linearly related to T0 for

individuals through the parameter K, which is estimated for individuals. Typical model

simulations for various values of δV and Nmax are presented in Figure 2. We include a

short simulation study in Supplementary Material 1 that demonstrates the benefit of rich

datasets for parameter identifiability. Our study showed that there is a large uncertainty

associated with the parameter Nmax. The mathematical explanation for the uncertainty

is that as N → ∞, αTT
(
1− T

NV

)
→ αTT .Therefore large estimates for Nmax will give

similar simulation results.

2.3 Modelling Techniques

Our non-linear mixed effects model was implemented using Monolix software, which allows

estimation of population parameters, inter-individual variability (IIV) via the Stochastic

Approximation to Expectation Maximisation (SAEM) algorithm, and also individual pa-
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rameters [35].

For mixed effects modelling, it is assumed that the observed data, y, can be represented

as a function of population and individual parameters and the experimental error on

measurements. The structural model, f , describes the deterministic processes that give

rise to the data and depends on time and the underlying model parameters. The error

model, g, describes how measurement errors made during data collection change over time

and their dependence on underlying parameters. Measurement j for individual i may be

written

yij = f(tij , φi) + g(tij , φi)εij , (6)

where the vector φi contains the parameters corresponding to individual i for the struc-

tural model, tij is the time of measurement j for individual i, and εij is the residual error

of the measurement.

We use a proportional error model defined by g(tij , φi) = bf(tij , φi) where b is a posi-

tive constant. For our model, φi contains the parameters αV , αT ,K, δV , Nmax, tnorm1, tnorm2

and b, the error model parameter, the size of y is 30 × 10 (total number of individuals×

number of measurements per individual). The observed and simulated data y and f ,

respectively, are tumour size measurements for 30 animals at 10 time points.

Model selection is performed by comparing the Bayesian Information Criterion (BIC)

for each model, alongside visual predictive checks (VPC) and residual standard error

(r.s.e.) of population parameters and IIV. The BIC is a penalized likelihood criterion

calculated by the formula BIC = −2LLy(θ) + log(n)d, where LL is the log-likelihood, n

is the number of observations, θ is the vector containing the population parameters and

d is the total number of parameters.

3 Results

3.1 A simple monotonic vessel inhibition model does not capture

transient dynamics

Model simulations that account for drug-induced vessel regression, but not normalization

(see equations (3)-(4) with Nmax = 1), produced a poor fit to the experimental data; the

fit could be improved by accounting for the transient dynamics of tumour growth. The

individual fits and residuals are presented in conditional weighted residuals in Figure 3.
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From Figure 3(h), it is clear that the tumour volume is almost always under-estimated

at day 52, and almost always over-estimated at days 59 and 63. This is due to a steep

increase in the tumour growth rate between these times. In the next subsection we improve

the model by accounting for the transient tumour growth dynamics. The BIC for the

monotonic model without normalization is 2759. The results for the model parameters

estimated for the monotonic model are presented in Table 1.

3.2 Model selection: identifying the transient window of enhanced

tumour growth

Following [12], we assume that the duration of the transiently enhanced tumour growth

window is similar for all animals injected with a given tumour cell line and receiving a

particular anti-angiogenic treatment. Therefore, in our model selection process, we fix the

variance of the population distributions for tnorm1 and tnorm2 to 0.1 and allow individual

parameter values to be chosen within this pre-defined distribution. Since we assume that

the transient window of enhanced tumour growth is caused by vessel normalization, we

base further assumptions on experiments from [13], where the time frame in which vessel

normalization occurred was similar for all animals treated with bevacizumab. Based on

experiments in [13] and [12], we assume that the normalization constant remains at control

levels before and after the transient window.

When assuming the anti-angiogenic treatment stimulates both vessel regression and

normalization, equations (3)-(5) were used to estimate population and individual parame-

ter values. During model selection, we tested several assumptions regarding the treatment

parameters δV , Nmax, tnorm1 and tnorm2 (see Supplementary Material 2). The model that

gave the best fit to the experimental data assumed different values of δV for both treat-

ment groups, and the same values of Nmax, tnorm1 and tnorm2 for both treatment groups.

The parameter estimates along with their r.s.e. values and shrinkage are listed in Table

1.

The individual fits and residual errors for the final model are shown in Figure 4 and the

visual predictive checks (VPCs), split by experimental group, are shown in Figure 5. These

results show that the transient dynamics model (equations (3)-(5)) describes individual

and population data well for all groups. We performed a likelihood ratio test (LRT) and

found that the results agreed with the Wald test that the data are better described using
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a proportional error model than a constant error model (−∆2LL = −32764.61).

We selected the transient dynamics model as the most appropriate to represent the

experimental data based on the diagnostic plots, shrinkage, parameter estimates and r.s.e.

values, compared to the monotonic model (equations (3)-(5) with Nmax = 1). The BIC

for the transient dynamics model, BICT , was larger than the BIC for the monotonic

model, BICM , (BICT = 2865, BICM = 2797). However, we do not reject the transient

dynamics model based on the BIC, and we propose that the other evidence for model

appropriateness (diagnostic plots, r.s.e., shrinkage) suggests that the normalization model

describes the data the best.

The estimated value of the population parameter Nmax = 6.7. An interpretation of

this result is that, during the transient window, the vasculature provides sufficient oxygen

and nutrients to support a tumour 6.7 times larger than it was able to support before the

period of enhanced tumour growth.

3.3 Verification with histology data

We compared the histology results for vessel density (measured in vessels per mm2 tumour

tissue) at day 71 with the simulated results for vessel density (V/T ) at day 71. Details of

the comparison are given in Supplementary Material 4. We observed that there is good

qualitative agreement between the histology and the simulated data.

3.4 Theoretical administration of chemotherapy

We now simulate the administration of a cytotoxic drug, C(t) in order to examine whether

the model predicts a more pronounced difference in tumour volume when chemotherapy

is administered during the normalization window. We assume that the cytotoxic drug is

delivered to the tumour at a rate proportional to N × V , and that it acts to kill tumour

cells at a rate proportional to its concentration in the tumour. The chemotherapy model

is based on the model proposed in [28], which investigates the effects of docetaxel and

capecitabine on tumour growth. For simplicity, we based our parameter estimates on the

population parameters from this model. The equations for vascular tumour growth in

response to combined anti-angiogenic and chemotherapy are given by:
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dT

dt
= αT T

(
1− T

N × V

)
− δT C Te−λt, (7)

dV

dt
= αV T 2/3 V 1/3 − δV V, (8)

C = αC(t)NV e−k mod(t,1), (9)

N(t) =


1 for t ≤ tnorm1 and t ≥ tnorm2,

Nmax for tnorm1 < t < tnorm2,

(10)

and

αC(t) =


0 for t ≤ tCon and t ≥ tCoff ,

α̃C for tCon < t < tCoff

(11)

where C is the concentration of the cytotoxic drug in mg ml−1 inside the tumour. We use

the population values for the model parameters in response to vanucizumab, and fix the

new parameters so that α̃C = 1mg ml−1mm−3, k = 0.9 day−1, δT = 0.12 mg−1ml day−1, λ =

0.08 day−1. We consider three situations. First, chemotherapy is administered once daily

for a one week period before the transient window, so that (tCon, tCoff ) = (42, 49); in the

second case chemotherapy is administered once daily for one week during the transient

window, so that (tCon, tCoff ) = (54, 61); and in the third case, chemotherapy is admin-

istered for a three-week period that starts on the same day as anti-angiogenic therapy,

so that (tCon, tCoff ) = (38, 59). The third case is likely to be the most realistic regimen

administered to patients, and represents treatment when the timing of the normaliza-

tion window is not known. The results of our simulations are shown in Figure 6. When

chemotherapy is administered before the transient window, tumour growth is reduced, but

chemotherapy is more efficacious when administered during the transient window, leading

to a more pronounced decrease in tumour volume. Interestingly, our model predicts that

chemotherapy administered both before and during the normalization window (Figure

6(d)) leads to a smaller reduction in tumour volume than chemotherapy administered

only within the normalization window.

The simulations in this section are based on the assumption that resistance to chemother-

apy emerges. The resistance term, e−λt, in Equation 7 reduces the efficacy of the

chemotherapy agent at long times, and this is likely to influence the reduction in tumour

volume in Figure 6(d) compared to Figure 6(c). We show that changes in the resistance
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parameter λ or ±20% do not change the conclusions in this section in Supplementary

Material 5.

4 Discussion

To our knowledge, this is the first semi-mechanistic mixed-effects model that accounts

explicitly for the effects of vessel normalization in response to anti-angiogenic therapy.

Our model was motivated through the identification of transient dynamics in the exper-

imental data (data shown in Figure 1), and builds upon recent, similar models [27, 31]

by incorporation of mathematical representations for the transient tumour growth dy-

namics. Based on our results we conclude that mixed effects modelling can be used to

locate and parameterise the window of enhanced tumour growth, which may be a direct

or indirect effect of the vessel normalization window, for KPL-4 xenografts, leveraging

only tumour size data. In addition, our model predicts that cytotoxic therapies could

lead to a greater decrease in tumour volume if administered within the transient window.

Our model allows us to quantify synergism between chemotherapy and anti-angiogenic

therapy given the hypothesis that the delivery of chemotherapy is enhanced during the

transient window. The experimental design could be improved to minimise the r.s.e. of

estimated parameters, for example by measuring the tumour volume via imaging methods

instead of caliper methods.

We hypothesise that the transient window that we identify from our experimental

data can be attributed to multiple processes, that include increased pericyte coverage, in-

creased vessel perfusion and decreased vessel permeability (leakiness). These physiological

variables are assumed directly to increase tumour oxygenation and, indirectly, increase

efficacy of chemotherapy and radiotherapy. Techniques such as window chamber assays

and fluorescent staining are available to measure such physiological variables in-vivo. The

next step of model validation would involve performing experiments that can measure

dynamic vessel volume to investigate whether the window of enhanced tumour growth

that we identify corresponds to the above aspects of vessel normalization, and whether

chemotherapy is more efficacious when administered within the window.

Experiments performed on mouse xenografts suggest that normalization can occur 3

days after the onset of treatment [36, 12, 13, 4]. The transient window that we identi-

fied begins 15 days after the start of anti-angiogenic treatment. It is possible that the
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enhanced tumour growth period that we have identified is a downstream effect of vessel

normalization, and that normalization begins earlier. Further experiments are required

to resolve this discrepancy.

Previous experiments have shown that, during the transient normalization window, the

efficacy of radiotherapy and chemotherapy are enhanced [5, 4, 12, 13]. If the window is not

taken into account when investigating the efficacy of combined anti-angiogenic therapy

with radiotherapy or chemotherapy, then inconsistencies in efficacy measurements may

result. With validation, our model has the potential to provide a thorough understanding

of the likely effect on efficacy measurements that the changing vasculature may have.

We developed and parameterised the model using longitudinal tumour size data in a

single preclinical tumour model, and the dynamic carrying capacity was inferred. The

scope of our semi-mechanistic model is limited by the quality, quantity and type of avail-

able experimental data. A pooled approach was used for parameter estimation, to max-

imise the amount of data used to estimate the tumour and vessel growth parameters.

For the final model, we fixed the IIV of tnorm1 and tnorm2 to 0.1 in order to allow small

variations in the estimates for the start and end times of the transient window. No other

parameter values were manipulated or fixed, except for the parameters for the chemother-

apy simulations.

The results for the vascular volume after treatment were in qualitative agreement with

histology data, and the inconsistency in the results for vessel density in control groups can

be explained via a plausable argument regarding intra-and extra-tumoural blood vessels.

Our model could be used to identify the transient window associated with other anti-

angiogenic treatments and tumour cell lines, in both preclinical and clinical settings. In

addition, our model could be used to identify the optimal time for combination treatment,

especially given the experimental observations in [12] and [13] suggest that combination

therapies in which radiotherapy or chemotherapy are administered during the normaliza-

tion window achieve better outcomes than when administered before or after the window.
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Figure legends

Figure 1

Individual tumour size data for (a) control tumours (n=10), (b) bevacizumab treated

animals (n=10), (c) vanucizumab treated animals (n=10), (d) mean tumour volume of

individual groups. Treatment times are shown by vertical arrows in plots (b) - (d).

Figure 2

Typical model simulations with arbitrary parameters that are order of magnitude esti-

mates. Curves on the left ((a), (c), (e)) represent the tumour volume T (t) and correspond-

ing curves on the right ((b), (d), (f)) represent the vessel dependent carrying capacity V (t).

(a)-(b) Control simulations (equations (1)-(2)) with αT = 0.1 day−1, αV = 0.09 day−1,

K = 2, T0 = 70mm3. (c)-(d) Treatment model simulations (equations (3)-(5)) with

Nmax = 1, δV values 0.04 day−1 − 0.12 day−1 and all other parameters the same as (a)-

(b). (e)-(f) Treatment model simulations (equations (3)-(5)) where tnorm1 = 52 days,

tnorm2 = 62 days, Nmax values 2− 21, δV = 0.1 day−1 and all other parameters the same

as (a)-(b).

Figure 3

Monotonic model results from simulations of equations (3)-(5) where Nmax = 1. (a)-(f)

Two typical individual fits selected at random for (a)-(b) control; (c)-(d) bevacizumab, and

(e)-(f) vanucizumab groups using experimental data. Key: Blue ‘+’ - experimental data,

solid black lines - predicted tumour volume, T , using individual parameters estimated by

Monolix. (g) Experimental (observed) results for tumour volume plotted against predicted

results for tumour volume for individuals and coloured by group. (h) Conditional weighted

residuals (CWRES) plots for the transient dynamics model. The mean CWRES for each

experimental group is shown by a solid line of the corresponding colour. Key: blue circles

- control, green stars - bevacizumab, red dots - vanucizumab. The plots show that the

tumour volume is consistently under-estimated for the treatment groups at day 52 and

over-estimated at days 59 and 63.

15



Figure 4

Transient dynamics model results from simulations of equations (3)-(5). (a)-(f) Typical

individual fits selected at random for (a)-(b) control; (c)-(d) bevacizumab, and (e)-(f)

vanucizumab groups using experimental data. Key: Blue ‘+’ - experimental data, solid

black lines - predicted tumour volume, T , red dashed lines - normalization windows for

individuals. (g) Experimental (observed) results for tumour volume plotted against pre-

dicted results for tumour volume for individuals and coloured by group. (h) Conditional

weighted residuals (CWRES) plots for the transient dynamics model. Key: blue circles -

control, green stars - bevacizumab, red dots - vanucizumab

Figure 5

Visual predictive check (VPC) for the final model (equations (3)-(5)) split by group.

Parameters of the final model are listed in Table 1. Green, solid lines show the 10%,

50% and 90% quantiles of the observed data and the shaded regions represent the 90%

prediction intervals on the theoretical 10% (blue region, lower), 50% (red region, middle)

and 90% (blue region, upper) quantiles. Outliers are highlighted by red circles.

Figure 6

Model simulations for anti-angiogenic monotherapy, and three alternative theoretical

treatment regimens to combine anti-angiogenic therapy and chemotherapy, equations (7)-

(9). Key: Black lines - tumour volume (T ), magenta lines - vessel dependent carrying

capacity (V ), dashed blue lines - intratumoural concentration of the cytotoxic drug, C.

Blue shaded regions represent the normalization window and yellow shaded regions rep-

resent the delivery period of chemotherapy. (a) No chemotherapy, (b) chemotherapy

administered before the transient window of enhanced tumour growth, (c) chemotherapy

administered during the transient window of enhanced tumour growth, (d) chemotherapy

administered for a three week period from day 38 to day 59. Anti-angiogenic therapy is

administered from day 38 as in the preclinical study.
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Study Highlights

1. What is the current knowledge on the topic?

Anti-angiogenic therapies alter the density and architecture of the tumour blood ves-

sel network, and may stimulate a transient window of vessel normalization shortly

after anti-angiogenic treatment commences. The efficacy of chemotherapy and ra-

diotherapy may be enhanced during the transient window due to increased perfusion

and decreased vascular permeability.

2. What question did this study address?

Can tumour size data alone be used to infer the transient window of vessel normal-

ization, in which the efficacy of chemotherapy and radiotherapy may be enhanced?

3. What this study adds to our knowledge?

A transient window of enhanced tumour growth occurs during treatment with beva-

cizumab or vanucizumab for KPL-4 tumour bearing mice. The window is identified

with precision using mixed effects techniques.

4. How this might change drug discovery, development, and/or therapeu-

tics?

Identification of the transient window of enhanced tumour growth could reduce the

need to measure normalization parameters, and could reduce the chance of obtaining

inconsistent efficacy measurements when comparing treatments to be administered

alongside anti-angiogenic treatment.
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