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a b s t r a c t

The establishment of cross-protective responses and development of immunity within
a host exert pressure on pathogens through cross-immunity mediated competition
between antigenic forms. In this paper, we incorporate age-specificity in the multi-
locus epidemic model used to study the pathogen-specific dynamic behaviours for
infectious diseases with diverse co-circulating antigenic types. We establish results
on the existence of a unique mild solution, and on the necessary conditions for local
stability of the steady-states. In particular, we find that, when the reproductive
number R0 < 1, all strains go to extinction. When R0 > 1, we show that there exist
additional conditions which determine the stability of different types of endemic
equilibria, namely weak and strong endemicity, where the weak endemic equilibria
correspond to the existence of principle of competitive exclusions of pathogen-specific
clusters, while strong endemicity represents the co-existence of all strains. Using
numerical simulations, we also show that weak endemic equilibria yield dynamic
features in which only one of the clusters containing discrete strain structures
(e.g., of minimally, or non-overlapping antigenic types) persists while others go to
extinction. For unique strong endemicity, we observe no strain structure, where
antigenic types co-exist or exhibit cyclical strain structure with diverse dynamical
behaviours (e.g., (quasi-)periodicity, intermittency, chaos). This demonstrates
that pathogenic-specific dynamic features are ubiquitous and shows how cross-
immunity between antigenic variants shape the maintenance and evolution of strain
structures.
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1. Introduction

In the past decades, we have seen emergence and re-emergence of infectious diseases from a range of
extraordinarily diverse and rapidly evolving pathogens. These infectious diseases, which include influenza
[1–6], malaria [7,8], dengue virus [9,10] and meningitis [11,12], are responsible for substantial annual
morbidity and mortality, and are of utmost importance to public health interests. While mathematical
models have successfully been useful in gaining insights into the dynamic features of most diseases, the
hierarchical complexity with diverse evolutionary patterns generated by some of these diseases has posed
a major challenge in examining the mechanisms governing their dynamics. One of the challenges is that
many of these infectious diseases present themselves as multi-strain pathogens with diverse antigenic
variants. Antigenically variable pathogens use antigenic variation as an immuno-evasion strategy, whereby
the pathogens continuously alter their surface glycoproteins, as in the case of influenza, to prevent antibodies
generated by a specific past strain from recognizing and destroying them. As a result, prior infection
or exposure history with one strain of a pathogen may not always protect against another. If several
infections are possible during an individual’s lifetime, then a host’s immunological and exposure history can
constrain subsequent exposures, thereby substantially changing the dynamics of a disease. That is, during
an outbreak, infected individuals may acquire immunity to the same circulating strain thereby restructuring
the epidemiological landscape of the population which, in turn, constrains future epidemic outbreaks and
drives the pathogen’s antigenic evolution allowing spread to otherwise previously immunized individuals.
Furthermore, a large number of immune hosts in the population can increase selective pressure exerted on
the pathogens and influence the emergence of new antigenic variants. It has been observed that multiple
exposures to antigenic variants of a pathogen and accumulation of immunity induce heterogeneity in both
immune responses and population structures. In [13,14], the authors observe that both strain diversity and
community structures are increased in the presence of contact structure. In [15, Ch. 7–8] and [16], it is
shown that age-specificity can influence the interaction between epidemic dynamics and population-level
immunological profile. Further, age-specificity has also been observed in immune response. In particular,
Cobey and Pascual [17] showed that age may affect the specificity of the immune response, where children
produce a monoclonal response while older individuals produce polyclonal responses to influenza infection.
More recently, Hancock et al. [18] observe age-specificity in the strength of micro-neutralization of H1N1/2009
among subjects categorized by decade of birth. As a result, it is important to study age-specificity in order
to determine the mechanisms responsible for the dynamics observed in these diseases, and the extent that
these dynamic patterns reflect interaction of antigenic variation, strain community structure, population
demographic patterns and immunological profiles.

Structured population models (e.g., spatial structure, temporal variation, multiple groups, differences
in activity or risk factors) have been widely studied in the mathematical biology literature for many
years. In particular, models written as evolutionary systems of partial differential equations (PDEs) for
the density of individuals incorporating a specific structural variable, for example age and/or size for
the age-structured and/or size-structured equations [19,20], phenotypic trait for the selection–mutation
equations [21]; physiologically structured equations [22–24], have appeared. These structural variables are
usually included in these models to enhance features not captured by standard unstructured population
models (see [21,25]). In particular, structured models have been used to capture differential burdens due
to heterogeneity across ages, classes, sizes, physiological traits, and so on, in the presence and/or absence
of other prior predisposing risk factors. Furthermore, structural variables such as age and/or size have
been incorporated into models in order to induce oscillatory dynamics in the cases where unstructured
models do not exhibit such behaviours [26–29]. Therefore, studying epidemiological processes within a
structural variable framework is critical to understanding factors that are important in disease transmission
and evolution; and to designing effective organized public health measures. To understand the effect of
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age-specificity on the interaction between epidemic dynamics, cross-immunity, population-level
immunological mechanism and evolution and maintenance of strain structures, we consider a multi-locus
framework and incorporate age-specificity into the model that has been used in a series of paper [12,30,6,
13,14,31,5,32–35,2,36–38] to investigate various infectious diseases with diverse antigenic forms.

In [30], Gupta and colleagues proposed a mathematical model of multiple strain system using a multi-
locus framework to study the effects of cross-reactivity between antigenic variants on the evolution and
maintenance of strain community structures. Similar multi-strain models have appeared in literature to study
the ecology of pathogens [39–41,9,42–44,12,7,11,45,13,32–35,2,46,47]. Due to challenges in analysing higher
dimensional nonlinear coupled dynamical systems and the combinatorial nature of multi-strain systems,
some modellers have often relied on numerical investigations to study and characterize the dynamics of
the models, while others have resorted to making simplifying assumptions on the strain space (e.g., linear,
circular, square) with a limited number of strains. In [36], Chan and Yu employed a groupoid approach
and centre-manifold reduction to study the existence and stability of partially synchronous steady states (or
discrete strain structure), while Blyuss [37,48] used tools from equivariant dynamical system to analyse the
steady state solutions for a four-strain system. Cherif [38] provided a framework for a general multi-locus
system for any arbitrary strain size.

In this paper, we extend the multi-locus model presented in [30,38] to incorporate age-specificity, and
perform a detailed analysis with a particular emphasis on the existence of a mild solution and on the stability
of the equilibria. Extending the notions used in [38], along with the use of the quotient network concept
employed by [36,49] and references therein, we provide general results. We describe the model in Section 2. In
Section 3, we formulate the multi-locus–allele model as an abstract Cauchy semi-linear evolutionary problem
on an infinite-dimensional Banach space and show the existence of a positive mild solution. The result on the
existence of steady-state solutions is presented in Section 4. In addition, under some appropriate (sometimes
restrictive) assumptions, we determine the stability of the equilibria, and numerical simulations are provided
to illustrate the different dynamics observed in the system in Sections 5 and 6. respectively. We conclude
with discussion and some remarks on further research directions in Section 7.

2. Model description: age-structured multi-locus–allele system

In [30], the authors use an overlapping compartmental epidemic model to introduce the multi-locus
framework, where pathogenic strains are defined by multiple loci, each occupied by a varying number of
alleles from a specified set, and individuals are characterized based on their immunological history. Each
allelic combination defines a strain of the pathogen. Here, we extend the framework to incorporate age-
specificity. Let Zi(t, a) denote the density of individuals of age a that have been exposed to and are now
immune to strain type i at time t, Wi(t, a) the density of individuals of age a who, at time t, have been
exposed to any antigenic type sharing alleles with strain i, Yi(t, a) the density of individuals of age a, at time
t, that are infectious with strain i, and P (t, a) represent the total population of age a, at time t. Extending
the model in [30,38,15], the model describing the age-specific dynamics of infectious diseases with diverse
antigenic type takes the following form:

∂

∂t
+ ∂

∂a


Zi(t, a) = (P (t, a)− Zi(t, a)) Λi(t, a)− µ(a)Zi(t, a),

∂

∂t
+ ∂

∂a


Wi(t, a) = (P (t, a)−Wi(t, a))


j∼i

Λj(t, a)− µ(a)Wi(t, a),
∂

∂t
+ ∂

∂a


Yi(t, a) = [(P (t, a)−Wi(t, a)) + (1− γ(a)) (Wi(t, a)− Zi(t, a))] Λi(t, a)

− (µ(a) + σ(a))Zi(t, a),

(1)
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with initial conditions: Zi(0, a) = Z◦i (a) ∈ L1
+(0,∞), Wi(0, a) = W ◦i (a) ∈ L1

+(0,∞) and Yi(0, a) = Y ◦i (a) ∈
L1

+(0,∞), and boundary conditions: Zi(t, 0) = 0, Wi(t, 0) = 0, Yi(t, 0) = 0, for i = 1, 2, . . . ,N , and j ∼ i in
Eq. (1) means j similar to i. The epidemiological parameters µ(a), σ(a) and γ(a) denote the age-specific per
capita mortality and recovery rates and cross-immunity level, respectively. The parameter γ(a) is a measure
of immune selection and 0 ≤ γ(a) ≤ 1, a ∈ R+. The force of infection, Λ(t, a), is of the following form:

Λi(t, a) =
∞

0 β(a, s)Yi(t, s)ds∞
0 P (t, s)ds

,

where β(a, s) combines both age-specific transmission and contact rates between individuals of age a and s,
N(t) =

∞
0 P (t, s)ds, and the total population P (t, a) follows the Sinko–Streifer or McKendrick–von Forester

equation 
∂

∂t
+ ∂

∂a


P (t, a) = −µ(a)P (t, a),

P (t, 0) =
 ∞

0
f(s)P (t, s)ds, and P (0, a) = P ◦(a).

(2)

It should be noted that, in demographic terms, there exists a maximum age am < ∞ such that the
survival probability vanishes. That is, with µ locally integrable on [0, am), the maximum age must satisfy am

0 µ(τ)dτ = +∞, which is necessary for the survival probability S(a) = e
−
 a

0
µ(τ)dτ to vanish at the

maximum age am.
We note that, since the age-specific mortality and fertility (including zero net-migration) rates are constant

(i.e., time-invariant), we can use the stable age-distribution assumption (see, for example, discussions
in [19,50,51] for details) to find that P (t, a) → P∞(a) as t → ∞, where P∞(a) is the stable population
age-distribution. Using the notion of stable population, we make the following change of variables. Let
si = P−Wi

P∞ , vi = Wi−Zi
P∞ , zi = Zi

P∞ , and yi = Yi
P∞ , where P (t, a) = P∞(a) = S(a) is the stable population.

Then, the system can be rewritten as follows:
∂

∂t
+ ∂

∂a


si(t, a) = −si


j

Ωijλj , (3)


∂

∂t
+ ∂

∂a


vi(t, a) = si


j ̸=i

Ωijλj − viλi, (4)


∂

∂t
+ ∂

∂a


yi(t, a) = [si + (1− γ(a))vi]λi − σ(a)yi, (5)

∂

∂t
+ ∂

∂a


zi(t, a) = (si + vi)λi, (6)

where we have rewritten

j∼i Λj(t, a) as


j ΩijΛj(t, a) to simplify the notation, where Ωij is the element

of the similarity or relatedness matrix Ω , and Ωij = 1 if strain i is similar to strain j or i = j, and Ωij = 0
otherwise; in addition, the initial and boundary conditions are given as follows: si(t, 0) = 1, vi(t, 0) =
zi(t, 0) = yi(t, 0) = 0 and si(0, a) = s◦i (a) ∈ L1

+(0,∞), vi(0, a) = v◦i (a) ∈ L1
+(0,∞), zi(0, a) = z◦i (a) ∈

L1
+(0,∞), and yi(0, a) = y◦i (a) ∈ L1

+(0,∞), i = 1, 2, . . . ,N and N is the number of strains. The force of
infection is given by:

λi(t, a) =
 ∞

0
β(a, s)ψ(s)yi(t, s)ds, and ψ(a) = P∞(a)∞

0 P∞(a)da
,

where we have assumed a stable age distribution P∞(a) and
∞

0 ψ(s)ds = 1 and ψ is the normalized stable
age distribution. In addition, because the other equations are independent of the variable zi, we can eliminate
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zi from the system. Hence, we will consider only Eqs. (3)–(5) to study existence and stability questions.
First, we restate the technical and biologically reasonable assumptions:

Assumption 2.1. We assume the following properties on demographic patterns:

1. H1: µ(a) ≥ 0 in [0,∞) and there exists am ∈ [0,∞) such that µ(a) is locally integrable on [0, am) and am
0 µ(τ)dτ = +∞.

2. H2: β(a, s) ∈ L∞+ ((0,∞)× (0,∞)) and β(a, s) ≥ 0. In addition, β(a, s) ≤ β̃(a) with β̃(a) ∈ L1(0,∞) and
β = ess sup β(a, s).

3. H3: σ(a) ∈ L∞+ (0,∞) and σ(a) ≥ 0 with σ = ess sup σ(a).
4. H4: γ(a) ∈ L∞+ (0,∞) and 0 ≤ γ(a) ≤ 1, a ∈ R+ with γ = ess sup γ(a).
5. H5: ψ(a) ∈ L∞+ (0,∞) and ψ(a) ≥ 0 with ψ = ess sup ψ(a).

Note that P∞(a) is proportional to S(a), so is zero for a ≥ am. Thus, as the equations depend only on µ

through P∞(a), condition H1 suffices and shows in particular that
∞

0 P∞(a)da exists.

3. Existence of a positive solution

We now consider the well-posedness of the evolution problem described by Eqs. (3)–(5) on the Banach
Space

X := L1 (0,∞); R3N  = [L1 (0,∞)]3N ,

endowed with the usual norm

∥φ∥ =
3
i=1

N
j=1
∥φ(i)
j ∥,

for φ(a) =

φ

(1)
1 (a), φ(1)

2 (a), . . . , φ(1)
N (a), φ(2)

1 (a), φ(2)
2 (a), . . . , φ(2)

N (a), φ(3)
1 (a), φ(3)

2 (a), . . . , φ(3)
N (a)

T
∈ X ,

where ∥ ∗ ∥ is the norm of L1(0,∞) and T denotes the transpose operation. In addition, φk =
φ

(k)
1 , φ

(k)
2 , . . . , φ

(k)
N


∈ RN , k = 1, 2, 3. The state space of the normalized age distribution for the system

induced by the semi-flow Eqs. (3)–(5) is given as follows:

Γ := {φ := (φ1, φ2, φ3)T ∈ X+ : 0N×1 ≤ φ1 + φ2 + φ3 ≤ 1N×1},

where X+ = [L1
+ (0,∞)]3N and L1

+ (0,∞) denotes the positive cone of L1(0,∞) (i.e., L1
+ = {f ∈ L1 : f ≥

0 a.e.}).
Let A be the linear operator on X defined by:

A [φ] (a) :=

A1 0 0
0 A2 0
0 0 A3


φ1
φ2
φ3

 ,

where A1 := −IN×N ( ∂∂a ), A2 := −IN×N ( ∂∂a ) and A3 := −IN×N ( ∂∂a + σ(a)). In addition, φ =
(φ1, φ2, φ3)T ∈ D(A). The domain D(A) is defined as D(A) := {φ ∈ X : φ1, φ2, φ3 are absolutely continuous
on [0,∞) and φ1(0) = 1N×1, φ2(0) = 0N×1, φ3(0) = 0N×1}. We also let F be the nonlinear operator
F : X → X defined by:

F [φ] (a) :=

F1 [φ] (a)
F2 [φ] (a)
F3 [φ] (a)

 , and Fk [φ] (a) :=


F (k)

1 [φ] (a)
F (k)

2 [φ] (a)
· · ·

F (k)
N [φ] (a)

 , k = 1, 2, 3,
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where

F (1)
i [φ] (a) := −φ(1)

i (a)

j

Ωijλj [φ](a), F (2)
i [φ] (a) := φ

(1)
i (a)


j ̸=i

Ωijλj [φ](a)− φ(2)
i λi[φ](a),

F (3)
i [φ] (a) :=


φ

(1)
i (a) + (1− γ(a))φ(2)

i (a)

λi[φ](a), i = 1, 2, . . . ,N .

The operator λj [φ](a) : X → L1(0,∞) is the linear operator:

λj [φ](a) =
 ∞

0
β(a, s)ψ(s)φ(3)

j (s)ds.

Now let u = (u1, u2, u3)T ∈ L1((0,∞),R3N
+ ), where u1 = (s1, s2, . . . , sN ) , u2 = (v1, v2, . . . , vN ) and

u3 = (y1, y2, . . . , yN ), uk ∈ L1((0,∞),RN+ ). Then, Eqs. (3)–(5) can be reformulated as the abstract semi-
linear Cauchy evolution equation,

du

dt
= Au+ F(u), (7)

where we observe that the linear operator A is the infinitesimal generator of a strongly continuous semigroup
(C0-semigroup) of bounded linear operators {TA(t)}t≥0 := {etA}t≥0 on X . In addition, the linear operator
TA(t) is defined by

TA(t) [φ] :=

T1(t) [φ]
T2(t) [φ]
T3(t) [φ]

 ,

where {Ti(t)[φ]}t≥0, i = 1, 2 is a nilpotent right translation C0-semigroup of operators given by
T1(t) [φ] := φ1(a − t)H(a − t) + H(t − a), T2(t) [φ] := φ2(a − t)H(a − t), and T3[φ] is a combination of
the nilpotent right translation and bounded multiplication C0−semigroup of operators given by T3(t) [φ] :=
e
−
 a
a−t
σ(τ)dτ

φ3(a− t)H(a− t), where H(s) is a Heaviside function (see [52, pg. 4] and [53, Ch. I]). Moreover,
it can be shown that the state space Γ is closed and convex, and it is invariant with respect to the semi-flow
defined by {TA(t)}t≥0 (i.e., TA(t)[Γ ] ⊂ Γ ). Let ω1 = max1≤j≤N

N
i=1 |Ωij | and ω∞ = max1≤i≤N

N
j=1 |Ωij |,

where Ωij is an element of Ω . Because Ω is symmetric, ω = ω1 = ω∞. Define Ξ (2)
i [φ](a) :=


j ̸=i Ωijλj [φ](a).

Then, we state the following inequalities.

Inequality 3.1. Suppose Assumption 2.1 holds. Let λi be defined as below. Then, λi : X → L1(0,∞) and the
following inequalities hold:

λi[φ](a) =
 ∞

0
β(a, s)ψ(s)φ(3)

i (s)ds ≤ β
 ∞

0
ψ(s)φ(3)

i (s)ds ≤ βψ∥φ∥,

λi[φ](a) =
 ∞

0
β(a, s)ψ(s)φ(3)

i (s)ds ≤ β
 ∞

0
ψ(s)ds = β, φ ∈ Γ ,

∥λi[φ]∥ =
 ∞

0

 ∞
0

β(a, s)ψ(s)φ(3)
i (s)ds

 da ≤  ∞
0

 ∞
0

β(a, s)da

ψ(s)

φ(3)
i (s)

 ds
≤ ∥β̃∥

 ∞
0

ψ(s)
φ(3)
i (s)

 ds ≤ ∥β̃∥ψ∥φ∥.
From the above inequalities, it follows that

Ξ (2)
i [φ](a) =


j ̸=i

Ωijλj [φ](a) ≤ (ω − 1)βψ∥φ∥,

Ξ (2)
i [φ](a) =


j ̸=i

Ωijλj [φ](a) ≤

j ̸=i

Ωijβ ≤ (ω − 1)β, φ ∈ Γ ,

∥Ξ (2)
i [φ]∥ ≤ (ω − 1) ∥β̃∥ψ∥φ∥.
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From Inequality 3.1, we can show that F satisfies the following properties:

Lemma 3.1. The operator F is continuously Fréchet differentiable on X .

Proof. We calculate F [φ+ h]−F [φ]:

F [φ+ h]−F [φ] :=

F1 [φ+ h]−F1 [φ]
F2 [φ+ h]−F2 [φ]
F3 [φ+ h]−F3 [φ]

 .

From the definition of norm in X , it is sufficient to show that each component is continuously Fréchet
differentiable. Let Ξ (1)

i [φ](a) := Ξ (2)
i [φ](a) + λi[φ](a). Then,

F (1)
i [φ+ h]−F (1)

i [φ] = −

φ

(1)
i + h

(1)
i


Ξ (1)
i [φ+ h] + φ

(1)
i Ξ (1)

i [φ]

= L(1)
i [φ, h] +R(1)

i [φ, h], (8)

where L(1)
i [φ, h] := −φ(1)

i Ξ (1)
i [h]−h(1)

i Ξ (1)
i [φ] and R(1)

i [φ, h] := −h(1)
i Ξ (1)

i [h]. From Inequality 3.1, we observe
that

∥R(1)
i [φ, h]∥ = ∥h(1)

i Ξ (1)
i [h]∥ ≤ ω∥β̃∥ψ∥h∥

 ∞
0

h(1)
i (a)

 da ≤ ω∥β̃∥ψ∥h∥2,
so lim∥h∥→0

∥R(1)
i

[φ,h]∥
∥h∥ = 0, and hence, F (1)

i is continuously Fréchet differentiable with Fréchet
derivative L(1)

i [φ, h]. Similarly, it can be shown that F (2)
i [φ] and F (3)

i [φ] are also continuously Fréchet
differentiable. �

Theorem 3.2. Suppose Assumption 2.1 holds. For each u0 ∈ Γ , there is a unique continuous mild solution
u(t, uo) ∈ Γ , t ∈ [0,∞) for Eq. (7) such that

u(t) = TA(t)u0 +
 t

0
TA(t− s)F(u(s))ds. (9)

In addition, if u0 ∈ D(A) ∩ Γ , then the solution is a classical one.

The proof uses a Contraction Mapping theorem argument. First, it can be seen that for any 0 < K ≤
min


1
ωβ
, 1
β


, (Id|X +KF) (Γ ) ⊂ Γ . Then, we recast Eq. (9) as

u(t) = e−K
−1tTA(t)u0 +K−1

 t
0
e−K

−1(t−s)TA(t− s) [u+KF(u)] (s)ds.

But now, using the convexity of Γ , it can be seen that if

H[u](t) = e−K
−1tTA(t)u0 +K−1

 t
0
e−K

−1(t−s)TA(t− s) [u+KF(u)] (s)ds

= e−K
−1tTA(t)u0 +


1− e−K

−1t
 K−1

1− e−K−1t

 t
0
e−K

−1(t−s)TA(t− s) [u+KF(u)] (s)ds,

then H : Γ → Γ . Finally, under Assumption 2.1 and Inequality 3.1, we can show that, for φ, η ∈ Γ ,
∥F [φ] − F [η]∥ ≤ L∥φ − η∥, where L = 2N (1 + ω)


β + ∥β̃∥ψ


, so that (Id|X +KF) is globally Lipschitz

continuous on Γ . Hence, there exists a mild solution with continuous dependence on the initial condition. In
addition, the mild solution is classical as a result of the continuous differentiability of F [φ] (see Lemma 3.1)
as in [52, Ch. 6].
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4. Equilibria: steady-state analysis

From now on, we will assume the maximal age is finite and assume the following:

Assumption 4.1. Let am be the maximal age, which we assume to be finite. We further assume

1. H7: β(a, s) ∈ L∞+ ((0, am) × (0, am)) and limh→0
 am

0 |β(a+ h, s)− β(a, s)| da = 0 uniformly for s ∈ R+,
where β is extended by β(a, s) = 0 for almost all (a, s) ∈ (−∞, 0)


(am,∞).

2. H8: There exists a∗ with am > a∗ > 0 and ε > 0 such that β(a, s) ≥ ε for almost all (a, s) ∈
(0, am)× (am − a∗, am).

If s∗i (a), v∗i (a) and y∗i (a) is a steady state solution of Eqs. (3)–(5), then by integrating these equations in
this case, we get:

s∗i (a) = e
−
 a

0
Ξ

(1)
i [λ∗](τ)dτ

, v∗i (a) =
 a

0
e
−
 b

0
Ξ

(1)
i [λ∗](τ)dτΞ

(2)
i [λ∗](b)e−

 a
b
λ∗i (τ)dτ

db, (10)

y∗i (a) =
 a

0
e
−
 a
b
σ(τ)dτ [s∗i (b) + (1− γ(b))v∗i (b)]λ∗i (b)db, (11)

where Ξ
(1)
i [λ∗](a) :=


j Ωijλ

∗
j (a) and Ξ

(2)
i [λ∗](a) :=


j ̸=i Ωijλ

∗
j (a). Let λ∗ := (λ∗1, λ∗2, . . . , λ∗N )T ∈ Z+,

where Z := [L1(0, am)]N and

λ∗i [y] (a) =
 am

0
β(a, s)ψ(s)y∗i (s)ds. (12)

Then, substituting Eq. (11) into Eq. (12), we have,

λ∗i [y∗] (a) = Φi[λ∗](a) = Φ(1)
i [λ∗](a) + Φ(2)

i [λ∗](a), (13)

where

Φ(1)
i [λ∗](a) =

 am
0

β(a, s)ψ(s)
 s

0
e
−
 s
b
σ(τ)dτ

e
−
 b

0
Ξ

(1)
i [λ∗](τ)dτ

λ∗i (b)db

ds, (14)

Φ(2)
i [λ∗](a) =

 am
0

β(a, s)ψ(s)
 s

0
e
−
 s
b
σ(τ)dτ (1− γ(b))

 b
0
e
−
 b∗

0
Ξ

(1)
i [λ∗](τ)dτ

×Ξ
(2)
i [λ∗](b∗)e−

 b
b∗
λ∗i (τ)dτ

db∗


λ∗i (b)db


ds. (15)

From Eq. (13), it is clear that one trivial solution is λ∗i = 0 for all i = 1, 2, . . . ,N . This solution corresponds
to the disease-free equilibrium, where no disease exists. To investigate the existence of non-trivial positive
steady-state solutions for Eqs. (3)–(5), it suffices to find the fixed-points of the nonlinear operator Φ[λ∗](a)
in Eq. (13), where λ∗ := (λ∗1, λ∗2, . . . , λ∗N )T and Φ[λ](a) := (Φ1[λ](a),Φ2[λ](a), . . . ,ΦN [λ](a))T .

We now state the following properties for Φ[λ]. We observe that, Φ : Z+ → Z+ is positive. In addition,
it follows that

∥Φ(1)
i (λ)∥ =

 am
0

 am
0

β(a, s)ψ(s)
 s

0
e
−
 s
b
σ(τ)dτ

λi(b)e−
 b

0
Ξ

(1)
i [λ](τ)dτ

db


ds

 da
≤
 am

0

 am
0

β(a, s)ψ(s)
 s

0
λi(b)e−

 b
0

Ξ
(1)
i [λ](τ)dτ

db


ds

 da
≤
 am

0

 am
0

β(a, s)ψ(s)ds
 da ≤  am

0

β̃(a)
  am

0
ψ(s)ds


da ≤ ∥β̃∥.
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Similarly, it can be shown that ∥Φ(2)
i (λ)∥ ≤ ∥β̃∥ so that ∥Φ(λ)∥ ≤ 2∥β̃∥N := K. Hence Φ(Z+) is

bounded. Moreover, it can be shown that Φ(λ) is Lipschitz continuous. We now observe that for Φ(1)
i [λ](a),

Φ(1)
i [0 + h](a)− Φ(1)

i [0](a) = Φ(1)
i [h](a) = Ti [h] (a) +R(1)

i [h] (a), where Ti : Z → L1(0, am) is given by

Ti [λ] (a) =
 am

0
Ψ(a, b)λi(b)db, i = 1, 2, . . . ,N , (16)

Ψ(a, b) =
 am
b

β(a, s)ψ(s)Θ(b, s)ds, and Θ(b, s) = e
−
 s
b
σ(τ)dτ

, (17)

and R(1)
i [h] (a) is defined as follows

R(1)
i [h] (a) =

 am
0

β(a, s)ψ(s)
 s

0
e
−
 s
b
σ(τ)dτ

h
(1)
i (b)


e
−
 b

0
Ξ

(1)
i [h](τ)dτ − 1


db


ds.

We note that ∥R
(1)
i

[h](a)∥
∥h∥ ≤ ω∥β̃∥ ∥h∥, which goes to zero as ∥h∥ → 0. Thus, Ti [h] (a) is the Fréchet derivative

of Φ(1)
i [λ](a) at λ = 0. Similarly, the Fréchet derivative of Φ(2)

i [λ](a) at λ = 0 is zero. Hence, the Fréchet
derivative of Φi[λ](a) at λ = 0 is Ti [h] (a). We conclude that the operator Φ is Fréchet differentiable at
λ = 0 with derivative T : Z → Z given by,

T [λ] (a) :=


T1 [λ] (a)
T2 [λ] (a)
· · ·

TN [λ] (a)

 . (18)

In addition, it can be seen that the operator T is a positive and bounded linear operator, and if
λi[φ] ∈ L1

+(0, am) \ {0}, then Ti[λ](a) > 0. Here T : Z → Z defines the threshold or next-generation
operator which transforms the distribution of infected population to the distribution of secondary cases in
the initial phase of epidemiological invasion. As a result, the basic reproductive number R0 is given by the
spectral radius of T (the spectral radius of T is the maximum eigenvalue of T , see [54]), and is defined as
the expected number of new infections caused by one infected individual during its entire infectious period.
In addition, we note that T [λ] is symmetric across strains because we have assumed that all disease-related
age-specific parameters are the same. We can therefore focus on just one of the next-generator operators.

Lemma 4.1. Under Assumption 4.1, for all ε > 0, there exists δ > 0 such that if |h| < δ, am
0
|Ψ(a+ h, b)−Ψ(a, b)| da < ε, for all b ∈ [0, am),

where Ψ is defined in Eq. (17).

Theorem 4.2. The operator Φ : Z → Z is completely continuous.

Proof. Let S be a bounded subset of L1(0, am) and Fi := Φi(S) ⊂ L1(0, am) for each i = 1, 2, . . . ,N . We
want to prove that Φ(S) has a compact closure. We will use the Riesz–Fréchet–Kolmogorov Compactness
Theorem (see [55, pg. 111, Theorem 4.26]). If λi ∈ S, then we have ∥λi∥ ≤ c0 for some positive constant c0.
In addition, with the result of Inequality 3.1, we have

∥Φ(1)
i [λ]∥ =

 am
0

 am
0
|β(a, s)|ψ(s)

 s
0
e
−
 s
b
σ(τ)dτ

e

 b
0

Ξ (1)
i [λ](τ)

dτ |λi(b)| db ds da
≤ eωco

 am
0

β̃(a)
  am

0
ψ(s)

 s
0
|λi(b)| db


ds


da ≤ eωco∥β̃∥ ∥λi∥ ≤ eωco∥β̃∥c0.
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Using a similar argument, we observe that ∥Φ(2)
i [λ]∥ ≤ eωco∥β̃∥(ω − 1)c2

0. Therefore, ∥Φi[λ]∥ ≤ eωco∥β̃∥c0 +
eωco∥β̃∥(ω − 1)c2

0, and ∥Φ[λ]∥ ≤ N eωco∥β̃∥c0(1 + (ω − 1)c0). Hence, Fi are bounded. It now suffices to
show that ∥ρh [Φ[λ]] (a)−Φ[λ](a)∥ → 0 uniformly, where ρh [Φ[λ]] (a) = Φ[λ](a+h). We observe that, using
Assumption 4.1 (i.e. for every ε > 0, there exists δ such that

 am
0 |β(a+ h, s)− β(a, s)| da ≤ ε, for all s ∈ R+

and |h| ≤ δ), we have

∥ρh[Φi[λ]](a)− Φi[λ](a)∥ ≤ ∥ρh[Φ(1)
i [λ]](a)− Φ(1)

i [λ](a)∥+ ∥ρh[Φ(2)
i [λ]](a)− Φ2

i [λ](a)∥,

where we calculate ∥ρh[Φ(1)
i [λ]](a)− Φ(1)

i [λ](a)∥ as follows:

∥ρh[Φ(1)
i [λ]](a)− Φ(1)

i [λ](a)∥ ≤
 am

0

 am
0
|β(a+ h, s)− β(a, s)|ψ(s)

×
 s

0
e
−
 s
b
σ(τ)dτ

e

 b
0

Ξ (1)
i [λ](τ)

dτ |λi(b)| db ds da
≤ eωco∥λ∥

 am
0

 am
0
|β(a+ h, s)− β(a, s)|ψ(s)ds


da

≤ eωcoc0ε.

Using a similar approach for Φ(2)
i , ∥ρh


Φ(2)
i [λ]


(a) − Φ(2)

i [λ](a)∥ ≤ εeωco(ω − 1)c2
0. Hence, ∥ρh[Φ[λ]](a) −

Φ[λ](a)∥ ≤ N εeωcoc0(1 + (ω − 1)c0). Therefore, Fi = {Φi(u) : u ∈ S} is precompact for each i = 1, 2, . . . ,N
in L1(0, am). Let F = {Φ(u) : u ∈ S}, then F ⊂ F1×F2× · · · ×FN implies that F ⊂ F1 × F2 × · · · × FN =
F 1 × F 2 × · · · × FN , where F denotes the closure of F . Because F i is compact, F 1 × F 2 × · · · × FN is
compact, so F is compact. Hence, Φ is completely continuous. �

To establish the properties of T [λ], we use the Perron–Frobenius theory for positive monotone operators
on a partially ordered Banach space (see [56–58]). We make the following definitions:

Definition 4.1. 1. φ ∈ Y+ is called a non-supporting (quasi-interior) point if ⟨F, φ⟩ > 0 for all F ∈ Y∗+ \ {0}.
2. The operator L ∈ B(Y) is called non-supporting if for every pair v ∈ Y+ \ {0}, F ∈ Y∗+ \ {0}, there exists

a positive p = p(v, F ) ∈ Z+ such that ⟨F,Lnv⟩ > 0 for all n ≥ p (see [58]).

From [56,58], if the operator L ∈ B(Y) is a compact, positive, bounded linear operator with spectral radius
r(L) > 0, then r(L) is the largest eigenvalue of L with positive eigenfunction v ∈ Y+\{0}. In addition, if L is
non-supporting, then r(L) is the only positive eigenvalue with a positive eigenfunction and, furthermore, the
eigenspace associated with the eigenvalue r (L) is a one-dimensional subspace spanned by a quasi-interior
point. Also, r (L) is an eigenvalue of the adjoint operator L∗ : Y∗ → Y∗ with a strictly positive eigenfunction
and the associated eigenspace is one-dimensional and is spanned by a strictly positive functional.

Note that T : Z → Z is not nonsupporting. (From below the eigenspace of T associated with the
eigenvalue r(T ) is not one dimensional. Furthermore, if we consider F ∈ Z∗ \ {0} defined by ⟨F, φ⟩ = am

0 φ1(a)da, where φ = (φ1, . . . , φN )T , and then take e2 = (0, 1, 0, . . . , 0)T ∈ Z+ \ {0}, then for all n ∈ Z+,
⟨F, T n[e2]⟩ = 0.) However, if we define the associated operator T0 : L1(0, am) → L1(0, am) as below, then
T0 is nonsupporting and we can deduce appropriate properties of T from those of T0.

Theorem 4.3. Define T0 : L1(0, am)→ L1(0, am) by

T0[u](a) =
 am

0
Ψ(a, b)u(b)db,

so that, if λ = (λ1, λ2, . . . , λN ), we have

T [λ] (a) = (T0 [λ1] (a), T0 [λ2] (a), · · · T0 [λN ] (a))T .
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Then, the following hold:

(i) T0 : L1(0, am)→ L1(0, am) and T : Z → Z are both completely continuous.
(ii) T0 : L1(0, am)→ L1(0, am) is non-supporting.
(iii) r (T0) = r (T ), and r (T ) is the only positive eigenvalue of T with a positive eigenfunction. The

eigenspace of T associated with r (T ) is N -dimensional and is of the form ψV for any V ∈ R, where
ψ ∈ L1

+(0, am) is the quasi-interior point which spans the eigenspace of T0 associated with the eigenvalue
r(T0).

(iv) The adjoint operator T ∗ : Z∗ → Z∗ also has eigenvalue r (T ) with strictly positive eigenfunctions given
by ⟨G, u⟩ =

N
i=1⟨g, ui⟩αi, for αi > 0, where u = (u1, . . . , uN )T ∈ Z, and g ∈ [L1(0, am)]∗ \ {0} is the

strictly positive functional which spans the eigenspace of T ∗0 associated with the eigenvalue r (T0).

Proof. (i) The compactness of T0 is obtained by using Lemma 4.1 and similar arguments as in Theorem 4.2
via Riesz–Fréchet–Kolmogorov Compactness theorem. Since T0 and T are also bounded, they are
completely continuous.

(ii) We follow the approach of Inaba, [59,60], and show that Definition 4.1 holds. We define s̃(a) := ε if
a ∈ (am − a∗, am), am ∈ (0,∞), and s̃(a) := 0 otherwise. Then it follows from Assumption 4.1 that
β(a, s) ≥ s̃(s) for all (a, s) ∈ (0, am)× (0, am). Let f be the linear functional on L1(0, am) defined as

⟨f, u⟩ =
 am

0

 am
b

s̃(τ)ψ(τ)Θ(b, τ)dτ

u(b)db.

Then, the definition of s̃ implies that f ∈

L1

+(0, am)
∗. We observe that

 am
b

ψ(s)Θ(b, s)ds > 0 for
all b ∈ (0, am). So, f is strictly positive. Hence, if u ∈ L1

+(0, am), then from β(a, s, ) ≥ s̃(s), we
have T0[u](a) ≥ ⟨f, u⟩e(a), where e(a) = 1 for all a ∈ R+. Therefore, for any n ∈ Z+, we have
T n+1

0 u ≥ ⟨f, u⟩⟨f, e⟩ne(a). Moreover, if the functional F ∈

L1

+(0, am)
∗ \ {0}, then ⟨F, T n0 [u]⟩ ≥

⟨f, u⟩⟨f, e⟩n−1⟨F, e⟩ > 0, for n ≥ 1 for every any u ∈ L1
+(0, am) \ {0}. Hence T0 is non-supporting.

(iii) From (i), r (T0) and r (T ) are maximal eigenvalues of T0 and T , respectively. We observe that
T0ψ = r (T0)ψ. If e1, e2, . . . , eN are the coordinate vectors, then T (ψei) = r (T0)ψei. So, r (T0) is
also an eigenvalue of T . Hence, r (T0) ≤ r (T ). But if T u = r (T )u, so

T u = (T0u1, T0u2, . . . , T0uN )T = r (T ) (u1, u2, . . . , uN )T ,

then, T0ui = r (T )ui. But, there exists ui ̸= 0, so T0ui = r (T )ui. Therefore, r (T0) ≥ r (T ). Hence,
r (T ) = r (T0). More generally, the same argument shows that λ is an eigenvalue of T if and only if λ
is an eigenvalue of T0. Hence, r (T ) is the only positive eigenvalue of T . Furthermore, the eigenspace of
T is spanned by {ψe1, ψe2, . . . , ψeN }.

(iv) We note ⟨T ∗0 [g], u⟩ = ⟨g, T0[u]⟩. Define ⟨G, u⟩ =
N
i=1 αi⟨g, ui⟩, where u = (u1, u2, . . . , uN )T and αi > 0.

Then,

⟨T ∗[G], u⟩ = ⟨G, T [u]⟩

=

G,

N
i=1
T0[ui]ei


=
N
i=1

αi⟨g, T0[ui]⟩ =
N
i=1

αi⟨T ∗0 [g], ui⟩ =
N
i=1

αir (T0) ⟨g, ui⟩

= r (T0) ⟨G, u⟩ = r (T ) ⟨G, u⟩.

Therefore, r (T ) is an eigenvalue of T ∗ with eigenfunction G. In addition, G is strictly positive because
if u ̸= 0, then ui ̸= 0 for some i. Hence, ⟨g, ui⟩ > 0 and ⟨G, u⟩ > 0. �
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Using results from [56,58,57] and Krasnoselskii’s fixed-point theorem (see [61]), we are now able to prove
the following results.

Theorem 4.4 ([61,60]). The following properties hold:

1. If r(T ) < 1, then u = 0 is the only solution of u = Φ(u) in Z+ and it is the disease-free equilibrium
2. If r(T ) > 1, then u = Φ(u) has at least one solution in Z+ \ {0} and it is the endemic equilibrium.

Proof. Following the approach of [60], suppose r(T ) < 1. We show that when r(T ) < 1, u = 0 is the only
fixed point by contradiction. Suppose there exists a solution u ∈ Z+\{0} of u = Φ(u), then u = Φ(u) ≤ T [u].
From Theorem 4.3, we let F∗0 ∈ [Z+]∗\{0} denote a strictly positive eigenfunction of T ∗ corresponding to the
eigenvalue r(T ). Then, by duality pairing, ⟨F∗0 , T [u]− u⟩ = (r(T )− 1) ⟨F∗0 , u⟩. Because T [u]− u ∈ Z+ and
F∗0 is strictly positive, we note that ⟨F∗0 , T [u]−u⟩ ≥ 0. In addition, we also observe that ⟨F∗0 , u⟩ > 0 since, by
assumption, u ∈ Z+ \{0}, and F∗0 is strictly positive. Then, we have ⟨F∗0 , T [u]−u⟩ = (r(T )− 1) ⟨F∗0 , u⟩ < 0,
because r(T )− 1 < 0. This is a contradiction. Hence, u = 0 must be the only solution of u = Φ([u]) ∈ Z+.

Now suppose r(T ) > 1. To begin with, we show that the conditions of Krasnoselskii’s fixed point theorem
are satisfied (see [61]). We note that, from the previous discussion, Φ(Z+) is bounded with Φ(0) = 0 and,
from Theorem 4.2, Φ is a completely continuous operator in the Banach space Z. In addition, Φ is Fréchet
differentiable, with Fréchet derivative at zero given by the linear operator T = Φ′(0). So, the first two
conditions of Krasnoselskii’s fixed point theorem are satisfied. From Theorem 4.3, there exists a positive
eigenfunction of T corresponding to the eigenvalue r(T ) and by assumption, r(T ) > 1. Furthermore, from
Theorem 4.3, r(T ) is the only positive eigenvalue with positive eigenfunction. So, T does not have a positive
eigenfunction corresponding to the eigenvalue one [56,58]. Hence, the third condition of the Krasnoselskii’s
fixed point theorem is satisfied. Therefore, Φ has a non-zero positive fixed point. �

The proof above follows the approaches of [59,61], and establishes the properties of the reproductive number
which we denote as R0 = r(T ). It provides a threshold-like property for the existence of steady states
which are the solutions corresponding to the fixed point problem λ = Φ(λ). In the proof above, we have
not discussed the case when r(T ) = 1 because this corresponds to the bifurcation point. Note that the
Krasnoselskii Theorem [61] does not establish the uniqueness of the non-zero (non-trivial) positive (endemic)
equilibrium. To establish uniqueness, we must provide additional properties. However, our goal in this section
is to show the existence of a positive fixed point and the uniqueness problem is not necessary since we know,
from [30,6,38,15] and numerical simulations presented in Section 6, that there are different concepts of
endemicity corresponding to both the semi-trivial and non-trivial steady states.

5. Stability analysis of equilibria

5.1. Preliminary: quotient network and equilibrium clusters

In the previous section, we established a threshold condition defined by the spectral radius, r(T ), of
the next-generation operator T : Z → Z. In this section, we consider T0 : L1(0, am) → L1(0, am),
T0 =

 am
0 Ψ(a, b)u(b)db. From Theorem 4.3, T0 is nonsupporting and r(T0) = r(T ). In the case of the

homogeneous systems, an explicit expression for the basic reproductive number can be obtained. However,
in heterogeneous systems such as the model considered herein, it is not always straight-forward or may not
be possible to obtain an explicit expression for R0. This is only possible in a few cases (e.g., proportionate
mixing, intra-group mixing, see [54]). For ease of analysis, we will assume that there is a proportional
mixing.
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Assumption 5.1. The contact rate β(a, s) is of the form β(a, s) := β1(a)β2(s) where β1(a) ∈ L∞+ (0, am) and
β2(s) ∈ L∞+ (0, am).

This assumption implies that the ages of susceptible and infected individuals are uncorrelated. It allows us
to calculate the basic reproductive number explicitly, and to simplify the analysis in the case of the endemic
equilibrium. Under proportionate mixing or separable mixing, we observe that the next-generation operator
satisfies:

T0[u](a) =
 am

0

 am
b

β(a, s)ψ(s)e−
 s
b
σ(τ)dτ

ds


u(b)db, (19)

= β1(a)
 am

0

 am
b

β2(s)ψ(s)e−
 s
b
σ(τ)dτ

ds


u(b)db. (20)

Substituting β1 for u and changing the order of integration yields

T0[β1](a) = β1(a)
 am

0

 am
b

β2(s)ψ(s)e−
 s
b
σ(τ)dτ

ds


β1(b)db

= β1(a)
 am

0
β2(s)ψ(s)

 s
0
β1(b)e−

 s
b
σ(τ)dτ

db


ds. (21)

So β1 is an eigenfunction of T0 with positive eigenvalue. Therefore, under the proportionate mixing, the
spectral radius of the next-generation operator r(T0) is given by R0, where

R0 =
 am

0
β2(s)ψ(s)

 s
0
β1(b)e−

 s
b
σ(τ)dτ

db


ds. (22)

Throughout this paper, we have assumed that strains have the same epidemiological parameters, where
βi(a, s) = β(a, s), σi(a) = σ(a) and ψi(a) = ψ(a). In general, the epidemiological parameters for each strain
can be different. That is, βi(a, s) ̸= βj(a, s), σi(a) ̸= σj(a) and ψi(a) ̸= ψj(a), i ̸= j. In this case, we can
define the strain-specific reproductive number R(i)

0 with proportionate mixing as

R(i)
0 =

 am
0

βi,2(s)ψi(s)
 s

0
βi,1(b)e−

 s
b
σi(τ)dτ

db


ds. (23)

Then, the reproductive number R0 is defined as R0 = max1≤i≤N {R(i)
0 }. Previously, it was shown that,

when R0 < 1, the dynamics are simple and there is only a trivial solution corresponding to the disease-free
equilibrium (or disease extinction); and when R0 > 1, the system has at least one non-zero positive solution.
When R0 > 1, numerical simulations [30,6,38,15, and refs. therein] suggest that the endemic equilibrium
is not unique, and the dynamics are much more involved. In particular, the system can exhibit coexistence
and the principle of competitive exclusion whereby in the presence of multiple strains only the strongest can
survive depending on the strength of parameters modulating the competition.

Suppose we have a 2-strain system, then there are three possible endemic configurations. That is, if
R0 > 1, then either strain 1 can persist while strain 2 goes to extinction, or strain 2 can persist while strain
1 goes to extinction, or both strains 1 and 2 can coexist. Similarly, in a 4-strain system, there are more
possibilities. Fig. 1 illustrates all the possible endemic configurations. For instance, there are 15 possible
persistent sets, namely {1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {3, 4}, {4, 1}, {1, 2, 3}, {2, 3, 4}, {3, 4, 1}, {4, 1, 2},
{1, 3}, {2, 4} and {1, 2, 3, 4}. These are represented in Fig. 1, where persistent strains are marked by black
circles. The 4-strain system illustrated in Fig. 1 is equivalent to a 2-locus–2-allele system resulting on a
square lattice. Fig. 1 also illustrates different types of equilibrium clusters where black circles (•) denote
strain pertaining to the persistent cluster while white circles (◦) represent strains in extinct clusters. Using
the idea summarized in Fig. 1, we introduce the following notion of positive solutions [51,38,15].
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Fig. 1. Multi-locus system (Possible Equilibria for Four Strain System on a Square Lattice with D4-Symmetry) and quotient network
representation. See text for full details. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
Source: Diagram modified from [38].

Definition 5.1. 1. A steady state solution is called weakly endemic if yi(a) = y∗i (a) ̸= 0 for some
i = 1, 2, . . . ,N .

2. A steady state solution is called strongly endemic if yi(a) = y∗i (a) ̸= 0 for all i = 1, 2, . . . ,N .

In the definition above, a weakly endemic equilibrium is equivalent to the principle of competitive exclusion
(or partial coexistence) and strongly endemic equilibrium represents coexistence. In the proceeding sections,
we will use the above notion with structural properties of the strain space to study the asymptotic behaviours
of the model and the equilibria.

To study the general multi-locus system requires us to analyse 3
m
i=1 ni systems (or 3nm for uniform

allelic combination), where n is the number of alleles and m is the number of loci. Instead of analysing this
potentially high dimensional system, we use notions from graph theory [62–64]. In particular, we observe
that the similarity matrix Ω can be rewritten as Ω = I + ΩG, where ΩG is the adjacency matrix defining
the similarity between strains i and j. Because the multi-locus framework induces a symmetric (undirected)
adjacency matrix, we can use an automorphism partition to decompose the vertex set into disjoint structural
equivalence classes called orbits. Let ΩG be the adjacency matrix of the graph G = (V,E) with vertex V

and edge E, and let G = Aut(G) be the automorphism group. Then, vertices in the same group orbit
are structurally equivalent and are indistinguishable (i.e., vertices can be permuted without changing the
adjacency structure). Hence, for every vertex v ∈ V , v belongs to the orbit ∆(v) = {g◦v ∈ V : g ∈ G}. Using
this notion, we can reduce the network into a coarser mesoscale network known as a quotient network, Q.
Let ∆(v) = {∆(v1),∆(v2), . . . ,∆(vs)} be the automorphism partition of the network G under the action of
G. Then, the adjacency matrix of Q is given by the constant qij , where qij is the number of edges starting
from a vertex in ∆(vi) and ending in vertices in ∆(vj).
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Using the quotient network framework and quotient of the adjacency matrix Ω , Ω can be reduced to
its quotient QΩ with entry elements qij (see [62–64,49,65,66,36] for similar discussion). Then, the resulting
reduced dynamic equations are given as follows:

∂

∂t
+ ∂

∂a


si(t, a) = −si


λi +


j

qijλj


, (24)


∂

∂t
+ ∂

∂a


vi(t, a) = si


j

qijλj − viλi, (25)


∂

∂t
+ ∂

∂a


yi(t, a) = [si + (1− γ(a))vi]λi − σ(a)yi. (26)

To tie the above ideas to the existence of synchronous equilibrium clusters, we use the concept of minimal
balanced colouring [49,65,66]. Here colouring is used in a manner different from the definition used in the
graph-theoretical context, whereby the graph-theoretical notion of colouring refers to colouring of a graph
as an assignment of colours to the vertices (i.e., one colour to each vertex so adjacent vertices have different
colours). In our context, two adjacent vertices can have the same colour as long as their dynamics or functions
are given by the same dynamic or functional equations up to a permutation of the relevant variables and/or
provided the vertices are isomorphic. This is equivalent to vertices belonging to the same orbits. We provide
the following definitions.

Definition 5.2. 1. A colouring of the vertices is balanced if each vertex of colour i gets the same number of
inputs from the vertices of colour j, for all i, j.

2. A minimal balanced colouring is a balanced colouring with minimal number of colours.
3. A quotient network with k-colouring is balanced if the colouring is balanced.

The existence of synchronous equilibrium clusters yields a decomposition of the network into its support-
disjoint subsets of the vertices as defined in the previous section. If this decomposition is invariant under
the action of the vector-field, then the corresponding subspace is invariant, and the system can be reduced
to synchronous equilibrium clusters. We note that if the parent network G has a trivial automorphism
group (completely asymmetric), then the network is completely heterogeneous and all the vertices play a
unique structural role. However, if the parent network admits non-trivial automorphism groups (i.e., it is
symmetric), then the network can be reduced. In addition, it should be noted that quotient networks are
heterogeneous because they contain only non-equivalent elements, and all vertices play different roles.

In Fig. 1, we show possible configurations of a persistent set for a 4-strain system on a square lattice
with D4 symmetry, where either 1, 2, 3, or 4 strains can persist and the notion of a persistent set falls into
one of the two notions of endemicity defined previously. It should be noted that it is impossible to study all
balanced k-colouring for all possible multiple strain systems (even in the case of a multi-locus–allele system
where the structure of the strain space is well defined and the symmetry properties are classical). Instead of
studying all possible k-colouring, we focus on the case where we can interchange the notion of endemicity
and persistent set. That is, if we use for example a 2-colouring framework where one colour presents a
persistent synchronous equilibrium cluster and the other colour denotes extinct clusters, then the endemic
equilibrium is weakly endemic and the persistent synchronous equilibrium cluster can still synchronize
into sub-clusters commensurable with strain-specific reproductive fitness. In the strongly endemic case, all
synchronous equilibrium clusters are persistent and the nature of synchronicity is more complex. In the
case where all strains approach the equilibrium point, the synchronous clustering behaviours are simple, in
that all strains synchronize into sub-clusters commensurable to their reproductive successes. However, in the
case where the dynamic behaviours are cyclical, the synchronous behaviours of the synchronous equilibrium
clusters are far more complex.
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In the case of a multi-locus system on hypergraphs, the quotient network is bi-nodal (see an example
for the 2-locus–2-allele system in Fig. 1). While using the definition of a balanced colour, the quotient
network of the hypercube (Mendelian graph) generated by a multi-locus–allele strain space is balanced if
q11 + q12 = q21 + q22. Using Fig. 1, we note that all the representations in red panels are unbalanced, and
only those in yellow and green are balanced, see Fig. 1(b) where the q-values are shown. Using the notion of
a 2-colouring and the bi-nodal structure of the quotient network for the strain space of interest, the dynamic
equations further reduce to,

∂

∂t
+ ∂

∂a


si(t, a) = −si [(1 + qii)λi + qijλj ] , (27)

∂

∂t
+ ∂

∂a


vi(t, a) = si [qiiλi + qijλj ]− viλi, (28)

∂

∂t
+ ∂

∂a


yi(t, a) = [si + (1− γ(a))vi]λi − σ(a)yi, (29)

for i ̸= j, and i, j = 1, 2. The notion of strong endemicity is reduced to yi(a) = y∗i (a) = y∗(a) while we have
yi(a) = y∗i (a) = y∗(a) and yj(a) = y∗j (a) = 0 for all i ̸= j for weak endemicity. Using this reduction of the
model to a bi-nodal quotient network, we can now proceed with the stability analysis of the equilibria under
a 2-colouring framework where we denote the potential persistent strain set with a black vertex (•) while
the extinct strain set is represented by a white vertex (◦), in particular, synchronous equilibrium clusters in
Fig. 1.

5.2. Linearized equation

We now consider the stability of both the disease-free and the endemic equilibria. To study the
linear stability, we consider small perturbations from the equilibrium solutions and let si(t, a) = s∗i (a) +
si(t, a), vi(t, a) = v∗i (a) + vi(t, a), and yi(t, a) = y∗i (a) + yi(t, a). Then Eqs. (27)–(29) become

∂

∂t
+ ∂

∂a


si(t, a) = − (si + s∗i )


(1 + qii)λi + qijλj


− si


(1 + qii)λ∗i + qijλ

∗
j


,

∂

∂t
+ ∂

∂a


vi(t, a) = (si + s∗i )


qiiλi + qijλj


− (vi + v∗i )λi + si


qiiλ

∗
i + qijλ

∗
j


− viλ∗i ,

∂

∂t
+ ∂

∂a


yi(t, a) = [(si + s∗i ) + (1− γ(a)) (vi + v∗i )]λi − σ(a)yi + [si + (1− γ(a))vi]λ∗i ,

where si(t, 0) = 0, vi(t, 0) = 0, yi(t, 0) = 0, and

λi(t, a) =
 am

0
β(a, s)ψ(s)yi(t, s)ds, and λ∗i (a) =

 am
0

β(a, s)ψ(s)y∗i (s)ds.

Now, let the linear operator A on X6 := [L1(0, am)]6 be defined as before (with bi-nodal configuration, i.e.,
N = 2), and u = (u1, u2, u3)T ∈ D(A), where uk =


u

(k)
1 , u

(k)
2


, k = 1, 2, 3, u(1)

j = sj , u
(2)
j = vj , u

(3)
j =

yj , j = 1, 2. Then, we can reformulate the above dynamic equations into the abstract semilinear Cauchy
evolution equation,

du

dt
= Au+ G(u), (30)

where G is a nonlinear operator, G : X6 → X6 and is defined by:

G [u] (a) :=

G1 [u] (a)
G2 [u] (a)
G3 [u] (a)

 , and Gk [u] (a) :=

G(k)

1 [u] (a)

G(k)
2 [u] (a)


, k = 1, 2, 3,
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where

G(1)
i [u] (a) := −


u

(1)
i (a) + s∗i (a)

 
(1 + qii)λi[u](a) + qijλj [u](a)


− u(1)
i (a)


(1 + qii)λ∗i (a) + qijλ

∗
j (a)


,

G(2)
i [u] (a) :=


u

(1)
i (a) + s∗i (a)

 
qiiλi[u](a) + qijλj [u](a)


−

u

(2)
i (a) + v∗i (a)


λi[u](a)− u(2)

i (a)λ∗i (a)

+u
(1)
i (a)


qiiλ

∗
i (a) + qijλ

∗
j (a)


,

G(3)
i [u] (a) :=


u

(1)
i (a) + s∗i (a)


+ (1− γ(a))


u

(2)
i (a) + v∗i (a)


λi[u](a)

+

u

(1)
i (a) + (1− γ(a))u(2)

i (a)

λ∗i (a), i ̸= j i = 1, 2

are components of the column vectors Gk, k = 1, 2, 3. The operator λj [φ](a) : X6 → L1(0, am) is a linear
operator:

λj [u](a) =
 am

0
β(a, s)ψ(s)u(3)

j (s)ds, j = 1, 2,

and λ[u] =

λ1[u], λ2[u]

T . In addition, we note that, using the Riesz–Fréchet–Kolmogorov Compactness
Theorem (see [55, pg. 111, Theorem 4.26]) and Assumption 4.1, we can show that the linear operator λ[u]
is bounded and compact. Also, since F [φ] (a) in Eq. (7) is differentiable, the nonlinear operator G [u] has a
Fréchet derivative at 0 given by B, where

B [u] (a) :=

B1 [u] (a)
B2 [u] (a)
B3 [u] (a)

 , and Bk [u] (a) :=

B(k)

1 [u] (a)

B(k)
2 [u] (a)


, k = 1, 2, 3

and

B(1)
i [u] (a) := −s∗i (a)


(1 + qii)λi[u](a) + qijλj [u](a)


− u(1)
i (a)


(1 + qii)λ∗i (a) + qijλ

∗
j (a)


,

B(2)
i [u] (a) := s∗i (a)


qiiλi[u](a) + qijλj [u](a)


− v∗i (a)λi[u](a) + u

(1)
i (a)


qiiλ

∗
i (a) + qijλ

∗
j (a)


− u(2)
i (a)λ∗i (a),

B(3)
i [u] (a) := [s∗i (a) + (1− γ(a))v∗i (a)]λi[u](a) +


u

(1)
i (a) + (1− γ(a))u(2)

i (a)

λ∗i (a),

for i = 1, 2, i ̸= j and if i = 1, then j = 2 and vice versa. The linearized equation is

du

dt
= Au+ Bu. (31)

In the remainder of the section, we follow the standard approach of [60,50,19]. But first, we make the
following definitions [53].

Definition 5.3. Let L : D(L) ⊂ Y → Y be a closed linear operator. Then,

1. Spectrum of L: Σ (L) := {ζ ∈ C : ζ − L is not bijective},
2. Resolvent set of L: ρ(L) := C \ Σ (L),
3. Resolvent of L: R(ζ,L) := (ζ − L)−1 at ζ ∈ ρ(L),
4. Point spectrum of L: Σp(L) := {ζ ∈ C : ζ − L is not injective},
5. Spectral radius of L: r(L) := sup{|ζ| : ζ ∈ Σ (L)},
6. Spectral bound of L: b(L) := sup{Reζ : ζ ∈ Σ (L)}.
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5.3. Stability of disease-free equilibrium: disease extinction

To study the stability of the disease-free equilibrium, we set y∗i (a) = 0 and λ∗i (a) = 0 for all i = 1, 2 and
for all a ∈ [0, am). If λ∗i (a) = 0, then v∗i (a) = 0 and s∗i (a) = 1 for all i and for all a ∈ [0, am). Then, B in
Eq. (31) above reduces to

B(1)
i [u] (a) :=


(1 + qii)λi[u](a) + qijλj [u](a)


,

B(2)
i [u] (a) :=


qiiλi[u](a) + qijλj [u](a)


,

B(3)
i [u] (a) := λi[u](a).

Let ω0(A + B) denote the growth bound of a semigroup TA+B(t), which is defined as ω0 =
inft>0

1
t log ∥TA+B(t)∥. We note that b(A+ B) ≤ ω0(A+ B), where b(A+ B) is defined in Definition 5.3(6).

We now state the following lemma:

Lemma 5.1. Let {TA+B(t)}t≥0 be the C0-semigroup generated by the perturbed operator A+B. Then TA+B(t)
is eventually norm continuous; hence, the growth bound ω0(A+ B) of the semigroup {TA+B(t)}t≥0 and the
spectral bound b(A+ B) of the generator A+ B are related by

ω0(A+ B) = b(A+ B). (32)

Proof. From the previous section, we note that A generates a nilpotent translation C0-semigroup {TA(t)}t≥0.
Hence, it is eventually norm continuous (see [53, pg. 112]). That is, there exists a t0 ≥ 0 such that the map
t → TA(t) is continuous from (t0,∞) to the space of bounded linear operators on Banach space X6. In
addition, we know that the bounded linear operator λ[u](a) is compact, so that B[u] is compact. Hence,
TA+B(t) is eventually norm continuous (see [53, pg. 166, Proposition 3.1.14]). Then, the spectral mapping
theorem of eventual norm continuity implies that the operator A+B satisfies the spectral determined growth
condition ω0(A+ B) = b(A+ B) (see [53, Theorem 4.3.10 and Corollary 4.3.11–4.3.12]). �

To determine the stability of the equilibrium solutions, we consider the resolvent operator R(ζ,A + B) =
(ζI− [A+ B])−1 of A+ B. That is, let (ζI− [A+ B])w = x, w ∈ D(A), x ∈ X6,+, ζ ∈ C. Then, we have

∂w
(1)
i (a)
∂a

= x
(1)
i (a)− ζw(1)

i (a)−

(1 + qii)λi[w](a) + qijλj [w](a)


,

∂w
(2)
i (a)
∂a

= x
(2)
i (a)− ζw(2)

i (a) +

qiiλi[w](a) + qijλj [w](a)


,

∂w
(3)
i (a)
∂a

= x
(3)
i (a)− ζw(3)

i (a) + λi[w](a)− σ(a)w(3)
i (a).

Integrating the above equations and making the relevant substitutions (i.e., s∗i (a) = 1 for all i = 1, 2 and
for all a ∈ [0, am)), we obtain

w
(1)
i (a) =

 a
0
e
−
 a
b
ζdτ

x

(1)
i (b)−


(1 + qii)λi[w](b) + qijλj [w](b)


db

w
(2)
i (a) =

 a
0
e
−
 a
b
ζdτ

x

(2)
i (b) +


qiiλi[w](b) + qijλj [w](b)


db

w
(3)
i (a) =

 a
0
e
−
 a
b
ζ+σ(τ)dτ


x

(3)
i (b) + λi[w](b)


db.
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Substituting w(3)
i into λi[w](a), we have

λi[w](a) =
 am

0
β(a, s)ψ(s)w(3)

i (s)ds

=
 am

0
β(a, s)ψ(s)

 s
0
e
−
 s
b
ζ+σ(τ)dτ


x

(3)
i (b) + λi[w](b)


db


ds

= Tζ [x(3)
i ](a) + Tζ [λi](a),

where the linear operator Tζ on L1
+(0, am) is defined as:

Tζ [φi](a) =
 am

0

 am
s

β(a, h)ψ(h)Θ(s, h)e−ζ(h−s)dh

φi(s)ds, and Θ(s, h) = e

−
 h
s
σ(τ)dτ

,

so T0[φ] = Tζ [φ]|ζ=0. Then,

λi[w](a) = (I− Tζ)−1 Tζ [x(3)
i ](a), (33)

provided that the inverse exists. In addition, we note that substituting λi[w](b) into w
(2)
i (a) and w

(3)
i (a),

the equations can be expressed in terms of only x(k)
i (a), k = 1, 2, 3. Let

Vζσ[φi](a) =
 a

0
e
−
 a
b
ζ+σ(τ)dτ

φi(b)db, and J ζσ [φi](a) =
 a

0
e
−
 a
b
ζ+σ(τ)dτ (I− Tζ)−1 Tζ [φi](b)db.

Therefore, w(1)
i (a), w(2)

i (a) and w
(3)
i (a) can be rewritten as

w
(1)
i (a) = Vζ0 [x(1)

i ](a)−

(1 + qii)J ζ0 [x(3)

i ](a) + qijJ ζ0 [x(3)
j ](a)


, (34)

w
(2)
i (a) = Vζ0 [x(2)

i ](a) +

qiiJ ζ0 [x(3)

i ](a) + qijJ ζ0 [x(3)
j ](a)


, (35)

w
(3)
i (a) = Vζσ[x

(3)
i ](a) + J ζσ [x(3)

i ](a). (36)

Lemma 5.2. The linear operator Tζ is bounded for all ζ, positive and non-supporting for real ζ, and compact
for all ζ, while the operators Vζσ and J ζσ (for ζ ∈ C \ E) are compact, where E := {ζ ∈ C, 1 ∈ Σ (Tζ)}.

Proof. From H7 and H8 in Assumption 4.1, the proof of boundedness, positivity, non-supporting
and compactness of Tζ follows directly from similar arguments in Theorems 4.3 and 4.2 via the
Riesz–Fréchet–Kolmogorov Compactness Theorem (see [55, pg. 111, Theorem 4.26]). Similarly, we note
that Vζσ is a Volterra operator with complex-valued (or real-valued) continuous exponential kernel, so it is
compact. It follows that if ζ ∈ C \ E, then (I− Tζ)−1 exists and is bounded. So (I− Tζ)−1 Tζ is compact.
We also observe that J ζσ is a composition of a compact operator Vζσ with a bounded operator (I− Tζ)−1 Tζ .
Therefore, J ζσ is compact. �

Lemma 5.3. For ζ ∈ ρ(A+ B) = C \ Σ (A+ B), the resolvent R(ζ,A+ B) : X6 → X6 is of the form

R (ζ,A+ B)x =

I2×2Vζ0 02×2 −(I2×2 +Q)J ζ0
02×2 I2×2Vζ0 QJ ζ0
02×2 02×2 I2×2(Vζσ + J ζσ )

x,

where Q =

q11 q12
q21 q22


, I2×2 is a 2× 2 identity matrix, and 02×2 is a 2× 2 zero matrix. Also,

Vζσ[φi] + J ζσ [φi] =
 a

0
e
−
 a
b
ζ+σ(τ)dτ (I− Tζ)−1

φi(b)db. (37)
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In addition, the resolvent is compact, and

Σ (A+ B) = Σp(A+ B) = {ζ ∈ C : 1 ∈ Σp(Tζ)} = E, (38)

where Σ (A+ B) and Σp(A+ B) are spectrum and point spectrum of A+ B, respectively.

Proof. Let (ζ − [A+ B])w = x, w ∈ D(A), x ∈ X6, ζ ∈ C. From our previous calculations, we obtain the
expressions for w(k)

i (a) in Eqs. (34)–(36), which are uniquely determined if 1 ∈ ρ(Tζ). We note that the
expression for w(3)

i can be simplified. That is,

w
(3)
i (a) =

 a
0
e
−
 a
b
ζ+σ(τ)dτ

x
(3)
i (b)db+

 a
0
e
−
 a
b
ζ+σ(τ)dτ (I− Tζ)−1 Tζ [x(3)

i ](b)db

=
 a

0
e
−
 a
b
ζ+σ(τ)dτ (I− Tζ)−1 (I− Tζ)x(3)

i (b) + (I− Tζ)−1 Tζ [x(3)
i ](b)db

=
 a

0
e
−
 a
b
ζ+σ(τ)dτ (I− Tζ)−1

x
(3)
i (b)db = Vζσ[x

(3)
i ](a) + J ζσ [x(3)

i ](a).

Hence, putting the above expressions into matrix notation, we obtain the expression for the resolvent
R(ζ,A+B)x. Since J ζσ and Vζσ are compact from Lemma 5.2 and R(ζ,A+B)x consists of components with
linear combinations of an integral operator with continuous kernel and a compact operator, then R(ζ,A+B)x
is compact on X6. Hence, A + B has a compact resolvent. Because the spectra of operators with compact
resolvent consist of isolated eigenvalues with finite multiplicities, Σ (A+B) = Σp(A+B), and it follows that
C \ E ⊂ ρ(A+ B) (see Ch. 7–8 of [67]; Theorem 6.29 of [68, pg. 187]). That is, Σ (A+ B) = Σp(A+ B) ⊂ E
(see [68, Theorem 6.29]). Furthermore, from the compactness of Tζ , we know that Σ (Tζ)\{0} = Σp(Tζ)\{0},
and for ζ ∈ E, there exists an eigenfunction ηζ such that Tζηζ = ηζ . Then it follows that,

φ
(1)
i (a) = −

 a
0
e
−
 a
b
ζdτ [(1 + qii)ηi,ζ + qijηj,ζ ] (b)db

φ
(2)
i (a) =

 a
0
e
−
 a
b
ζdτ [qiiηi,ζ + qijηj,ζ ] (b)db

φ
(3)
i (a) =

 a
0
e
−
 a
b
ζ+σ(τ)dτ

ηi,ζ(b)db, i, j = 1, 2, i ̸= j,

are the components of an eigenvector of A + B corresponding to the eigenvalue ζ. Then, E ⊂ Σ (A + B) =
Σp(A+ B). Hence, Σ (A+ B) = Σp(A+ B) = E. �

We now consider the asymptotic properties of the spectral radius r(Tζ).

Lemma 5.4. The following limiting properties hold:

1. limζ→−∞ r(Tζ) =∞,
2. limζ→∞ r(Tζ) = 0.

Proof. Here, we follow the approach of Inaba [60]. Let fζ ∈

L1

+(0, am)
∗ be the strictly positive linear

functional on L1(0, am) defined as

⟨fζ , u⟩ =
 am

0

 am
b

s̃(τ)ψ(τ)Θ(b, τ)e−ζ(τ−b)dτ

u(b)db, (39)

where
 am
b

ψ(s)Θ(b, s)ds > 0 for all b ∈ (0, am), s̃(a) := ε if a ∈ (am − a∗, am), am ∈ (0,∞) and s̃(a) := 0
otherwise, and β(a, s) ≥ s̃(s) for all (a, s) ∈ (0, am) × (0, am) (see H8 in Assumption 4.1). In addition, we
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observe that Θ(b, τ) = e
−
 τ
b
σ(s)ds ≥ e−σ̃am := c, for am ≥ τ ≥ b ≥ 0. We also observe that, when ζ = 0,

f0 = f in Theorem 4.3. Because β ≥ s̃, we note that, for u ∈ L1
+(0, am)

Tζ [u](a) ≥ ⟨fζ , u⟩e(a), e(a) = 1 for all a ∈ R+.

Since Tζ is compact (see Lemma 5.2) and non-supporting (see Lemma 5.2), r(Tζ) is an eigenvalue of T ∗ζ with
strictly positive eigenfunctional Fζ ∈


L1

+(0, am)
∗ \ {0} satisfying

⟨Fζ , Tζ [u]⟩ ≥ ⟨fζ , u⟩⟨Fζ , e⟩ > 0.

Hence, r(Tζ)⟨Fζ , u⟩ ≥ ⟨fζ , u⟩⟨Fζ , e⟩. Suppose u(a) = e(a) = 1 for all a ∈ [0, am), then r(Tζ) ≥ ⟨fζ , e⟩.
Therefore,

lim
ζ→−∞

r(Tζ) ≥ lim
ζ→−∞

⟨fζ , e⟩ = lim
ζ→−∞

 am
0

 am
b

s̃(τ)ψ(τ)Θ(b, τ)e−ζ(τ−b)dτ

db

≥ εc lim
ζ→−∞

 am
am−a∗

ψ(τ)
 τ

0
e−ζ(τ−b)db


dτ ≥ εc lim

ζ→−∞

 am
am−a∗

ψ(τ)


1− e−ζτ

ζ


dτ

≥ εc lim
ζ→−∞


1− e−ζ(am−a∗)

ζ

 am
am−a∗

ψ(τ)dτ =∞.

For the second part of the proof, let

⟨gζ , u⟩ = β

 am
0

 am
b

ψ(τ)e−ζ(τ−b)dτ

u(b)db. (40)

We note that

Tζ [u](a) =
 am

0

 am
b

β(a, s)ψ(s)Θ(b, s)e−ζ(s−b)ds

u(b)db

≤
 am

0

 am
b

β(a, s)ψ(s)e−ζ(s−b)ds

u(b)db ≤ β

 am
0

 am
b

ψ(s)e−ζ(s−b)ds

u(b)db.

Hence, Tζ [u](a) ≤ ⟨gζ , u⟩e(a), e(a) = 1, a ∈ R+, ζ ∈ R. So from the above calculation, we have

lim
ζ→∞

r(Tζ) ≤ lim
ζ→∞
⟨gζ , e⟩ = β lim

ζ→∞

 am
0

 am
b

ψ(s)e−ζ(s−b)ds

db

= β lim
ζ→∞

 am
0

ψ(s)
 s

0
e−ζ(s−b)db


ds

= lim
ζ→∞

β

 am
0

ψ(s)


1− e−ζs

ζ


ds ≤ lim

ζ→∞

β

ζ

 am
0

ψ(s)ds = 0. �

Lemma 5.5. The spectral radius of the next-generation operator r(Tζ) is continuous and strictly decreasing as
a function of ζ ∈ R. In addition, there exists ζ0 ∈ R such that r(Tζ0) = 1, and ζ0 ∈ E = {ζ ∈ C : 1 ∈ Σp(Tζ)}.

Proof. It is a simple matter to show that Tζ is continuous. Because r(Tζ) is in the point spectrum of Tζ and
not an accumulation point of Σ (Tζ), r(Tζ) is also continuous (see [68, Section 4.3.5]). From Lemma 5.2, we
know that Tζ is nonsupporting and compact for ζ ∈ R. If ζ < ζ ′, then we have Tζ ≥ Tζ′ , and Tζ ̸= Tζ′ and
r(Tζ) > 0. Hence, from [57], r(Tζ) > r(Tζ′). Therefore, r(Tζ) is strictly decreasing for ζ ∈ R. Moreover, from
Lemma 5.4 and applying the intermediate value theorem, we see that r(Tζ) = 1 has a root ζ0 ∈ R. From
the compactness and nonsupporting properties of Tζ , we can conclude that 1 = r(Tζ0) ∈ Σp(Tζ0). Hence,
ζ0 ∈ {ζ ∈ C : 1 ∈ Σp(Tζ)} = E. �

Corollary 5.6. There exists a unique ζ0 ∈ R


E such that r(Tζ0) = 1 and the following implications
hold:
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Fig. 2. Sketch for the Proof of Corollary 5.6. The threshold property of r(Tζ) as a function of ζ. For (a) R0 > 1, ζ0 > 0, (b) R0 = 1,
ζ0 = 0, (c) R0 < 1, ζ0 < 0.

1. ζ0 > 0, if and only if r(T0) = r(T ) > 1,
2. ζ0 = 0, if and only if r(T0) = r(T ) = 1,
3. ζ0 < 0, if and only if r(T0) = r(T ) < 1.

Proof. The proof follows directly from Lemma 5.5 and monotonicity of r(Tζ) (see the illustration in Fig. 2).
We note that when ζ = 0, R0 = r(T0). �

Lemma 5.7. If there exists a ζ ∈ E and ζ0 ̸= ζ, then Reζ < ζ0.

Proof. Suppose that ζ0 ∈ E, 1 ∈ Σp(Tζ), and Tζ [φ](a) = φ(a) for some φ ∈ L1(0, am). Let |φ|(a) = |φ(a)|,
then

|φ|(a) = |Tζ [φ](a)| ≤
 am

0

 am
b

β(a, s)ψ(s)Θ(b, s)|e−ζ(s−b)|ds

φ(b)db

≤
 am

0

 am
b

β(a, s)ψ(s)Θ(b, s)e−Reζ(s−b)ds


φ(b)db = TReζ [φ](a), for all a ∈ [0, am). (41)

That is, |φ|(a) = |Tζφ|(a) ≤ TReζ |φ|(a). Let FReζ ∈ [L1(0, am)]∗ be a strictly positive eigenfunctional of T ∗Reζ .
By duality pairing, we have r(TReζ)⟨FReζ , |φ|⟩ ≥ ⟨FReζ , |φ|⟩. Since ⟨FReζ , |φ|⟩ > 0, we have r(TReζ) ≥ 1. From
Lemma 5.5, Reζ ≤ ζ0. Suppose Reζ = ζ0, then |φ| ≤ Tζ0 |φ|. If we assume that |φ| < Tζ0 |φ|, then taking
duality pairing with the eigenfunctional F0 of Tζ0 corresponding to r(Tζ0) = 1 yields

⟨Fζ0 , |φ|⟩ < ⟨Fζ0 , Tζ0 |φ|⟩ = ⟨T ∗ζ0Fζ0 , |φ|⟩

= r(Tζ0)⟨Fζ0 , |φ|⟩ = ⟨Fζ0 , |φ|⟩, (42)

which is a contradiction. Hence, Tζ0 |φ|(a) = |φ|(a). Now let φ0 ∈ L1
+(0, am) be a nonsupporting eigenvector

of Tζ0 corresponding to the eigenvalue r(Tζ0) = 1, then |φ| = cφ0 for some constant c > 0. So
φ(a) = cφ0(a)eiκ(a) for some real-valued function κ : [0, am) → R. We observe that Tζ0φ0 = |Tζφ|; and
substituting φ(a) = cφ0(a)eiκ(a) into Tζ |φ| = |Tζφ|, we have |Tζφ(a)| = |φ|(a) = cφ0(a) = cTζ0φ0. That is,
without loss of generality, c = 1,

Tζ0φ0(a) =
 am

0

 am
b

β(a, s)ψ(s)Θ(b, s)e−ζ0(s−b)ds


φ0(b)db

=
 am

0

 am
b

β(a, s)ψ(s)Θ(b, s)e−(ζ0+iImζ)(s−b)ds


φ0(b)eiκ(b)db

 .
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It follows that f(s, b) = β(a, s)ψ(s)Θ(b, s)e−(ζ0+iImζ)(s−b)φ0(b)eiκ(b) = f0(s, b)eiκ, for some constant real
number κ = κ(b)− Imζ(s− b) and eigenfunction f0. Then,

Tζφ(a) =
 am

0

 am
b

β(a, s)ψ(s)Θ(b, s)e−ζ(s−b)ds

φ0(b)eiκ(b)db

=
 am

0

 am
b

β(a, s)ψ(s)Θ(b, s)e−Reζ(s−b)+iκds


φ0(b)db = eiκTReζφ0(a) = eiκφ0(a). (43)

Hence, eiκφ0(a) = Tζφ(a) = eiκφ0(a). Therefore, from Tζφ = φ, eImζ(s−b) = 1 for 0 ≤ b ≤ s ≤ am. So
κ = κ(a), which implies that Imζ = 0. �

Theorem 5.8. Let b(A+ B) be the spectral bound of A+ B, then ζ0 = b(A+ B).

Proof. From Lemma 5.3, b(A+B) = sup{Reζ : ζ ∈ E}, and from Lemma 5.7, we have ζ0 = b(A+B). Hence,
the assertion holds. �

Here we define exponential stability of A + B as follows: for any ω > ω0, there exists Mω such that for all
t ≥ 0, ∥TA+B∥ ≤Mωeωt. So the semigroup is exponentially stable if ω0 < 0. Throughout this paper, we will
use locally asymptotically stable to mean that the linearized system is stable. Using the linear and global
stability notions of [19,60], we state the following stability condition.

Theorem 5.9. If R0 < 1, then the disease-free equilibrium is locally asymptotically stable; and it is unstable
when R0 > 1.

Proof. We note that, from Lemma 5.1 and Theorem 5.8, ζ0 = b(A+B) = ω0(A+B). Then, by Corollary 5.6,
R0 = r(T0) < 1 implies that ζ0 < 0. So ω0(A+B) < 0 and ∥TA+B(t)∥ → 0 as t→∞. Hence, the disease-free
equilibrium is locally asymptotically stable. However, if r(T0) > 1, then ζ0 > 0 and ω0(A + B) > 0, so the
disease-free equilibrium is unstable. �

Corollary 5.10. If R0 < 1, then the disease-free equilibrium for initial data in Γ is globally asymptotically
stable.

Proof. We note that the original nonlinear Cauchy evolution equation is,

du

dt
= Au+ F(u). (44)

We focus on the y component of u (i.e., u3 = (u(3)
1 , u

(3)
2 )T ), and observe that, for u ∈ Γ , u(1)

i + (1−γ)u(2)
i ≤

u
(1)
i + u

(2)
i ≤ 1. Hence, using the same notation as in Section 3, for u ∈ Γ and i = 1, 2, F3

i [u](a) =
(u(1)
i + (1− γ)u(2)

i )λi[u] ≤ λi[u] and B(3)
i [u](a) = s∗i (a)λi[u] = λi[u], as s∗i (a) = 1. Now,

du3

dt
= A3u+ F3(u) (45)

can be integrated to obtain

u3(t) = T3(t)u0 +
 t

0
T3(t− s)F3(u(s))ds

≤ T3(t)u0 +
 t

0
T3(t− s)B3(u(s))ds = TA3+B3uo, u0 ∈ Γ . (46)

Hence, 0 ≤ u3(t) ≤ TA3+B3(t)u0. From Theorem 5.9, the semigroup TA+B is exponentially stable. So
TA+B(t) → 0 as t → ∞. Therefore, TA3+B3(t) → 0 as t → ∞ and u3(t) ≤ TA3+B3(t)u0 → 0, where
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TA+B(t) = (TA1+B1(t), TA2+B2(t), TA3+B3(t))T → 0. So yi(t) := u
(3)
i (t) → 0 as t → ∞, and λi → 0,

vi(t) := u
(2)
i (t)→ 0 and u

(1)
i = si → 1. �

5.4. Endemic equilibria

So far, we have established that, when R0 < 1, the trivial (disease-free) equilibrium is the only biological
relevant steady state and is globally asymptotically stable. Moreover, when R0 > 1, the disease-free
equilibrium is unstable, and there is at least one non-trivial solution. Here we establish the stability of the
non-trivial solution(s) using the different notions of endemicity. From Eqs. (27)–(29), the endemic steady
state solution is given by:

s∗1(a) = e
−
 a

0
(1+q11)λ∗1(τ)+q12λ

∗
2(τ)dτ

, s∗2(a) = e
−
 a

0
(1+q22)λ∗2(τ)+q21λ

∗
1(τ)dτ

, (47)

v∗1(a) = e
−
 a

0
λ∗1(τ)dτ


1− e−

 a
0
q11λ

∗
1(τ)+q12λ

∗
2(τ)dτ


, (48)

v∗2(a) = e
−
 a

0
λ∗2(τ)dτ


1− e−

 a
0
q22λ

∗
2(τ)+q21λ

∗
1(τ)dτ


, (49)

y∗1(a) =
 a

0
e
−
 a
b
σ(τ)dτ

λ∗1(b){s∗1(b) + (1− γ(b))v∗1(b)}db, (50)

y∗2(a) =
 a

0
e
−
 a
b
σ(τ)dτ

λ∗2(b){s∗2(b) + (1− γ(b))v∗2(b)}db. (51)

Let ci =
 am

0 β2(s)ψ(s)y∗i (s)ds, i = 1, 2, then λ∗i (a) = ciβ1(a) and let B(a) =
 a

0 β1(τ)dτ . Substituting y∗i
into ci, we have

c1 =
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
σ(τ)dτ

c1β1(b)q1(b)db

ds = c1H1(c1, c2,R0),

c2 =
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
σ(τ)dτ

c2β1(b)q2(b)db

ds = c2H2(c1, c2,R0),

where

q1(b) = γ(b)e−B(b)[(1+q11)c1+q12c2] + (1− γ(b))e−B(b)c1

q2(b) = γ(b)e−B(b)[(1+q22)c2+q21c1] + (1− γ(b))e−B(b)c2 .

We note that ci = 0 for i = 1, 2 corresponds to the disease-free equilibrium, and ci ̸= 0 for some i corresponds
to a weakly endemic equilibrium while ci ̸= 0 for all i corresponds to a strongly endemic equilibrium.
Moreover, we observe that H1(c1, c2,R0) and H2(c1, c2,R0) are analytic in c = (c1, c2)T (see [69,70]). In
addition, we note that H1(0, 0,R0) = H2(0, 0,R0) = R0.

We also observe that,

∂H1(0, 0,R0)
∂c1

= −
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
σ(τ)dτ

β1(b)B(b) (1 + q11γ(b)) db

ds

∂H1(0, 0,R0)
∂c2

= −
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
σ(τ)dτ

β1(b)B(b)q12γ(b)db

ds

∂H2(0, 0,R0)
∂c1

= −
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
σ(τ)dτ

β1(b)B(b)q21γ(b)db

ds

∂H2(0, 0,R0)
∂c2

= −
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
σ(τ)dτ

β1(b)B(b) (1 + q22γ(b)) db

ds.



A. Cherif et al. / Nonlinear Analysis: Real World Applications 34 (2017) 275–315 299

Hence, ∂Hi(0,0,R0)
∂cj

≤ 0, i, j = 1, 2. Define the following,

m0(R0) =
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
σ(τ)dτ

β1(b)B(b)db

ds, (52)

m1(R0) =
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
σ(τ)dτ

β1(b)B(b)γ(b)db

ds, (53)

and letM(c1, c2,R0) be the Jacobian matrix of H = (H1, H2)T . Then,

M(0, 0,R0) := −

m0(R0) + q11m1(R0) q12m1(R0)

q21m1(R0) m0(R0) + q22m1(R0)


. (54)

Suppose that γ is chosen such that the determinant DM(0, 0, 1) = m0(1)2 + m0(1) m1(1)(q11 + q22) +
m1(1)2(q11q22 − q12q21) is nonzero. So M−1(0, 0, 1) exists and is bounded. We can now apply the Im-
plicit Function Theorem of Hildebrandt & Graves (see [71] and [72, Theorem 4.B]) to show that there
exists a branching solution when R0 > 1 for R0 small or equivalently we can find a solution c(R0) =
(c1(R0), c2(R0))T bifurcating from the trivial solution at R0 = 1. We have,

Theorem 5.11. If H(c1, c2,R0) : R2
+ × R+ → R2

+ satisfies

1. H(0, 0, 1) = (1, 1)T and
2. DM(0, 0, 1) is nonzero (i.e.,M(0, 0, 1) is nonsingular),

then there is a solution family c(R0) such that H(c1(R0), c2(R0),R0) = (1, 1)T for all R0 > 1 near R0 = 1.

Remark 5.12. To further deduce that c1 and c2 are continuous functions of R0, requires the continuity of
Hi(c1, c2,R0) for i = 1, 2 with respect to all its arguments (c1, c2,R0). It is an easy matter to show that
Hi(c1, c2,R0) for i = 1, 2 is continuous with respect to (c1, c2). However, we are not able to determine the
continuity of Hi(c1, c2,R0) with respect to R0 because Hi(c1, c2,R0) is not explicitly expressed in terms of
R0 even though we know that Hi(0, 0,R0) = R0.

We note that near ci = 0, i = 1, 2 and R0 = 1, the level set of H(c1, c2,R0) at (c1, c2,R0) = (0, 0, 1)
given by {(c1, c2,R0) ∈ R2

+ × R+ : H(c1, c2,R0) = (1, 1)T } is one-dimensional. Moreover, we observe that
from the notion of endemicity discussed previously, there are two possible cases (for balanced quotient):

1. Weakly endemic: c1 > 0 and c2 = 0 or c1 = 0 and c2 > 0.
2. Strongly endemic: c1 > 0 and c2 > 0.

We note that, for the first case, whenever one solution type exists the other also exists. However, which
equilibrium is selected will depend on the initial condition, and if one of the weakly endemic equilibria is
(un)stable, the other weakly endemic state will be (un)stable due to the inherent symmetry. We now state
the following:

Lemma 5.13. Let Hi(c1, c2,R0), i = 1, 2 be defined as above. If R0 > 1, then the following holds:

1. In the case of balanced quotient (i.e., q11 + q12 = q22 + q21 = α0), there exists a unique strongly endemic
equilibrium, c1 = c2 = c > 0 such that H(c, c,R0) = H1(c, c,R0) = H2(c, c,R0) = 1.

2. There exist weakly endemic equilibria, c1 > 0 and c2 = 0, and c1 = 0 and c2 > 0, such H1(c1, 0,R0) = 1
and H2(0, c2,R0) = 1, respectively.

However, if R0 < 1, then there is no non-negative non-trivial steady state.
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Fig. 3. Sketch for the Proof of Lemma 5.13. The threshold property of R0 and H(c, c,R0). For (a) R0 > 1, c0 > 0, (b) R0 = 1,
c0 = 0, (c) R0 < 1, c0 < 0.

Proof. For the first result, we note that ci = cj = c, i ̸= j for balanced quotient since ci, i = 1, 2 is
commensurable to the reproductive fitness and all strains have the same epidemiological parameters. To find
c such that H(c, c,R0) = H1(c, c,R0) = H2(c, c,R0) = 1, we observe that H(c, c,R0) is differentiable with
respect to c and ∂H(c,c,R0)

∂c < 0 for all c > 0. Hence, H(c, c,R0) is strictly monotonically decreasing, and it
also satisfies the following limiting behaviours,

1. limc→+∞H(c, c,R0) = 0,
2. limc→−∞H(c, c,R0) = +∞.

Using similar arguments as in Corollary 5.6 and the Intermediate Value Theorem, the result follows
(see Fig. 3). Hence, when R0 > 1, there is a unique solution for H(c, c,R0) = 1, and c is positive. When
R0 < 1, there is no solution on the right-hand half plane. The characteristic equation H(c, c,R0) = 1 has
a negative solution which is biologically irrelevant. For the second part, we observe that ∂H1(c1,0,R0)

∂c1
< 0

and ∂H2(0,c2,R0)
∂c2

< 0 hold for all c1 and c2, respectively, and H1(c1, 0,R0) and H2(0, c2,R0) are both
monotonically decreasing functions. Hence, the results follow from the Intermediate Value theorem. �

In the next sections, we investigate the asymptotic behaviours of these equilibria. We will assume R0 > 1
but sufficiently close to 1 in the remainder of this section.

5.4.1. Stability of weakly endemic equilibria: Principle of competitive exclusion
To study the stability of an endemic equilibrium, we start with the linearized equation as in the previous

section, and consider the resolvent of A + B (i.e. consider the equation (ζI− (A+ B))w = x). Then, we
have for i, j = 1, 2, i ̸= j,

∂w
(1)
i (a)
∂a

= x
(1)
i (a)− ζw(1)

i (a) + B(1)
i [w](a),

∂w
(2)
i (a)
∂a

= x
(2)
i (a)− ζw(2)

i (a) + B(2)
i [w](a),

∂w
(3)
i (a)
∂a

= x
(3)
i (a)− ζw(3)

i (a) + B(3)
i [w](a)− σ(a)w(3)

i (a), i = 1, 2

where B(k)
i [w] (a) = B(k)

i [w] (a) + B̃(k)
i [w] (a), k = 1, 2, 3, and

B(1)
i [w] (a) := −s∗i (a)


(1 + qii)λi[w](a) + qijλj [w](a)


,

B̃(1)
i [w] (a) := −w(1)

i (a)

(1 + qii)λ∗i + qijλ

∗
j


(a),

B(2)
i [w] (a) := s∗i (a)


qiiλi[w](a) + qijλj [w](a)


− v∗i (a)λi[w](a),
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B̃(2)
i [w] (a) := w

(1)
i


qiiλ

∗
i + qijλ

∗
j


(a)− w(2)

i (a)λ∗i (a),

B(3)
i [w] (a) := [s∗i (a) + (1− γ(a))v∗i (a)]λi[w](a),

B̃(3)
i [w] (a) :=


w

(1)
i (a) + (1− γ(a))w(2)

i (a)

λ∗i (a),

for i, j = 1, 2, i ̸= j and w(k)
i (0) = 0, k = 1, 2, 3. Here w = (w1, w2, w3)T , wk =


w

(k)
1 , w

(k)
2


, for k = 1, 2, 3,

and w
(1)
j = sj , w

(2)
j = vj and w

(3)
j = yj . Let ci =

 am
0 β2(s)ψ(s)y∗i (s)ds, ci =

 am
0 β2(s)ψ(s)w(3)

i (s)ds and
B(a) =

 a
0 β1(τ)dτ . Then λ∗i (a) = ciβ1(a) and λi[w](a) = ciβ1(a). To study the stability of the weakly

endemic equilibrium, we use the definition of weak endemicity and either set (i) c1 ̸= 0 and c2 = 0 or (ii)
c1 = 0 and c2 ̸= 0. Here we focus on (i), for the stability of (ii) follows directly from (i) and the analyses of
the two cases are identical. If c1 ̸= 0 and c2 = 0, substituting the relevant terms in the above expression, we
obtain the following:

∂w
(1)
1 (a)
∂a

= x
(1)
1 (a)− ζw(1)

1 (a)− s∗1(a)

(1 + q11)λ1[w](a) + q12λ2[w](a)


− w(1)

1 (a)(1 + q11)λ∗1(a),

∂w
(1)
2 (a)
∂a

= x
(1)
2 (a)− ζw(1)

2 (a)− s∗2(a)

(1 + q22)λ2[w](a) + q21λ1[w](a)


− w(1)

2 (a)q21λ
∗
1(a),

∂w
(2)
1 (a)
∂a

= x
(2)
1 (a)− ζw(2)

1 (a) + s∗1(a)

q11λ1[w](a) + q12λ2[w](a)


− v∗1(a)λ1[w](a)

+ w
(1)
1 (a) [q11λ

∗
1] (a)− w(2)

1 (a)λ∗1(a),

∂w
(2)
2 (a)
∂a

= x
(2)
2 (a)− ζw(2)

2 (a) + s∗2(a)

q22λ2[w](a) + q21λ1[w](a)


− v∗2(a)λ2[w](a) + w

(1)
2 (a)q21λ

∗
1(a),

∂w
(3)
1 (a)
∂a

= x
(3)
1 (a)− ζw(3)

1 (a) + [s∗1(a) + (1− γ(a))v∗1(a)]λ1[w](a)

+

w

(1)
1 (a) + (1− γ(a))w(2)

1 (a)

λ∗1(a)− σ(a)w(3)

1 (a),

∂w
(3)
2 (a)
∂a

= x
(3)
2 (a)− ζw(3)

2 (a) + [s∗2(a) + (1− γ(a))v∗2(a)]λ2[w](a)− σ(a)w(3)
2 (a).

Integrating the above equations, we obtain

w
(1)
1 (a) =

 a
0
e
−
 a
b
ζ+(1+q11)λ∗1(τ)dτ


x

(1)
1 (b)− s∗1(b)


(1 + q11)λ1[w](b) + q12λ2[w](b)


db, (55)

w
(1)
2 (a) =

 a
0
e
−
 a
b
ζ+q21λ

∗
1(τ)dτ


x

(1)
2 (b)− s∗2(b)


(1 + q22)λ2[w](b) + q21λ1[w](b)


db, (56)

w
(2)
1 (a) =

 a
0
e
−
 a
b
ζ+λ∗1(τ)dτ


x

(2)
1 (b) + s∗1(b)


q11λ1[w](b) + q12λ2[w](b)


− v∗1(b)λ1[w](b) + w

(1)
1 (b)q11λ

∗
1(b)


db, (57)

w
(2)
2 (a) =

 a
0
e
−
 a
b
ζdτ

x

(2)
2 (b) + s∗2(b)


q22λ2[w](b) + q21λ1[w](b)


− v∗2(b)λ2[w](b) + w

(1)
2 (b)q21λ

∗
1(b)


db, (58)

w
(3)
1 (a) =

 a
0
e
−
 a
b
ζ+σ(τ)dτ


x

(3)
1 (b) + [s∗1(b) + (1− γ(a))v∗1(b)]λ1[w](b)

+

w

(1)
1 (b) + (1− γ(a))w(2)

1 (b)

λ∗1(b)


db, (59)

w
(3)
2 (a) =

 a
0
e
−
 a
b
ζ+σ(τ)dτ


x

(3)
2 (b) + [s∗2(b) + (1− γ(a))v∗2(b)]λ2[w](b)


db. (60)
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Recall that λi[w](a) = ciβ1(a), so substituting the above expressions into

c1 =
 am

0
β2(s)ψ(s)w(3)

1 (s)ds, and c2 =
 am

0
β2(s)ψ(s)w(3)

2 (s)ds,

we obtain a two-dimensional matrix, (X1,X2)T = (I−H(ζ, c1(R0), 0)) (c1, c2)T , where H(ζ, c1(R0), 0) is a
2 × 2 matrix with element Hij(ζ, c1(R0), 0)1≤i,j≤2. The elements of Hij of H and Xi (1 ≤ i, j ≤ 2) are
defined as follows:

H11(ζ, c1(R0), 0) =
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
ζ+σ(τ)dτ

Q∗1(b)β1(b)db

ds−

 am
0

β2(s)

×ψ(s)
 s

0
e
−
 s
b
ζ+σ(τ)dτ

λ∗1(b)
 b

0
β1(b′)(1 + q11)s∗1(b′)

× e−
 b
b′
ζ+(1+q11)λ∗1(τ)dτ

db′


db


ds+ q11

 am
0

β2(s)ψ(s)
 s

0
λ∗1(b)

× e−
 s
b
ζ+σ(τ)dτ (1− γ(b))

 b
0
s∗1(b′)β1(b′)e−

 b
b′
ζ+λ∗1(τ)dτ

db′


db


ds

−
 am

0
β2(s)ψ(s)

 s
0
λ∗1(b)e−

 s
b
ζ+σ(τ)dτ (1− γ(b))

 b
0
v∗1(b′)

×β1(b′)e−
 b
b′
ζ+λ∗1(τ)dτ

db′


db


ds−

 am
0

β2(s)ψ(s)
 s

0
λ∗1(b)

× e−
 s
b
ζ+σ(τ)dτ (1− γ(b))

 b
0
e
−
 b
b′
ζ+λ∗1(τ)dτ

q11λ
∗
1(b′)

×

 b′
0
s∗1(r)(1 + q11)β1(r)e−

 b′
r
ζ+(1+q11)λ∗1(τ)dτ

dr


db′


db


ds,

H12(ζ, c1(R0), 0) =
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
ζ+σ(τ)dτ

λ∗1(b)
 b

0
s∗1(b′)q12β1(b′)

× e−
 b
b′
ζ+(1+q11)λ∗1(τ)dτ

db′


db


ds+ q12

 am
0

β2(s)ψ(s)
 s

0
λ∗1(b)

× e−
 s
b
ζ+σ(τ)dτ (1− γ(b))

 b
0
s∗1(b′)β1(b′)e−

 b
b′
ζ+λ∗1(τ)dτ

db′


db


ds

+ q11q12

 am
0

β2(s)ψ(s)
 s

0
e
−
 s
b
ζ+σ(τ)dτ

λ∗1(b)(1− γ(b))
 b

0
λ∗1(b′)

× e−
 b
b′
ζ+λ∗1(τ)dτ

 b′
0
e
−
 b′
r
ζ+(1+q11)λ∗1(τ)dτ

s∗1(r)β1(r)dr

db′


db


ds

H21(ζ, c1(R0), 0) = 0

H22(ζ, c1(R0), 0) =
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
ζ+σ(τ)dτ

Q∗2(b)β1(b)db

ds

X1(ζ, c1(R0), 0) =
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
ζ+σ(τ)dτ

x
(3)
1 (b)db


ds+

 am
0

β2(s)ψ(s)

×

 s
0
e
−
 s
b
ζ+σ(τ)dτ

λ∗1(b)
 b

0
e
−
 b
b′
ζ+(1+q11)λ∗1(τ)dτ

x
(1)
1 (b′)db′


db


ds
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+
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
ζ+σ(τ)dτ

λ∗1(b)(1− γ(b))
 b

0
x

(2)
1 (b′)

× e−
 b
b′
ζ+λ∗1(τ)dτ

db′


db


ds+

 am
0

β2(s)ψ(s)
 s

0
e
−
 s
b
ζ+σ(τ)dτ

×λ∗1(b)(1− γ(b))
 b

0
e
−
 b
b′
ζ+λ∗1(τ)dτ

q11λ
∗
1(b′)

 b′
0
x

(1)
1 (r)

× e−
 b′
r
ζ+(1+q11)λ∗1(τ)dτ

dr


db′


db


ds

X2(ζ, c1(R0), 0) =
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
ζ+σ(τ)dτ

x
(3)
2 (b)db


ds

Q∗i (b) = s∗i (b) + (1− γ(b)) v∗i (b), i = 1, 2
s∗1(b) = e−(1+q11)c1B(b), s∗2(b) = e−q21c1B(b),

v∗1(b) = e−c1B(b) − e−(1+q11)c1B(b), and v∗2(b) = 1− e−q21c1B(b).

LetM1(ζ,R0) = (I−H(ζ, c(R0))) and the determinant ofM1(ζ, c(R0)) be given by D1M(ζ,R0), where for
a weakly endemic equilibrium c(R0) = (c1(R0), 0)T (or c(R0) = (0, c2(R0))). From the structure (i.e. upper
block matrix) of H(ζ, c(R0)) (and hence M1(ζ,R0)), we can calculate the determinant as D1M(ζ,R0) =
(1 − H11(ζ, c(R0)))(1 − H22(ζ, c(R0))). We note that when R0 = 1 and ci = 0, i = 1, 2, the determinant
D1M(ζ, c(R0)) = 0 determines the eigenvalues of the linearized equations for the disease-free equilibrium.
Moreover, we observe that at ζ = 0 and R0 = 1, H11(ζ = 0, c1(R0) = 0, 0) = H22(ζ = 0, c1(R0) = 0, 0) = R0
and D1M(ζ,R0) = 0. From the previous discussion, the resolvent equation is only solvable whenM1(ζ,R0)
is invertible. That is, if the determinant D1M(ζ,R0) ofM1(ζ,R0) is nonzero. Therefore, to determine the
stability of the weakly endemic equilibrium, we first give the following results:

Lemma 5.14. Let Σwee(A+B) and Σweep (A+B) be the spectrum and point spectrum of A+B, respectively,
for the weakly endemic system. Then, Σwee(A+ B) = Σweep (A+ B) = {ζ ∈ C : D1M(ζ,R0) = 0}.

Proof. We observe that the resolvent equation is solvable if and only if M1(ζ,R0) is invertible, i.e.,
D1M(ζ,R0) ̸= 0. So Σwee(A+B) = {ζ ∈ C : D1M(ζ,R0) = 0}. Hence ρ(A+B) = {ζ ∈ C : D1M(ζ,R0) ̸=
0}. BecauseM1(ζ,R0) is invertible for ζ ∈ ρ(A+ B), it can be shown that the resolvent Rwee(ζ,A+ B) is
compact for any ζ ∈ ρ(A+B) using similar arguments as in Lemma 5.3. That is, we first obtain w in terms
of ci, i = 1, 2 and x from Eqs. (55)–(60) by substituting for λi(a) = β1(a)ci. Then, we find ci in terms of
Xi, i = 1, 2 from (c1, c2)T =M−1

1 (ζ,R0) (X1,X2)T and Xi in terms of x. We note that M−1
1 (ζ,R0) exists

and is bounded. Thus, we observe that, after the relevant substitutions, the right-hand sides of w in Eqs.
(55)–(60) are compositions of compact and bounded operators. Hence, the resolvent is compact. Therefore,
Σwee(A+ B) = Σweep (A+ B) (see [68, pg. 187], [19, Proposition 4.11]). �

Corollary 5.15. H11(ζ, c1(R0), 0) = 1 or H22(ζ, c1(R0), 0) = 1, if and only if ζ ∈ Σweep (A+ B).

Theorem 5.16. Suppose Reζ < 0 for all ζ ∈ Σweep (A + B). Then the weakly endemic equilibrium point is
locally asymptotically stable.

Proof. We first note that the operator A generates a nilpotent translation C0-semigroup {TA(t)}t>0, and
that the operator B can be broken up into two operators B = B + B̃. Then, we observe that TA+B̃ is
a semigroup of a stable population with a finite age interval, and hence it is eventually compact (see
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[59, Proposition 2.5]). From Assumption 4.1, B is compact. Therefore, the C0-semigroup {TA+B(t)}t>0
is eventually norm continuous (see [53, pg. 166, Proposition 3.1.14]). Hence, ω0(A + B) = b(A + B) :=
sup{Reζ : ζ ∈ Σwee(A + B)} (see [53, pg. 281, Corollaries 4.3.11–4.3.12]). So, from Lemma 5.14, we have
b(A + B) = sup{Reζ : ζ ∈ Σweep (A + B)} = ζ0, say. In addition, by Theorem 2.4.18 in [53, pg. 113],
the set S = {ζ ∈ Σwee(A + B) : Reζ ≥ −1} is bounded and consists of isolated eigenvalues with finite
multiplicities. Therefore, under the given assumption, it follows that the set S is finite and ζ0 < 0. Thus,
limt→∞ ∥TA+B(t)∥ → 0. Hence, the weakly endemic equilibrium is locally asymptotically stable. �

We can now consider the concrete conditions under which the weakly endemic equilibrium is stable, i.e., there
is no ζ ∈ Σweep (A + B) with non-negative real part. We note that the condition D1M(ζ,R0) = 0 is
equivalent to the following: H11(ζ, c1(R0), 0) = 1 or H22(ζ, c1(R0), 0) = 1. In the proceeding, we characterize
H22(ζ, c1(R0), 0) = 1 and H11(ζ, c1(R0), 0) = 1. We state the following properties:

Lemma 5.17. The function H22(ζ, c1(R0), 0) is continuous in ζ and strictly decreasing with respect to ζ ∈ R,
and satisfies the following limiting behaviours:

1. limζ→∞H22(ζ, c1(R0), 0) = 0,
2. limζ→−∞H22(ζ, c1(R0), 0) = +∞.

Thus, there exists a unique solution ζ2,0 ∈ R of H22(ζ2,0, c1(R0), 0) = 1 and ζ2,0 is a simple root. Moreover,
each of the following implications holds:

1. ζ2,0 < 0, if H22(0, c1(R0), 0) < 1,
2. ζ2,0 = 0, if H22(0, c1(R0), 0) = 1,
3. ζ2,0 > 0, if H22(0, c1(R0), 0) > 1.

Furthermore, any solution ζ ̸= ζ2,0 of H22(ζ, c1(R0), 0) = 1 is such that Reζ < ζ2,0.

Proof. We observe that H22(ζ, c1(R0), 0) is continuous and strictly monotonically decreasing in ζ.
Furthermore, using Assumption 2.1, we note that

H22(ζ, c1(R0), 0) =
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
ζ+σ(τ)dτ

Q∗2(b)β1(b)db

ds

≤ β

 am
0

 s
0
ψ(s)e−

 s
b
ζdτ

db


ds ≤ β

ζ
→ 0 as ζ →∞

as in Lemma 5.4(2). For the second part, we observe that Θ(b, τ) = e
−
 τ
b
σ(s)ds ≥ e−σ̃am := c for

am ≥ s ≥ b ≥ 0. Let Q2 = supb∈[0,am] Q
∗
2(b). Then, from Assumption 4.1(2),

H22(ζ, c1(R0), 0) =
 am

0

 am
b

β2(s)ψ(s)e−
 s
b
ζ+σ(τ)dτ

Q∗2(b)β1(b)ds

db

≥ εcQ2

 am
am−a∗

ψ(s)
 s

0
e
−
 s
b
ζdτ

db


ds→∞ as ζ → −∞

as in Lemma 5.4(1).

It follows that there is a unique real value ζ2,0 ∈ R such that H22(ζ2,0, c1(R0), 0) = 1. Since,
H22(ζ2,0, c1(R0), 0) is strictly decreasing, it is a simple root. Therefore, the assertions follow.
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Moreover, let ζ be a solution different from ζ2,0, then

H22(ζ2,0, c1(R0), 0) = 1 = Re
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
ζ+σ(τ)dτ

Q∗2(b)β1(b)db

ds


=
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b

Reζ+σ(τ)dτ cos(Imζ(s− b))Q∗2(b)β1(b)db

ds


<

 am
0

β2(s)ψ(s)
 s

0
e
−
 s
b

Reζ+σ(τ)dτ
Q∗2(b)β1(b)db


ds


.

Thus, since H22(ζ, c1(R0), 0) is strictly decreasing function, it follows that Reζ < ζ2,0. �

We observe that H22(ζ, c1(R0), 0) > 0 and H22(0, 0, 0) = R0. Similarly, H11(ζ, c1(R0), 0) > 0 and
H11(0, 0, 0) = R0. In addition, H11(ζ, c1(R0), 0) can be expressed as a difference of two functions, namely

H11(ζ, c1(R0), 0) = H(1)
11 (ζ, c1(R0), 0)−H(2)

11 (ζ, c1(R0), 0), (61)

where

H(1)
11 (ζ, c1(R0), 0) =

 am
0

β2(s)ψ(s)
 s

0
e
−
 s
b
ζ+σ(τ)dτ

Q∗1(b)β1(b)db

ds

+
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
ζ+σ(τ)dτ

λ∗1(b)(1− γ(b))

×

 b
0
e
−
 b
b′
ζ+λ∗1(τ)dτ

s∗1(b′)q11β1(b′)db′

db


ds, (62)

H(2)
11 (ζ, c1(R0), 0) =

 am
0

β2(s)ψ(s)
 s

0
e
−
 s
b
ζ+σ(τ)dτ

λ∗1(b)
 b

0
s∗1(b′)(1 + q11)β1(b′)

× e−
 b
b′
ζ+(1+q11)λ∗1(τ)dτ

db′


db


ds+

 am
0

β2(s)ψ(s)

×

 s
0
e
−
 s
b
ζ+σ(τ)dτ

λ∗1(b)(1− γ(b))
 b

0
v∗1(b′)β1(b′)

× e−
 b
b′
ζ+λ∗1(τ)dτ

db′


db


ds+

 am
0

β2(s)ψ(s)
 s

0
λ∗1(b)

× (1− γ(b))e−
 s
b
ζ+σ(τ)dτ

 b
0
e
−
 b
b′
ζ+λ∗1(τ)dτ

q11λ
∗
1(b′)

 b′
0
s∗1(r)

× (1 + q11)β1(r)e−
 b′
r
ζ+(1+q11)λ∗1(τ)dτ

dr


db′


db


ds. (63)

Lemma 5.18. Let H(1)
11 (ζ, c1(R0), 0) be defined as above. Then H(1)

11 (ζ, c1(R0), 0) is continuous in ζ and
monotonically decreasing with respect to ζ and satisfies,

1. limζ→∞H(1)
11 (ζ, c1(R0), 0) = 0,

2. limζ→−∞H(1)
11 (ζ, c1(R0), 0) =∞.
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Proof. Clearly, H(1)
11 (ζ, c1(R0), 0) is continuous with respect to ζ, and is strictly monotonically decreasing.

In addition, let B1 =
 am

0 β1(τ)dτ . Then,

H(1)
11 (ζ, c1(R0), 0) =

 am
0

β2(s)ψ(s)
 s

0
e
−
 s
b
ζ+σ(τ)dτ

Q∗1(b)β1(b)db

ds

+
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
ζ+σ(τ)dτ

λ∗1(b)(1− γ(b))

×

 b
0
e
−
 b
b′
ζ+λ∗1(τ)dτ

s∗1(b′)q11β1(b′)db′

db


ds

≤ β

1 + q11c1B1

  am
0

 s
0
ψ(s)e−

 s
b
ζdτ

db


ds→ 0 as ζ →∞

as in Lemma 5.17(1). Moreover, we observe that

H(1)
11 (ζ, c1(R0), 0) =

 am
0

β2(s)ψ(s)
 s

0
e
−
 s
b
ζ+σ(τ)dτ

Q∗1(b)β1(b)db

ds

+
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
ζ+σ(τ)dτ

λ∗1(b)(1− γ(b))

×

 b
0
e
−
 b
b′
ζ+λ∗1(τ)dτ

s∗1(b′)q11β1(b′)db′

db


ds,

≥
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
ζ+σ(τ)dτ

Q∗1(b)β1(b)db

ds→∞

as ζ → −∞ as in Lemma 5.4(1) and Lemma 5.17(2). �

Corollary 5.19. H11(ζ, c1(R0), 0) is continuous with respect to ζ, and for ζ real, satisfies the following

1. H11(ζ, c1(R0), 0) ≤ H(1)
11 (ζ, c1(R0), 0), and

2. limζ→∞H11(ζ, c1(R0), 0) = 0.

Lemma 5.20. There exists a unique solution ζ1 ∈ R such that H(1)
11 (ζ, c1(R0), 0) = 1. In addition,

1. If H(1)
11 (0, c1(R0), 0) < 1, then ζ1 < 0,

2. If H(1)
11 (0, c1(R0), 0) = 1, then ζ1 = 0,

3. If H(1)
11 (0, c1(R0), 0) > 1, then ζ1 > 0.

Moreover, if ζ ∈ {ζ ∈ C : H(1)
11 (ζ, c1(R0), 0) = 1} then if ζ ̸= ζ1, Reζ < ζ1.

Proof. The proof is similar to Lemma 5.17. �

Lemma 5.21. Let R0 > 1 but sufficiently close to 1. If H11(0, c1(R0), 0) > 1, then the characteristic equation
admits a positive root.

Proof. We note that, from the properties stated in Lemma 5.18 and Corollary 5.19, when H11(0, c1(R0), 0) >
1, there is a solution ζ0 > 0 such that H11(ζ0, c1(R0), 0) = 1. That is, let ∆(ζ) = H11(ζ, c1(R0), 0)− 1 = 0.
We observe that ∆(0) > 0 and ∆(∞) < 0. Then, by the Intermediate Value Theorem, there exists a point
ζ0 ∈ (0,∞) such that ∆(ζ0) = 0 or H11(ζ0, c1(R0), 0) = 1. This corresponds to instability. �
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We now give conditions for H11(0, c1(R0), 0) = 1 to have only roots with negative real part.

Lemma 5.22. Take R0 > 1. Suppose H(1)
11 (0, c1, 0) < 1, so that, for c1 sufficiently small and positive,

H(1)
11 (ζ, c1, 0) = 1 has a unique real negative solution ζ1(c1). Then for c1 sufficiently small and positive
H11(ζ, c1, 0) = 1 has no roots with Reζ ≥ ζ1(0)

2 . Hence, for c1 sufficiently small and positive, all the roots of
H11(ζ, c1(R0), 0) = 1 have negative real part.

Proof. Assume H(1)
11 (0, c1, 0) < 1. From Lemma 5.20, H(1)

11 (ζ, c1, 0) = 1 has a unique real negative solution
ζ1(c1). Let D = {ζ : Reζ ≥ ζ1(0)

2 }.

Now let 1−H11(ζ, c1, 0) = ∆1(ζ, c1) + ∆2(ζ, c1), where

∆1(ζ, c1) = 1−H(1)
11 (ζ, c1, 0), and ∆2(ζ, c1) = H(2)

11 (ζ, c1, 0).

We show that for ζ ∈ D and c1 small enough, |∆1(ζ, c1)| > |∆2(ζ, c1)| and hence H11(ζ, c1, 0) = 1 has no
roots in D.

Set η = H(1)
11


ζ1(0)

2 , 0, 0


and note that η < 1, because H(1)
11 (ζ1(0), 0, 0) = 1 and H(1)

11 (ζ, c1, 0) is decreasing

in ζ. In addition, H(1)
11 (ζ, c1, 0) is continuous in c1. Therefore, for ζ ∈ D and c1 small enough, we haveH(1)

11 (ζ, c1, 0)
 ≤ H(1)

11


ζ1(0)

2 , c1, 0

<

1 + η

2 .

Hence, 1−H(1)
11 (ζ, c1, 0)

 > 1− η
2 .

Moreover, we observe that ∆2(ζ, 0) = H(2)
11 (ζ, 0, 0) = 0 and H(2)

11 (ζ, c1, 0) is continuous in c1. For ζ ∈ D and
c1 small enough, we have

|∆2(ζ, c1)| = |H(2)
11 (ζ, c1, 0)| ≤ H(2)

11


ζ1(0)

2 , c1, 0

<

1− η
2 .

Hence,

|H11(ζ, c1, 0)− 1| ≥ |∆1(ζ, c1)| − |∆2(ζ, c1)| > 0.

Thus, H11(ζ, c1, 0) = 1 has no roots in D. �

In the above discussion, we have shown the existence and non-existence of roots (positive real and complex
with positive real parts) depending on the conditions imposed on H11(0, c1(R0), 0) and H(1)

11 (0, c1(R0), 0). In
particular, we note that the existence and exclusion of positive real roots depends only on H11(0, c1(R0), 0),
while exclusion of complex roots (with positive real part) depends onH11(0, c1(R0), 0) andH(1)

11 (0, c1(R0), 0).
Given the above results in Lemmas 5.21 and 5.22, we establish the condition for the stability of the weakly
endemic steady state.

Theorem 5.23. Take R0 > 1 and R0 − 1 is sufficiently small.

1. If H(1)
11 (0, c1(R0), 0) < 1 and H22(0, c1(R0), 0) < 1, then the weakly endemic equilibrium (i.e., discrete

strain structure) is locally asymptotically stable.
2. If H11(0, c1(R0), 0) > 1 or H22(0, c1(R0), 0) > 1, then the weakly endemic equilibrium is unstable.

Proof. On the one hand, we note that, from Lemma 5.22, if H(1)
11 (0, c1(R0), 0) < 1, then the characteristic

equation H11(ζ, c1(R0), 0) = 1 does not admit (real or complex) non-negative characteristic roots. In
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addition, from Lemma 5.17, we observe that the dominant root of H22(ζ, c1(R0), 0) = 1 is negative when
H22(0, c1(R0), 0) < 1. Thus, from Corollary 5.15 and Theorem 5.16, the weakly endemic equilibrium point
is locally asymptotically stable. On the other hand, if one of the conditions is violated, then there is a
non-negative eigenvalue ζ0 > 0, so ω0(A+ B) > 0. �

5.4.2. Stability of a strongly endemic equilibrium: coexistence
To study the stability of a strongly endemic equilibrium, we consider the linearized resolvent equation as

done in the previous section. We note that, from the definition of strong endemicity, y∗i (a) ̸= 0 for all i. In
addition, because the epidemiological parameters are the same for all strains, λi = λj and yi = yj for all i, j.
Therefore, it is sufficient to look at the asymptotic behaviours of the system as a single strain system provided
we take into consideration the balanced condition for the quotient network. That is, qii + qij = qjj + qji.
Now let α0 = qii + qij = qjj + qji and α = α0 + 1. Then the system above reduces to

∂w(1)(a)
∂a

= x(1)(a)− ζw(1)(a)− αs∗(a)λ[w](a)− αw(1)(a)λ∗(a),

∂w(2)(a)
∂a

= x(2)(a)− ζw(2)(a) + (α− 1) s∗(a)λ[w](a)− v∗(a)λ[w](a) + w(1)(a) (α− 1)λ∗(a)− w(2)(a)λ∗(a),

∂w(3)(a)
∂a

= x(3)(a)− ζw(3)(a) + [s∗(a) + (1− γ(a))v∗(a)]λ[w](a)

+

w(1)(a) + (1− γ(a))w(2)(a)


λ∗(a)− σ(a)w(3)(a),

where the steady state solutions s∗(a), v∗(a) and y∗(a) reduce to

s∗(a) = e
−
 a

0
αλ∗(τ)dτ

, v∗(a) = e
−
 a

0
λ∗(τ)dτ − e−

 a
0
αλ∗(τ)dτ

, Q∗(a) = s∗(a) + (1− γ(a))v∗(a),

y∗(a) =
 a

0
e
−
 a
b
σ(τ)dτ (1− γ(b))λ∗(b)


e
−
 b

0
λ∗(τ)dτ − e−

 b
0
αλ∗(τ)dτ


db

+
 a

0
e
−
 a
b
σ(τ)dτ

λ∗(b)e−
 b

0
λ∗(τ)dτ

db.

Integrating the resolvent equation above, we have

w(1)(a) =
 a

0
e
−
 a
b
ζ+αλ∗(τ)dτ


x(1) − αs∗(b)λ[w](b)


db,

w(2)(a) =
 a

0
e
−
 a
b
ζ+λ∗(τ)dτ


x(2) + (α− 1)s∗(b)λ[w](b)− v∗(b)λ[w](b) + (α− 1)w(1)(b)λ∗(b)


db,

w(3)(a) =
 a

0
e
−
 a
b
σ(τ)+ζdτ


x(3)(b) + q∗(b)λ[w](b) +


w(1)(b) + (1− γ(b))w(2)(b)


λ∗(b)


db.

Let c =
 am

0 β2(s)ψ(s)y∗(s)ds, c =
 am

0 β2(s)ψ(s)w(3)(s)ds, and B(a) =
 a

0 β1(τ)dτ . Then λ∗(a) = cβ1(a)
and λ[w](a) = cβ1(a).

The strongly endemic steady state only exists when R0 > 1 (see Lemma 5.13). To study the stability of
the strongly endemic equilibrium, we substitute the above expression for w(k)

i , i = 1, 2 into c using strong
endemicity. We obtain an equation of the form X = (1−H(ζ, c(R0))) c, where

H(ζ, c(R0)) =
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
ζ+σ(τ)dτ

Q∗(b)β1(b)db

ds

−
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
ζ+σ(τ)dτ

λ∗(b)
 b

0
e
−
 b
b′
ζ+αλ∗(τ)dτ

αs∗1(b′)

×β1(b′)db′

db


ds+

 am
0

β2(s)ψ(s)
 s

0
e
−
 s
b
ζ+σ(τ)dτ

λ∗(b)
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× (1− γ(b))
 b

0
e
−
 b
b′
ζ+λ∗(τ)dτ (α− 1)s∗(b′)β1(b′)db′


db


ds

−
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
ζ+σ(τ)dτ

λ∗(b)(1− γ(b))

×

 b
0
e
−
 b
b′
ζ+λ∗(τ)dτ

v∗(b′)β1(b′)db′

db


ds−

 am
0

β2(s)ψ(s)

×

 s
0
e
−
 s
b
ζ+σ(τ)dτ

λ∗(b)(1− γ(b))
 b

0
e
−
 b
b′
ζ+λ∗(τ)dτ (α− 1)

×λ∗(b′)
 b′

0
e
−
 b′
η
ζ+αλ∗(τ)dτ

αs∗(η)β1(η)dη

db′


db


ds,

X =
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
ζ+σ(τ)dτ

x(3)(b)db

ds+

 am
0

β2(s)ψ(s)

×

 s
0
e
−
 s
b
ζ+σ(τ)dτ

λ∗(b)
 b

0
e
−
 b
b′
ζ+αλ∗(τ)dτ

x(1)(b′)db′

db


ds

+
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
ζ+σ(τ)dτ

λ∗(b)(1− γ(b))
 b

0
x(2)(b′)

× e−
 b
b′
ζ+λ∗(τ)dτ

db′


db


ds+

 am
0

β2(s)ψ(s)
 s

0
e
−
 s
b
ζ+σ(τ)dτ

× (1− γ(b))λ∗(b)
 b

0
e
−
 b
b′
ζ+λ∗(τ)dτ (α− 1)λ∗(b′)

 b′
0
x(1)(η)

× e−
 b′
η
ζ+αλ∗(τ)dτ

dη


db′


db


ds.

We state the following conditions:

Lemma 5.24. Let Σ see(A+ B) and Σ seep (A+ B) be the spectrum and point spectrum of A+ B, respectively,
for the strongly endemic case, then Σ see(A+ B) = Σ seep (A+ B) = {ζ ∈ C : H(ζ, c(R0)) = 1}.

Proof. The resolvent equation is solvable if and only if 1 − H(ζ, c(R0)) ̸= 0. So Σ see(A + B) = {ζ ∈ C :
H(ζ, c(R0)) = 1}. Hence, ρ(A + B) = {ζ ∈ C : H(ζ, c(R0)) ̸= 1}. Using similar arguments to those in
Lemma 5.14, if ζ ∈ ρ(A + B), then A + B has a compact resolvent (see [68, pg. 187] and [19, Proposition
4.11]). Hence, the assertion Σ see(A+ B) = Σ seep (A+ B) holds. �

Corollary 5.25. H(ζ, c(R0)) = 1, if and only if ζ ∈ Σ seep (A+ B).

Let H(ζ, c(R0)) = H(1)(ζ, c(R0))−H(2)(ζ, c(R0)), where

H(1)(ζ, c(R0)) =
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
ζ+σ(τ)dτ

Q∗(b)β1(b)db

ds

+
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
ζ+σ(τ)dτ

λ∗(b)(1− γ(b))

×

 b
0
e
−
 b
b′
ζ+λ∗(τ)dτ (α− 1)s∗(b′)β1(b′)db′


db


ds,
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H(2)(ζ, c(R0)) =
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
ζ+σ(τ)dτ

λ∗(b)
 b

0
e
−
 b
b′
ζ+αλ∗(τ)dτ

αs∗1(b′)

×β1(b′)db′

db


ds+

 am
0

β2(s)ψ(s)
 s

0
λ∗(b)(1− γ(b))

× e−
 s
b
ζ+σ(τ)dτ

 b
0
e
−
 b
b′
ζ+λ∗(τ)dτ

v∗(b′)β1(b′)db′

db


ds+ (α− 1)

×
 am

0
β2(s)ψ(s)

 s
0
e
−
 s
b
ζ+σ(τ)dτ

λ∗(b)(1− γ(b))
 b

0
λ∗(b′)

× e−
 b
b′
ζ+λ∗(τ)dτ

 b′
0
e
−
 b′
η
ζ+αλ∗(τ)dτ

αs∗(η)β1(η)dη

db′


db


ds.

We observe that the functional form of H(ζ, c(R0)) is similar to the functional form of H11(ζ, c1(R0), 0). In
fact, H(ζ, c(R0)) = H11(ζ, c(R0), 0), when λ∗(a) = λ∗1(a), and q11 is replaced by α − 1. Thus, the results
and proofs of Lemma 5.18, Corollary 5.19, Lemmas 5.20–5.22, all carry over to this case and we have:

Theorem 5.26. If H(1)(0, c(R0)) < 1, then the strongly endemic equilibrium (i.e., co-existence, fully
synchronized steady-state, or no strain structure) is locally asymptotically stable. If H(0, c(R0)) > 1, then
the strongly endemic equilibrium is unstable.

6. Numerical simulations and discussion: the effect of cross-immunity on the dynamics

In this section, we investigate the effect of the serotypic architectures and the various dynamic features of
the model. In particular, we look at the dynamic behaviours of the model under both uniform and differential
allelic combinations as we vary the cross-immunity level γ (i,.e., γ(a) = γ for all a ∈ [0, am]) as an exploratory
parameter. Although it is possible to use the age-specific parameters β(a, s) = qc(a, s), µ(a), σ(a) where
q is the disease-specific transmission probability and c(a, s) is the contact rate, we assume, for simplicity,
that the age-specific parameters β(a, s) = β, µ(a) = µ and σ(a) = σ, because the dynamic behaviours are
preserved except that the abundance level of each strain for individual age–cohorts is commensurable with
the age-specific reproductive number (see [30,6,38,15]). The method of lines was used with the following 15
discretized age–cohorts [0–4], [5–9], [10–14], [15–19], [20–24], [24–29], [30–34], [35–39], [40, 44], [45, 49], [50,
54], [55, 59], [60, 64], [65, 69] and [70–100] years.

We note that, for both uniform and variable age-specific parameters, the dynamic features of the strains
naturally tend towards the dynamic patterns observed in the unstructured models discussed in [30,38,15,
and references therein]. In particular, the system (1) exhibits three distinct dynamic features with very rich
temporal and clustering properties, and self-organization/synchrony that depends on the relative degrees of
cross-immunity (see Fig. 4). In Fig. 4(a), we observe the coexistence of all strain for low cross-immunity, where
all strains tend to a stable equilibrium which are usually commensurable to their respective reproductive
fitnesses. However, because we have assumed that all the strains have the same epidemiological parameters
and hence reproductive successes, the strains approach the same abundance level regardless of the allelic
architectures. That is, all strains approach the same steady states whether we have uniform (e.g., 2-locus–2-
allele, 3-locus–2-allele systems) or differential allelic variations (e.g., 2-locus system with 2 alleles at one
locus and 3 alleles at the other locus). These dynamic patterns correspond to fully synchronized no structure
structures (NSS) with a maximum diversity and low discordance.

At the intermediary cross-immunity level, the model exhibits cyclic (both periodic, intermittency chaotic)
temporal dynamics with exotic cluster-specific sequential domination (see Fig. 4(b)–(d)). However, the
cyclical dynamical behaviours and their cluster-specific structures at the intermediary cross-immunity level
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are subtle, as the model exhibits various complex forms of synchronization and dynamic patterns. In
particular, we observe that dominant types are cyclically replaced, where we can detect sharp epidemics
dominated by, among a number of other behaviours: (i) anti-phase periodic solution with alternating
dominance of discordant pairs (including large amplitude periodic cycles), (ii) a single strain with erratic
multi-year abundance similar to the dynamic feature of influenza epidemics with irregular emergence and
re-emergence of certain pathogenic forms (seen in yi, not shown), (iii) ordered alternating appearance of
a single antigenic type in periodic or quasi-periodic form similar to discrete periodic travelling waves in
strain/antigenic space with spatio-temporal symmetry, (iv) chaotic solutions with erratic appearance and
disappearance of synchrony between discordant antigenic types or discrete sets of minimally overlapping or
non-overlapping structures (periodic solutions with intermittent chaotic episodes, chaotic short-period cycles
with decoherence between discordant sets, large-amplitude chaotic cycles with spatio-temporal symmetry),
and (v) phase-synchronization with (periodic or chaotic) uncorrelated amplitudes. These dynamic behaviours
represent cyclical strain structures (CSS).

For high cross-immunity, the system exhibits the principle of competitive exclusion where certain clusters
containing discordant serotypes or containing sets of serotypes (i.e., sub-population of strains) with minimal
(see Fig. 4(e)) or non-overlapping structures persist while others go to extinction (see Fig. 4(f)). In
particular, for uniform allelic variations, only discrete strain structures with a single discordant pair with non-
overlapping structures are possible (see Fig. 4(f)), whereas in the case of differential allelic combinations we
see discrete strain structures with both non-overlapping (see Fig. 4(f), where persistent strains are discordant
to each other and share no alleles in common) and minimally overlapping serotypic structures (see Fig. 4(e)
where the dominant persistent strain is discordant to the other two strains that shares alleles in common).
In general, the dominant persistent sets share the least number of alleles while the other persistent strains
share the most in the case of discrete strain structures with minimally overlapping serotypic structures.
These dynamic patterns correspond to partially synchronized discrete strain structures (DSS). Some of
these dynamic patterns described above have been discussed previously in [30,6,5,38,15]. The only difference
between these behaviours and those discussed previously is that each age cohort follows similar dynamics,
and there might be age-specific synchronizations, which may not hold in the case of a non-uniform age-
specific scenario. In addition, for a non-uniform age-specific scenario, we can observe localized epidemics
within certain age–cohort in the region where the system exhibits the highest single strain dominance (or
lowest strain diversity) and the combination of age-specific transmissibility/reproductive number and the
contact structures, and the cross-immunity influence the organization and dynamical behaviours of strain
structures.

7. Conclusion

In this article, we have examined a multi-locus–allele epidemic model describing the dynamics of
antigenically variable infectious diseases. We reformulated the model into an abstract semilinear Cauchy
evolution equation and investigated the existence of positive solutions. In addition, we employed a fixed
point approach to study the steady-states, and the spectral theory of operators to prove the existence of a
threshold condition on the next-generation operator. In particular, we showed that if the spectral radius of
the next-generation operator T , r (T ), is less than 1, then the disease-free equilibrium is the only equilibrium
and is globally asymptotically stable. If r (T ) > 1, then the disease-free equilibrium is unstable. Moreover,
we showed that there is at least one nontrivial equilibrium. However, using the spectral radius r (T ) of the
next generation operator T , the condition for existence of endemic equilibrium is necessary but not sufficient
to establish the stability of the endemic equilibrium. To establish the stability of endemic equilibria, we rely
on insights gained from the mesoscale property captured by the quotient network of the strain space and
from the analysis presented in [38]. We defined two notions of endemicity (e.g., weakly and strongly endemic
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Fig. 4. Average temporal evolution 2-locus–(2,3)-allele system for Eq. (1). Temporal dynamics of a 2-locus system with 2 alleles
on one locus and 3 alleles on the other locus show (a) the coexistence of strains approaching the same endemic steady-state,
γ = 0.5, (b) discrete periodic travelling wave solutions and spatio-temporal symmetry across all age–cohorts, γ = 0.54, (c) chaotic
dynamics (γ = 0.75) and (d) large-amplitude chaotic solutions (γ = 0.90), (e)–(f) discrete strain structure where one discordant pair
persists while the other pairs go to extinction (principle of competitive exclusion) for γ = 0.95 and γ = 1.0, respectively. Here, the
parameters are as follows: β(a, s) = β = 40, µ(a) = µ = 0.02, σ(a) = σ = 9.98; and Am[φ](t) = 1

|Ωm|


Ωm
φ(t, a)da, Ωm = [0, am].

equilibria) corresponding to the principle of competitive exclusion and co-existence, and used these ideas
along with the symmetric structure of the strain space and the uniformity of parameters across strains to
simplify our analysis and to provide additional conditions necessary for the stability of the system. We provide
numerical simulations corresponding to the analytical results. Furthermore, we observe the existence of
discrete antigenic forms among pathogens can either fully or partially self-organize, where (i) strains exhibit
no strain structures and coexist or (ii) antigenic variants sort into non-overlapping or minimally overlapping
clusters that either undergo the principle of competitive exclusion exhibiting discrete strain structures, or
co-exist cyclically. These observations are consistent with numerical simulations for unstructured models
based on strain theory in [12,30,39,35,73,8,33,34,6,36,37,48,38,15, and references therein].

The analysis presented herein is based on some assumptions that might be more restrictive for epidemic
models. On a fundamental level, we assume a proportionate mixing pattern for the contact rate, a
demographically stable population and the uniformity of parameters across strains. The structure of the
strain interaction network and its 2-coloured balanced quotient is also restrictive. In particular, we have
focused only on a general strain space structure with Mendelian structure or hyperoctahedral symmetry,
where the 2-coloured quotient networks are bi-nodal, and the dimension of the system can be reduced. For
a more general strain space with no obvious well known symmetry property, we suspect that our analysis
can be carried out in a similar manner as long as all the quotient networks can be obtained using tools from
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algebraic graph theory and all the different combination of synchronous equilibrium clusters can be found.
Although, the numerical results of the model described in [38,15, and the relevant references therein] and in
Section 6 show the existence of cyclical behaviours, such dynamics and their orbital asymptotical stability
were not investigated herein. This is left as an open problem. The age-specific model described herein can
be extended to incorporate different level of cross-immunity including temporary immunity and vaccine-
acquired immunity, to investigate the impact of different functional forms of γ(a) with other functional
forms of β(a, s), µ(a) and σ(a) as compared to its age-independent analogue on the dynamic behaviours of
the model described in [38,15], to name but a few.
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