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Abstract Identifying the critical domain size necessary for a population to persist is
an important question in ecology. Both demographic and environmental stochasticity
impact a population’s ability to persist. Here we explore ways of including this vari-
ability. We study populations with distinct dispersal and sedentary stages, which have
traditionally been modelled using a deterministic integrodifference equation (IDE)
framework. Individual-based models (IBMs) are the most intuitive stochastic ana-
logues to IDEs but yield few analytic insights. We explore two alternate approaches;
one is a scaling up to the population level using the Central Limit Theorem, and the
other a variation on both Galton–Watson branching processes and branching processes
in random environments. These branching process models closely approximate the
IBM and yield insight into the factors determining the critical domain size for a given
population subject to stochasticity.
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1 Introduction

Determining the size of the domain necessary for population persistence is a well
known problem in ecology. First discussed in Kierstead and Slobodkin (1953), the
critical domain size is the domain size required to independently sustain a population.
Often discussed in the context of conservation, the critical domain size may inform
spatial management decisions for species of concern that are experiencing habitat
degradation or other negative anthropogenic effects. For example, for many marine
species, marine protected areas have been found to allow resident species to increase
in abundance as well as in biomass (Jamieson and Levings 2001), achieving both
conservation and fishery management goals.

For deterministic models, the critical domain size may be described as the small-
est domain for which there exists a stable non-zero steady state. However, at low
population densities, deterministic models may not accurately reflect extinction risks.
For example, when the need for a reserve or management area arises, the population
of interest is often already depleted and thus more vulnerable to variability both in
demographic rates and in its environment. For populations subject to uncertainty, we
broadly define the critical domain size as the size of the domain necessary to reach
some accepted measure of persistence. One such measure is the probability of extinc-
tion of a population, that is, the probability of the total population size being zero by
a given time. What is deemed to be an acceptable probability of extinction will vary
depending on application (e.g. Burnham and Anderson 2002; Flather et al. 2011).
In this work, we will use the probability of ultimate extinction, which is the limit
of the probability of extinction as time tends to infinity. The simplest domain, and
the one we consider in this work, is a one-dimensional domain of length L , which
is both a good starting point to develop theory as well as biologically reasonable in
certain habitats such as rivers, shorelines, or narrow valleys. We will also assume very
harsh conditions outside of the domain (e.g. strong negative anthropogenic influence,
uninhabitable landscapes) where no individuals survive. Thus the critical domain size
estimated here may be conservative if individuals may survive outside of the domain.

Integrodifference equations While reaction-diffusion, partial differential equation
models have been studied extensively for their insights into critical domain sizes
(Reitzel et al. 2004; Skellam 1951), they assume continuous reproduction and disper-
sal rather than taking into account the seasonal reproductive strategies used by the
species of interest (Lutscher 2008). We are interested in populations with discrete
dispersal and reproductive phases, which are commonly modelled using integrodif-
ference equations (IDEs). Many plants, for example, disperse as seeds for a short
time and then remain in one place for the remainder of their lives. The majority of
marine species have dispersing, planktonic larvae, with many of those species having
comparatively sedentary adult lives (Lockwood et al. 2002). For these reasons, IDEs
have been used extensively to model both plant and marine species (Andersen 1991;
Lockwood et al. 2002; Mistro et al. 2005; White et al. 2008).

For simplicity, we consider only non-structured populations (i.e. all of the indi-
viduals disperse and then reproduce) in order to be able to determine the effects of
stochasticity on the extinction dynamics without conflating the results with those
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The critical domain size of stochastic population models 757

caused by more complicated population structures. We assume the simplest case of
density independent linear population growth in order to separate the effects of stochas-
ticity from those due to any nonlinearities. We also note that many of the populations
we are interested inwill bewell below the environmental carrying capacity and a linear
growth rate is a close approximation to many nonlinear growth functions at very low
densities in the absence of an Allee effect. We here model only females, assuming
males are sufficient for reproduction.

An IDE satisfying the above assumptions on a domain of length L has the form

Nn(x) =
{∫ L/2

−L/2 k(x, y)r Nn−1(y)dy, x ∈ [−L/2, L/2]

0, x < −L/2 or x > L/2
(1)

where Nn(x) is the population density in generation n at location x ∈ R, r denotes the
linear population growth rate and k(x, y) is the dispersal kernel, a probability density
function describing the probability of movement of an individual during one time step
from location y to x . For example, the Laplace dispersal kernel,

k(x, y) =
√

α

4D
exp

(
−|x − y|

√
α

D

)
(2)

arises from the assumption that organisms settle out of a dispersal phase (diffusion
coefficient D) at a constant rate α (Neubert et al. 1995). As has been done previously
(Reimer et al. 2016), we scale the dispersal kernels using the mean of the strictly
positive distribution (i.e. the mean of k(x) for k ≥ 0) and will refer to this as the
mean dispersal distance. The Laplace kernel has a mean value of

√
D/α (Kot 1992;

Lockwood et al. 2002) and here all units are scaled to this mean dispersal distance for
simplicity. We will use the Laplace kernel in the following examples, as it is one of
the few kernels for which an analytic solution to the critical domain size problem for
this deterministic IDE exists (Reimer et al. 2016; Van Kirk and Lewis 1997).

Existing theory To the best of our knowledge, stochastic analogues to integrodiffer-
ence equations have only been studied for calculating invasion speeds of travelling
waves subject to variability. Kot et al. (2004) used density independent branching
random walks to simulate a stochastic IDE with linear, density independent growth,
determining that stochastic variation in dispersal and reproduction does not lower the
asymptotic invasion speed. Gilbert et al. (2014) explored the effects of spatial varia-
tion in demographic and dispersal parameters caused by environmental variability on
spreading speeds using an IDE framework. Travis et al. (2011) have argued have argued
for, and explored the advantages of, using both analytical IDEs and individual-based
approaches in the context of climate driven range expansions.

We also build on previous results on non-spatial stochastic population models (e.g.
Engen and Sæther 1998; Lande 1993; Leigh Jr 1981; Hiebeler 1997). The branching
process methods we consider here have been motivated by, and applied widely to,
studies of genetics (e.g. Feller 1951;Keiding 1975).A continuous-time analogue to our
spatially implicit approximation method has been considered by Samia and Lutscher
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(2012) with an approximation to their model of dispersing individuals in the context
of populations in streams. They approximated a partial differential equation model
with a spatially implicit model using the model eigenvalues, and then constructed
a continuous-time Markov chain to explore extinction probabilities and the time to
extinction. In this work, we combine these results for non-spatial stochastic models
with stochastic analogues to IDEs in order to understand the effect of domain size on
persistence in single species spatial stochastic models.

Stochastic models We are interested in stochastic models analogous to IDEs for popu-
lations with discrete dispersal and life history events. In Sect. 2, we address the effects
of demographic stochasticity, which affects the fitness of each individual in a popu-
lation independently and arises from the variability inherent in deaths, dispersal, and
reproductive events. We incorporate demographic stochasticity using random vari-
ables with given distributions ideally obtained through statistical study (Engen and
Sæther 1998; Lande 1993; Shaffer 1981). Demographic stochasticity is most impor-
tant for populations with low numbers, as individual level fluctuations in growth and
death rates most significantly affect subsequent generations for smaller populations.

We first develop a spatially explicit individual-based model (IBM), which is the
most realistic way to incorporate uncertainty into an IDE framework. IBMs allow
for flexibility in incorporating individual variation in demographic and dispersal rates
and can be a powerful tool for exploring species’ spatial dynamics (Bocedi et al.
2014). In order to obtain more general analytic results, we develop two spatially
implicit approximations to the IBM. The first scales the model up to the population
level using the Central Limit Theorem. The second approximation allows for analytic
results and is based on a Galton–Watson branching process modified to include loss
via dispersal outside of the domain. We use classical results on branching processes
to determine the domain size necessary to achieve specified conservation goals. Both
of these approximations make use of the modified dispersal success approximation
of Reimer et al. (2016), which is based on the idea that we can avoid explicit spatial
dependence by assuming that during each time step a fixed proportion of the population
is lost via dispersal to areas outside the domain. We compare these results with both
the corresponding deterministic IDE as well as simulations from the stochastic IBM
through an illustrative example, though the results hold over amuch broader parameter
space.

In Sect. 3, we consider environmental stochasticity, which is important to pop-
ulations of any size (Lande 1993). This stochasticity arises from fluctuations in the
environment that are assumed to affect the demographic rates of all individuals in a pop-
ulation simultaneously and in a similar way (e.g. variable temperatures or changes in
food availability) (Lande 1993;Leigh Jr 1981).Weaddress the samequestion of critical
domain size using similar methods but now allowing for environmental stochasticity
as well. We reformulate our IBM to include dependence on a random environmental
variable and again consider the dynamics approximated at the population level. The
branching process framework used to investigate the effects of demographic stochas-
ticity is modified to include environmental variation using the theory of branching
processes in random environments. Both demographic and environmental variability
are known to be important in natural populations (Lande and Orzack 1988; Melbourne
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The critical domain size of stochastic population models 759

and Hastings 2008) and the tools developed here allow for further exploration of their
comparative effects on extinction risk.

2 Demographic stochasticity

2.1 Individual-based models with demographic stochasticity

Simulating each individual in a population via an IBM is one of the simplest and most
intuitive ways to examine population dynamics. Unfortunately, results generated in
this way are difficult to compare and analytic tools have not yet been developed to
determine the probability of extinction, making it difficult to determine sensitivity
to various factors such as initial population size or demographic rates. We describe a
stochastic IBM analogous to an IDE in order to be able to compare our approximations
to these simulation results.

Simulations begin at generation n = 0 with an initial population of size N0
evenly distributed throughout a one-dimensional domain of length L . We consider
only females, so each individual has r offspring where r is a random variable with
probability mass function {pi } for i = 0, 1, 2, . . ., where pi is the probability of an
individual having i female offspring in one reproductive period and

∑
pi = 1. Note

that this process will not explicitly incorporate individual deaths. Hence p1 is the
probability that either the female produced one offspring and then died, or that she
produced no offspring but survived to the next generation, and p0 is the probability
that an individual produced no offspring and did not survive until the next generation.
Thus parental survival is included in the term “offspring”. At the start of each gen-
eration, and for each individual, we first draw the random variable for the number of
offspring produced from {pi }. Each of these offspring then disperses according to a
dispersal kernel k(x, y) and if they remain within the domain, they are assumed to
survive to the start of the next time step and the process is repeated.

In order to investigate the probability of extinction by a given generation or the
ultimate probability of extinction, it is necessary to run many simulations of this
model.

2.2 Spatially implicit population level model

As has been done for IDE models, we can approximate the population level outcomes
of the IBM by disregarding the location of individuals inside the domain and only
considering changes to the total population size via a spatially implicit approximation.
We do this by approximating the proportion of the population that successfully remains
within the domain following the dispersal process from time n − 1 to n with a scalar
Ā. Note that throughout this work, a bar is used to denote population level variables.

For the IDE model Eq. (1), the total population size within the domain N̄n at time
n has been approximated via the deterministic recursion relation

N̄n =
∫ L/2

−L/2

∫ L/2

−L/2
k(x, y)r Nn−1(y)dydx ≈ Ār N̄n−1 (3)
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where 0 ≤ Ā ≤ 1 (Lutscher and Lewis 2004; Van Kirk and Lewis 1997). We apply
this same concept when approximating the total population size of the stochastic IBM
according to

N̄n = Ār̄ N̄n−1. (4)

The IBM assumes that the number of offspring of each individual in a population is a
real-valued independent identically distributed (iid) random variable r with probabil-
ity mass function {pi }, expected value E[r ] = ξ , and variance σ 2

r . To scale from the
individual to the population level, we employ the Central Limit Theorem; for a popula-
tion of size N̄n , the average number of offspring per capita r̄ N̄ converges to a normally
distributed random variable with mean E[r̄ N̄ ] = ξ and variance Var(r̄ N̄ ) = σ 2

r /N̄n .
Note r̄ N̄ cannot realistically take a negative value, so we assume the distribution of
r̄ N̄ to be normally distributed as above but with all of the probabilities of a negative
distribution assigned to zero and the distribution then appropriately rescaled.

In order to remove explicit spatial dependence of each individual, we consider a
scalar A that is the probability that an individual remains within the domain follow-
ing one dispersal period. We first naively assume individuals are evenly distributed
throughout a one-dimensional domain of length L at any given time. For an individual
at position y ∈ [−L/2, L/2], this individual settles within the domainwith probability
s(y) (Van Kirk and Lewis 1997), where

s(y) =
∫ L/2

−L/2
k(x, y)dx . (5)

Note that this is only the correct formulation for symmetric dispersal kernels, as dis-
cussed in Lutscher and Lewis (2004). By the Central Limit Theorem, the proportion
ĀN̄ of the population of size N̄n that remains within the domain is a normally distrib-
uted random variable. For individuals assumed to be evenly distributed throughout the
domain, E[ ĀN̄ ] = S, where S is the average dispersal success (Van Kirk and Lewis
1997):

S = 1

L

∫ L/2

−L/2
s(y)dy. (6)

The variance of the distribution of ĀN̄ is Var( ĀN̄ ) = σ 2
S /N̄n , where σ 2

S is the variance
of s(y) over the domain:

σ 2
S = Var(s(y)) =

∫ L/2

−L/2
(s(y) − S)2dy. (7)

While S provides a reasonable approximation to the average dispersal success of a
population for a range of deterministic IDEs (this was explored in Reimer et al. 2016),
our recent work has revisited the assumption that the population is evenly distrib-
uted throughout the domain. We use the modified dispersal success approximation Ŝ
throughout this work, which we found in Reimer et al. (2016) consistently outper-
forms S as an approximation to the proportion of individuals retained in the domain
following dispersal. To obtain Ŝ, we weight the dispersal success functions by s(y)/S
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when approximating the population’s average successful dispersal rate. This is based
on the assumption that more individuals are in the centre of the domain than near
the edges and that s(y) provides a good approximation to the population distribution
inside the domain (Reimer et al. 2016; Van Kirk and Lewis 1997).

This modified average dispersal rate is:

Ŝ = 1

L

∫ L/2

−L/2

(
s(y)

S

)
s(y)dy. (8)

It has been shown for IDEs that Ŝ ≥ S (Reimer et al. 2016), since it weights areas that
are thought to have more individuals more heavily, based on the idea that they not only
have higher dispersal success but are also at a location that is more likely to receive
settling individuals for symmetric dispersal kernels. At the population level, ĀN̄ may

bedrawn fromanormal distributionwithE[ ĀN̄ ] = Ŝ andvarianceVar( ĀN̄ ) = σ 2
Ŝ
/N̄n ,

where σ 2
Ŝ
is the variance of s(y)2/S over the domain:

σ 2
Ŝ

= Var(s(y)2/S) =
∫ L/2

−L/2

(
s(y)2

S
− Ŝ

)2

dy. (9)

We call this the Ŝ population level approximation for ĀN̄ . Now in each generation we
start with a population of size N̄n−1, draw the values of the random variables r̄ N̄ and
ĀN̄ according to their distributions as described above, and calculate N̄n according to
Eq. (4).

It is important to note here that we now redefine our notion of extinction from
requiring the death of all individuals to requiring the population size to fall below a
certain value. This is to account for the fact that even if ĀN̄ is less than 1 for many
generations, the population level approximation will only tend asymptotically towards
zero but not achieve it. This threshold,whichwewill call the quasi-extinction threshold
(e.g. Ginzburg et al. 1982; Lande 1993), will here be 1, so that if N̄ < 1, our population
will be considered extinct. This threshold value of 1 will be used for all population
level approximations in this work. We did not find our results on the efficacy of the
approximations to be sensitive to the quasi-extinction threshold for values near 1; as
expected, small increases in the quasi-extinction threshold reduced extinction times
for the IBM and the approximations, and vice versa. We did not explore the effects of
choosing a significantly larger quasi-extinction threshold.

2.2.1 A brief note on the time to extinction

The number of surviving offspring of an individual over a time step is determined
by the product of the two positive random variables r and A. We could also consider
B = Ar as a single independent random variable. Since A and r are independent,

E[B] = E[A]E[r ] (10)
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and
Var(B) = σ 2

B = E[A]2 σ 2
r + E[r ]2 σ 2

A + σ 2
A σ 2

r . (11)

Since we are here interested in the population level model, we can ignore the shape
of the distribution of B and look to its average value. For a population of size N̄n ,
the population level growth rate over one generation is B̄ ∼ N (E[B], σ 2

B/N̄n) by the
Central Limit Theorem.

For a deterministic model of the form N̄n+1 = B̄ N̄n where B̄ is a constant scalar,
if B̄ > 1, the population tends to infinity and for B̄ < 1, the population tends to
extinction. For the deterministic model with B̄ < 1 and an initial population of size
N̄0, we can calculate the time to extinction by setting B̄n N̄0 = 1 (recall that the
quasi-extinction threshold is 1) and solving for n as

n = − ln (N̄0)

ln (B̄)
. (12)

In the stochastic population level model

N̄n+1 = B̄ N̄n, (13)

where B̄ is a randomvariable as described above, the expected value of N̄n is B̄n N̄0, but
now even with B̄ > 1, extinction may still occur. As in the deterministic model, linear
dependence of n on ln(N̄0) was found by Lande (1993) when considering the time to
extinction of a continuous time stochastic model. This dependence on ln(N̄0) seems
to also hold here when we include space implicitly into our discrete time stochastic
model (Fig. 1).
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Fig. 1 Average time to extinction of Eq. (13) with varying initial conditions N̄0 for a population with
certain ultimate extinction (E[B̄] < 1) as described in Sect. 2.2.1. Here E[B̄] = 0.8 and Var(B̄) = 0.3.
As predicted by the deterministic model, as well as the continuous time stochastic model of (Lande 1993),
the average time to extinction scales linearly with ln N̄0. This plot was made from 10,000 simulations for
each value of N̄0 with a quasi-extinction threshold of N̄n < 1. All simulations in this work were performed
using commercial software packages (MATLAB and Statistics Toolbox Release R2014b, The MathWorks,
Inc., Natick, MA, USA)
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2.2.2 Example of the population level approximation

Let offspring be produced according to the probabilitymass function {p0 = 0.1, p1 =
0.3, p2 = 0.6}, so that E[r̄ N̄ ] = 1.5 and Var(r̄ N̄ ) = 0.45/N̄n , and suppose dispersal
follows a Laplace distribution Eq. (2). If we assume that the average dispersal success
approximation Ŝ describes the loss of individuals in one generation outside the domain
of length L , then ĀN̄ is a random variable chosen from a normal distributionwithmean

E[ ĀN̄ ] = Ŝ = 2 L e
L
b − b + 4 L e

2 L
b + 8 b e

L
b − 7 b e

2 L
b

4 e
L
b

(
b + L e

L
b − b e

L
b

) (14)

and variance

Var( ĀN̄ ) = σ 2
Ŝ

N̄n
=

(
7

2
+

(
S2 − 2 + S−2 − e−L

)
L − 269

96 S2 − 4

eL

+ 1

2 e2 L
+ 3 L

S2 eL
+ 3 L

8 S2 e2 L
+ 5

4 S2 eL
+ 3

2 S2 e2 L

+ 1

12 S2 e3 L
− 1

32 S2 e4 L

) /
N̄n

according to Eqs. (8) and (9) respectively. This Ŝ population level approximation
closely predicts the cumulative extinction probabilities (the probability of extinction
by a given generation) of the IBM (Fig. 2). In the next section, we discuss the fact that
the asymptotic extinction probability is strictly less than 1 (Sect. 2.3.2) for the spatially
implicit branching process approximation when the domain is of a sufficient size; this
appears to also be true for both the IBM and the population level approximations
(Fig. 2).

2.3 Modified Galton–Watson branching process

While the population level simulations provide a reasonable and less computation-
ally costly approximation to the IBM, they do not provide any new understanding
of the driving processes or variables. We turn to a different approximation in order
to be able to explore extinction probabilities and mechanisms analytically. We con-
sider a modified Galton–Watson process adapted to suit our populations of interest by
including an extra spatially implicit dispersal step following the reproduction process.
Using branching processes allows us to deal with a population of discrete individuals
experiencing stochastic variation in both their dispersal and reproduction (Kot et al.
2004).

2.3.1 Galton–Watson branching processes

Originally motivated by the desire of the French aristocracy to predict the extinction
of family names (Keiding 1975; Watson and Galton 1875), Galton–Watson branching
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764 J. R. Reimer et al.

Fig. 2 The stochastic population level approximation to the IBM according to Eq. (4) for the example of
Sect. 2.2.2 closely approximates the cumulative extinction probabilities of the IBM. 10,000 simulations
were run from an initial population N̄0 = 10. The domain values represented are around the critical domain
size L∗ = 2.703 of the corresponding deterministic IDEmodel with r = 1.5, logistic growth, and a Laplace
dispersal kernel as shown by Reimer et al. (2016). Reimer et al. used the results of Kot and Schaffer (1986)
to obtain the critical domain size of this IDE (see Standard IDE Example in Appendix 2 of Reimer et al.
(2016))

processes have since been applied to studies of nuclear chain reactions, the survival of
mutant genes, and population biology (Feller 1951). They are based on the assumption
that individuals in each generation have r offspring, independently of each other,where
r is an iid random variable with probability mass function {pi }, i = 0, 1, 2, . . .. Each
pi is the probability that an individual produces i offspring in one generation, so∑

pi = 1. This corresponds to the probability generating function f (s) = ∑
pi si

for s on the unit interval.
The population size is a sequence of random variables {Zn} describing the pop-

ulation size in the nth generation, given an initial population Z0 = z. The mean
reproductive rate is

ξ = E[r ] =
∞∑

i=0

i pi = f ′(1), (15)

and the expected size of the nth generation is

E[Zn] = z ξn . (16)

Unlike in similar deterministic models, there remains a chance of extinction even
when the mean reproductive rate is greater than 1. The realized population size Zn+1
is found via a recursion relation that sums the descendants of each of the individuals
in generation n, so that
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Zn+1 =
Zn∑
j=0

r j,n (17)

where r j,n is an integer-valued random variable describing the number of offspring of
the j th individual in generation n (Watson and Galton 1875).

To understand the classical results on the extinction probabilities forGalton–Watson
branching processes, we first consider the case where Z0 = 1, since the results for
Z0 = z > 1 follow easily. The probability dn of extinction by time n of the lineage of
one individual in the first generation can be found via the intuitive recursion relation

dn = p0︸︷︷︸
(a)

+ p1dn−1︸ ︷︷ ︸
(b)

+ p2(dn−1)
2︸ ︷︷ ︸

(c)

+ · · · . (18)

Here (a) is the probability that the original individual had no offspring, (b) is the
probability that it produced one offspring and that this individual’s lineagewent extinct
in the next n − 1 generations, and similarly, (c) is the probability that it produced two
offspring and that both of their lineages died out in the subsequent n − 1 generations,
with the pattern continuing for all possible numbers of offspring (Bartlett 1960).

The ultimate extinction probability d is the limit

d = lim
n→∞Pr (Zn = 0). (19)

Clearly dn must reach a limit as n increases, since it is an increasing function in n and
is bounded above by 1, so as it reaches this limit, dn−1 tends to dn . We thus find the
asymptotic extinction probability by setting dn = dn−1 = d in Eq. (18) and solving

d = p0 + p1d + p2d2 + p3d3 + · · ·

=
∞∑

i=0

pi di = f (d) (20)

where f (d) is the probability generating function in d. This always has a solution of
d = 1, but may also possess further solutions less than 1. A trivial case occurs when
each individual produces exactly one individual in the subsequent generation; in this
case p1 = 1 and the probability of extinction is d = 0 so the population size remains
constant over time.

Disregarding the trivial case, Galton and Watson’s classic results show that if the
mean number of offspring produced by an individual ξ (recall that ξ = f ′(1)) is less
than or equal to one (known as the subcritical and critical cases, respectively), then
the population will die out almost surely. If ξ is larger than one (the supercritical case),
then the extinction probability is strictly less than one and the population will tend to
grow exponentially (Bartlett 1960; Keiding 1975).

2.3.2 A spatially implicit modified branching process

We consider the possibility that, in addition to the birth-and-death processes of the
Galton–Watson model, a certain fraction F of each new generation is lost via dispersal
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outside the domain where they die before they can reproduce. Now the probability
of extinction by generation n is dependent upon both the usual birth-death processes
as well as the dispersal behaviour of the individuals. We maintain consistency with
the IBM regarding the order of these two processes within one generation so that
individuals first reproduce according to the probability generating function f (s) and
then disperse, leaving the domain with probability F . We thus obtain a modified
version of Eq. (18),

dn = p0︸︷︷︸
(a)

+ p1 dn−1(1 − F)︸ ︷︷ ︸
(b1)

+ p1 F︸︷︷︸
(b2)

+ p2 (dn−1(1 − F))2︸ ︷︷ ︸
(c1)

+ p2 F2︸ ︷︷ ︸
(c2)

+ 2 p2 F(1 − F) dn−1︸ ︷︷ ︸
(c3)

. . . .
(21)

Here (a) is the probability that the original individual had no offspring, (b1) describes
the probability that the first individual produced one surviving offspring and that this
individual’s lineage went extinct in the subsequent n − 1 generations, and (b2) is the
probability that the single offspring of the first individual dispersed to unfavorable
habitat before it could reproduce in the next generation. Following intuitively, (c1) is
the probability that the original individual produced two offspring and both of their
lineages died out in n − 1 generations, (c2) is the probability that the two offspring
dispersed to unfavourable habitat and were lost, and (c3) is the probability that only
one of them settled outside the domain while the other remained but their lineage died
out in n − 1 generations, and the recursion continues on in this way.

We may re-write Eq. (21) as

dn =
∞∑

v=1

v∑
q=1

(
v

q

)
pv−1 [(1 − F)dn−1]q−1 F (v−q) (22)

and so the probability of extinction as n → ∞ is found by solving for d in

d =
∞∑

v=1

v∑
q=1

(
v

q

)
pv−1 [(1 − F)d]q−1 F (v−q)

= f [(1 − F)d + F] (23)

where f [(1− F)d + F] is the probability generating function in (1− F)d + F . This
is seen by rearranging Eq. (23) as

d = p0+ p1((1− F)d + F)+ p2((1− F)d + F)2+ p3((1− F)d + F)3+· · · . (24)

Trivially, if there is no good habitat, the probability of extinction by any time step will
be 1, since dn = p0 + p1 + p2 + · · · when F = 1 and so d = 1 is always a solution
to Eq. (23). Whether there is a second, smaller solution is now determined not only
by the reproductive probabilities but also by F .
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To determine whether the process is supercritical, critical, or subcritical and thus
determine whether extinction is certain we need to determine the expected value of
offspring of this modified branching process. Define p̃i as the probability of an indi-
vidual producing i offspring that successfully settle within the domain following their
dispersal phase. Then

p̃0 = p0 + p1F + p2F2 + · · ·
p̃1 = p1(1 − F) + 2p2(1 − F)F + 3p3(1 − F)F2 + · · ·
p̃2 = p2(1 − F)2 + 3p3(1 − F)2F + 6p4(1 − F)2F2 + · · ·

...

p̃q =
∞∑

v=q

(
v

q, v − q

)
pv(1 − F)q Fv−q (25)

where (
v

q, v − q

)
= v!

q!(v − q)! (26)

are multinomial coefficients. The corresponding probability generating function is

f (s) = p̃0 + p̃1s + p̃2s2 + p̃3s3 + · · · (27)

and so the expected reproductive value is

ξ = f ′(1) = p̃1 + 2 p̃2 + 3 p̃3 + · · ·

=
∞∑

q=1

q p̃ j =
∞∑

q=1

∞∑
v=q

q

(
v

q, v − q

)
pv(1 − F)q Fv−q . (28)

If we make the assumption that these sums do not run to infinity but rather to some
maximum number of biologically possible offspring, then these summations become
finite. Eq. (28) simplifies to

ξ = E[r ] (1 − F), (29)

which can be shown by induction for both the infinite or finite sum (Appendix). Thus
the expected reproductive rate of the modified branching process is the product of
the expected reproductive rate without the loss of individuals outside the domain and
the proportion of individuals that successfully settle within the domain. Applying the
results of Watson and Galton (1875), the criticality condition for the spatially implicit
branching process is

ξ = E[r ] (1 − F) = 1, (30)

and from this we can determine the proportion of individuals F∗ that must be retained
within the domain in order to avoid certain eventual extinction. For any F < F∗, the
population is supercritical and for any F ≥ F∗, eventual extinction is certain. To find
a suitable value for F , we recall the dispersal success approximation Ŝ of Eq. (8). We
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Fig. 3 Modified branching process approximations remain close to the IBM simulation on domains of
various sizes close to the critical values predicted by both the deterministic IDE model (L∗ = 2.703) and
the Ŝ branching process approximation model (L ∗̂

S
= 2.722) as described in Sect. 2.3.3. For each plot,

10,000 simulations were performed on an initial population z = 10

let F = 1− Ŝ and compare the resulting extinction risks with those from the spatially
explicit IBM simulation.

2.3.3 Example of modified branching process

Suppose an individual in a population of initial size Z0 = z reproduces according
to {p0 = 0.1, p1 = 0.3, p2 = 0.6}, for a mean reproductive rate E[r ] = 1.5. Assume
dispersal occurs according to a Laplace distribution, Eq. (2). As in Reimer et al.
(2016), the critical domain size of the deterministic IDE model with logistic growth,
an intrinsic growth rate of r = 1.5, and a Laplace dispersal kernel, is L∗ = 2.703 times
the mean dispersal distance. For a domain of this size, Ŝ = 0.6647 (from Eq. (14))
and soE[r ] (1− F) = E[r ] Ŝ = 0.9970 < 1. Thus the branching process predicts that
the critical domain size of the deterministic model is too small to sustain a population
subject to demographic stochasticity (Fig. 3).

We compare the probability of eventual extinction for a range of domain lengths
around L∗ (Fig. 4). The branching processmodel predicts certain extinction until some
critical length value, at which point the ultimate extinction probability becomes less
than one. The greater the initial population, the sharper the reduction in the ultimate
extinction probability for lengths larger than the critical value. The critical domain
length at which the population’s ultimate extinction probability becomes less than one

123



The critical domain size of stochastic population models 769

Fig. 4 Probability of ultimate
extinction for the Ŝ branching
process model dependent on
domain length and initial
population size z for the
example of Sect. 2.3.3. For
increasing initial values, the
benefit of increasing the domain
size L much beyond the critical
length in terms of the ultimate
extinction probability is
negligible
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can be found by solving the criticality condition Eq. (30) for (1 − F) = Ŝ = 1/E[r ]
and then solving for L using Eq. (14), obtaining L ∗̂

S
= 2.722 (Fig. 4).

In conservation biology, we may be interested in the probability of extinction of
groups of individuals rather than of a single individual’s lineage. If we assume each
individual’s probability of extinction is independent, then the probability dn(z) of an
initial population of size z going extinct by time n is

dn(z) = (dn)z . (31)

If the probability of extinction of a single individual’s lineage is less than one, then
the probability of extinction for the entire population tends asymptotically toward 0
as z increases. The probability of ultimate extinction for an initial population of size
z can similarly be determined by

d(z) = dz . (32)

For the example above, the non-spatial probability of extinction is 0.17 when z = 1,
as determined by Eq. (20).

As the domain length L of our modified model tends to infinity, the results on the
probability of extinction tend asymptotically towards those of the standard non-spatial
Galton–Watson branching process. For any L > L∗ and an initial population greater
than one, extinction is very unlikely, regardless of how much larger than L∗ the length
of the domain is (Fig. 4). Thus under the assumptions of our model, for an initial
population of a few hundred or thousand individuals, the domain need only be slightly
larger than L∗ to ensure a very low chance of extinction. Increasing the domain length
far beyond L∗ does little to further decrease the probability of extinction.

Alternatively, rather than determining the critical domain size for an individual and
considering the population level implications, we could set a conservation goal d for
a given population. For example, let us require an ultimate extinction probability of
no more than 10 %. We know that with an initial population of z individuals we need
dz = 0.10. Let us suppose z = 1000, so we require d ≤ 0.998. We solve Eq. (23) to
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obtain F = 0.333 so the domain needs to be large enough to retain the proportion of
individuals 1− F = 0.667. We let Ŝ = 0.667 and solve for the corresponding critical
length L ∗̂

S
= 2.726 necessary to achieve the chosen conservation goal.

3 Environmental stochasticity

We now turn our attention to the effects of a variable environment on population
dynamics. Unlike in the case of demographic stochasticity, where the variability is
due to random fluctuations in individual growth and survival rates, variation in envi-
ronmental conditions affects all individuals similarly and simultaneously. In order to
examine the effect this type of variability has on extinction probabilities, we will allow
the population growth rates to fluctuate as a stationary time series (for examples, see
Athreya and Karlin 1971; Lande 1993; Smith and Wilkinson 1969).

3.1 Individual-based models with environmental stochasticity

There are many different ways in which we could reflect the variable nature of the
environment in our model. One way is to add a noise term into an otherwise deter-
ministic framework (Melbourne and Hastings 2008). This can be either additive or
multiplicative depending on the model formulation and, in effect, it serves to alter the
average birth rate. We choose to incorporate environmental variability directly into
the birth rate of each individual, as this is straightforward within a branching process
framework and also because of the implied understanding of environmental stochas-
ticity. We take environmental variability to affect a population by changing the growth
rate of every individual in the same way, by either shifting the mean and/or variance
of the probability mass functions determining growth.

We introduce a sequence of iid environmental variables {ςn}, for n = 0, 1, 2, . . .
whereςn describes the environmental conditions in generation n selected froma count-
able number of environmental states ς j , j = 0, 1, 2, . . .. We denote the probability
of a certain environment ς j occurring for a given generation as h j . Each ς j uniquely
determines the probability generating function of the reproductive rates of each indi-
vidual, which are now determined by the probability mass function {p j

i } comprised of
the probabilities of an individual having i surviving offspring, given environment ς j .

To incorporate this random environmental variable into our IBM, we begin each
simulation with an initial population of size Z0 = z evenly distributed throughout
the domain at generation n = 0. We first draw a value for the environmental random
variable for generation ςn , which corresponds to a set of reproductive probabilities
described by the probability generating function fςn . We then determine the number
of each individual’s offspring according to fςn and finally select the position of the
offspring after the dispersal period according to a chosen dispersal kernel. Individuals
who settle within the domain survive and repeat this process over the next generation,
while those who settle outside are considered lost. As with the IBM presented in
Sect. 2.1, this is computationally costly for large populations and results for different
reproductive and environmental probabilities are difficult to standardize or compare.
We again rely on these results from the IBM on cumulative extinction probabilities
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and the critical domain length as a benchmark against which we measure and compare
our spatially implicit approximations.

3.2 Population level models with environmental stochasticity

We again rescale the IBM up to the population level using the Central Limit Theorem.
This rescaling best mimics the IBM when the population size is not too small, due to
the constraints of the Central Limit Theorem, but even for an initial population of a
single individual, we find that it closely predicts the extinction probabilities.

By the same assumptions as in Sect. 2.2, we approximate the dynamics at the pop-
ulation level by Eq. (4). Both r̄ N̄ and ĀN̄ are random variables drawn from the same
types of distributions as in Sect. 2.2, the difference being that we now incorporate
environmental variation. As in the IBM, individual reproductive probabilities in each
generation are influenced by a random variable describing the environmental con-
ditions over that generation ςn . This may affect both the mean and variance of the
population’s per capita growth rate r̄ N̄ . As in Sect. 2.2, we approximate the proportion
of the population that settles in the domain ĀN̄ by a normal distribution with mean Ŝ.
We again require a quasi-extinction threshold (N̄ < 1) since the population will never
achieve zero unless either ĀN̄ or r̄ N̄ are zero, signifying a catastrophic collapse of the
entire population in one generation.

3.2.1 Example of population level approximation

Assume three different environmental states ς1, ς2, and ς3, which occur with corre-
sponding probabilities h1 = 0.4, h2 = 0.4 and h3 = 0.2, respectively. Assume further
that each of these environments has a corresponding expected growth rate of ξ1 = 1.6,
ξ2 = 1.5, and ξ3 = 1.3 and variance Var1 = 0.44, Var2 = 0.45, and Var3 = 0.61.
The expected value of r̄ over all possible environments is

E[r̄ ] = ξ1h1 + ξ2h2 + ξ3h3 = 1.5. (33)

Approximating Ā in Eq. (4) by Ŝ for a Laplace dispersal kernel Eq. (2) yields a close
prediction of the probability of extinction of the IBM (Fig. 5).

We use this Ŝ population level approximation to examine the difference between
the probability of extinction of a population subject to both environmental and demo-
graphic stochasticity or to only one or the other. In this example, for a population
subject to only demographic stochasticity, it is as though h2 = 1 and h0 = h3 = 0.
When the population is subject only to environmental stochasticity, Vari = 0 for all i
values. Our model results agree with the intuitive notion that a population subject to
multiple types of stochasticity has a higher probability of extinction (Fig. 6).

3.3 A modified branching process approximation to the IBM

We again approximate the IBM by a spatially implicit branching process in order
to obtain analytic results on the probability of extinction. To include environmen-
tal stochasticity, we incorporate random environments into branching processes of the
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Fig. 5 As described in Sect. 3.2.1, the Ŝ population level approximation to the IBM incorporating both
environmental and demographic stochasticity closely approximates the cumulative extinction probabilities
of the IBM. Domain lengths were chosen to be around the critical domain size L∗ = 2.703 of the corre-
sponding deterministic IDE (Reimer et al. 2016). This plot was generated over 10,000 simulations for an
initial population of ten individuals
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Fig. 6 Cumulative probability of extinction for the Ŝ population level approximation to the IBM under
three different kinds of stochasticity as described in Sect. 3.2.1 for a domain of length L = 2.7. Observe that
the combination of both demographic and environmental stochasticity results in the highest probabilities
of extinction. We here set the quasi-extinction threshold as N̄n < 1. This figure was generated over 10,000
simulations for an initial population of ten individuals

Galton–Watson type, known as branching processes in random environments (BPRE).
This was first done for iid random environments (Smith and Wilkinson 1969) and
subsequent results have been generalized to include any stationary ergodic sequence
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(Athreya and Karlin 1971). Unfortunately, as was shown by Smith and Wilkinson
(1969) in their initial study, “the elegant functional equations that play such a vital
role in the theory of the classical Galton–Watson process, and many published gen-
eralizations thereof, do not arise in the present study”. Results on the probability of
extinction by a given generation tend to be approximations rather than explicit expres-
sions of expected results. For insight into approximations for the time to extinction, or
extinction probabilities of supercritical BPREs, see Agresti (1975), Dekking (1987),
D’Souza and Hambly (1997), Geiger and Kersting (2001), Grey and Zhunwei (1991),
Grey and Zhunwei (1993), Wilkinson (1969).

We can, however, explicitly determine a criticality condition for the probability of
ultimate extinction, where the long time behaviour changes from certain extinction to
extinction with probability strictly less than one.

3.3.1 Standard BPREs

We briefly describe the general BPRE framework of Smith and Wilkinson (1969)
in order to be able to modify it to include implicit spatial dependence. Consider a
sequence of iid random variables {ςn}, each selected from countably many possible
environments {ς i } according to the probability mass function {hi }. Take the repro-
ductive probabilities of each individual to be dependent on the environment in a given
generation so that pi , the probability of an individual producing i offspring in one
generation for a given environment ς j , is now pi (ς

j ) = p j
i . This results in a family

of probability generating functions for each environment ς j ,

f j (s) =
∞∑

λ=0

p j
λ sλ, s ∈ [0, 1]. (34)

The expected number of offspring in a fixed environment ς j is then

E[r j ] = ξ j = f j ′(1) (35)

and {ξn} is a sequence of iid randomvariables (Smith andWilkinson 1969). Convention
dictates that we assume P{ξ j < ∞} = 1 for all environments as well as P{p j

0 + p j
1 <

1} > 0 for at least one value of j (that is, the generating function is strictly convex on
the unit interval for at least one environment) Wilkinson (1969). {Zn} is a sequence
of iid random variables whose state space is the non-negative integers describing the
population size in the nth generation given an initial population size of Z0 = z. We
assume Z0 = 1 for the remainder of this section unless otherwise stated.

Smith and Wilkinson (1969) determined that certain extinction, which they termed
“mortality”, occurs for a given environmental state space if

E[ln ξ ] ≤ 0, (36)

where the expectation is taken over all possible environments. The case where
E[ln ξ ] = zero is called “critical” and cases where it is strictly less than 0, “subcriti-
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cal”. “Supercritical” or “immortal” is used to describe the case when the probability
of ultimate extinction is strictly less than one, and Smith and Wilkinson have shown
that the following two conditions are both necessary and sufficient for supercriticality:

E[ln ξ ] > 0, and

E[ | ln (1 − p0)| ] < ∞, (37)

where again the expectation is over all possible environments. The first condition
intuitively corresponds to the deterministic requirement that the reproductive rate be
greater thanone to avoid stability of the zero steady state in amap.The second condition
serves to ensure that “catastrophes” do not occur, wiping out the entire population in
one time step (Smith and Wilkinson 1969).

3.3.2 A spatially implicit modified BPRE

We again incorporate the probability F of offspring loss due to dispersal outside the
domain, but now within random environments. Note that here we assume F does not
depend on environmental conditions. We formulate the probability generating func-
tions incorporating F by grouping our growth rates according to how many offspring
successfully settle inside the domain after the dispersal period, denoting these post-
dispersal rates as p̃ j

i . For a given generation and environmental variable ς j , this results

in the same p̃ j
i as in Eq. (25), but now dependent on the environment ς j . p̃ j

i is the
sum of all the possible ways that an individual can produce i offspring that survive the
dispersal phase in environment ς j over one generation. The probability generating
function is thus

f j (s) = p̃ j
0 + p̃ j

1s + p̃ j
2s2 + p̃ j

3s3 + · · · (38)

and the expected reproductive value in a given environment ς j is

ξ j = f j ′(1) = p̃ j
1 + 2 p̃ j

2 + 3 p̃ j
3 + · · ·

=
∞∑

q=1

q p̃ j
q =

∞∑
q=1

∞∑
v=q

q

(
v

q, v − q

)
p j
v (1 − F)q Fv−q

= E[r j ] (1 − F), (39)

again by induction (Appendix). As in the case with a constant environment
(Sect. 2.3.2), the expected reproductive rate in a given environment is the product
of the expected reproductive rate of the non-spatial model and the proportion of indi-
viduals that settle within the domain.

Applying the conditions for extinction outlined in Eq. (37) for the non-spatial
branching process, the criticality condition in the spatially implicit case is

E[ln ξ j ] = E[lnE(r j )] + ln(1 − F) = 0, (40)
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where the expectation is taken over all possible environments. For a given set of
environmental conditions and corresponding reproductive rates, we can determine the
critical proportion F∗ that can be lost from the domain before extinction is certain.
For any F < F∗, the population will be supercritical and for any F ≥ F∗, eventual
extinction occurs with probability one.

3.3.3 BPRE example

We build on our previous examples and assume an environmental state space of three
possible environments, ς1, ς2, and ς3, which occur with probability h1 = 0.4, h2 =
0.4 and h3 = 0.2, respectively. Each of these environments has a corresponding
probability mass function for the random variable r , which describes the number of
offspring of an individual. We assume that for the first environment, reproductive
probabilities are {p10 = 0.1, p11 = 0.2, p12 = 0.7}, for the second they are {p20 =
0.1, p21 = 0.3, p22 = 0.6}, and for the third, {p30 = 0.2, p31 = 0.3, p32 = 0.5}. This
results in mean reproductive values ξ1 = 1.6, ξ2 = 1.5, and ξ3 = 1.3 and respective
variances Var1 = 0.44, Var2 = 0.45, and Var3 = 0.61. The expected number of
offspring ξ over all environments is

ξ = E[r ] = ξ1h1 + ξ2h2 + ξ3h3 = 1.5. (41)

Ignoring loss via dispersal,

E[ln f ′(1)] = 0.402 > 0 (42)

and so the non-spatial process is supercritical. To determine the criticality condition
while implicitly including space, we incorporate loss of individuals outside the domain
with probability F into our probabilities p j

i , so that the probability generating function
f j (s) nowhas spatially implicit coefficients as in Eq. (25). For our three environments,
the above probabilities, and the knowledge that ξ j = E

[
r j

]
(1−F) = (p j

1+2p j
2)(1−

F) from Eq. (39), we have

ξ1 = 1.6 (1 − F)

ξ2 = 1.5 (1 − F)

ξ3 = 1.3 (1 − F), (43)

and so for the probability mass function with values h1, h2, h3 as above,

E[ln ξ ] = h1 ln(1.6(1 − F)) + h2 ln(1.5(1 − F)) + h3 ln(1.3(1 − F))

= 0.402 + ln(1 − F). (44)

As expected, this is the sum of the non-spatial expected reproductive rate from Eq.
(42) and ln(1 − F). We find the critical proportion F∗ from Eq. (40) by solving

E[ln ξ ] = 0.402 + ln(1 − F) = 0, (45)

123



776 J. R. Reimer et al.

0 100 200 300 400
0.0

0.5

1.0

L = 2.6

0 100 200 300 400
0.0

0.5

1.0

L = 2.76

generation n
0 100 200 300 400

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n 

   
  

   
  b

y 
ge

ne
ra

tio
n 

n 
   

   
   

 

0.0

0.5

1.0

L = 2.82

IBM
BPRE
approximation

generation n
0 100 200 300 400

0.0

0.5

1.0

L = 3.0

Fig. 7 Cumulative extinction probabilities of the BPRE model closely approximate those of the IBM
when both models include demographic and environmental variability. Ŝ approximates the proportion of
successful settlers dispersing according to a Laplace kernel. Initial population size is Z0 = 10 and 10,000
simulations were used to obtain these results. Models are as described in Sect. 3.3.3 and domain lengths
were chosen around the critical lengths of L∗ = 2.703 and L ∗̂

S
= 2.744

which results in F∗ = 0.331. We use Ŝ to approximate the proportion of individuals
successfully settling within the domain, so Ŝ = 1 − F , and then solve for the corre-
sponding domain lengths using Eq. (8) to obtain the branching process approximation
to the critical domain size for an ultimate extinction probability strictly less than one.
If we assume dispersal according to a Laplace kernel Eq. (2), then L = 2.744 (Fig. 7).
Again, from Reimer et al. (2016), the critical domain size of the stochastic model
is larger than that of the corresponding deterministic IDE model with an intrinsic
reproductive value of 1.5, logistic growth and a Laplace dispersal kernel resulting in
a critical domain size of L∗ = 2.703.

4 Discussion

The critical domain size deemed necessary for population persistence is highly depen-
dent on model structure and assumptions. We here have considered populations that
would typically be modelled using an IDE framework, with discrete dispersal and
reproductive periods. We were interested in ways to include stochasticity - both
demographic and environmental - into estimators of critical domain size for these
populations.
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First considering only demographic stochasticity, we created an IBM in order to
simulate explicitly each individual’s variable reproductive rate and also its random
dispersal distance. While the IBM most closely mimics the assumptions of the deter-
ministic IDE framework, it does not easily lend itself to comparison between different
kernels or parameters. It is also slow to simulate for large populations due to the com-
putational costs associated with having each individual disperse independently. We
thus developed two approximations to the IBM, which both perform well for a variety
of domain lengths and initial population sizes. Using the Central Limit Theorem, we
found that scaling the IBM up to the population level results in a close approximation
to the probability of extinction and provides faster simulation results. To obtain ana-
lytic results, we modified a Galton–Watson branching process to implicitly include
space. This also closely approximated the IBM while allowing for closer examination
of the affects of per capita growth rates and dispersal distances on population decline.
IBMs rarely yield analytic insight and this spatially implicit branching process approx-
imation allows us to scale individual variability up to obtain results at the population
level.

Following the same model progression but now also including environmental sto-
chasticity, we modified our IBM so that each individual reproduced and dispersed
independently but now with the probability distributions of reproduction influenced
by the environment for a given generation.We again used theCentral Limit Theorem to
obtain population level simulation results on the probability of extinction for various
domain lengths. We then modified the branching process to include random envi-
ronments using a BPRE framework. Unlike when we only considered demographic
variability, existing results on BPREs do not allow us to determine analytically the
long time probability of extinction or the probability of extinction by a given genera-
tion. Rather we must rely on the criticality condition, which separates the cases where
extinction is certain from those where the population goes extinct with a probability
less than one.

Both the population level, as well as the as well as the branching process, models
relied on Ŝ to approximate the proportion of individuals successfully retained fol-
lowing each dispersal event. As was shown for the deterministic case in Reimer et al.
(2016), this provides evidence that the details of the dispersal kernel are not important,
but rather it is the proportion of the population retained in the domain that determines
population persistence. This is consistent with the findings of Lockwood et al. (2002)
who have shown that the tails of symmetric dispersal kernels are not important for the
critical domain size of deterministic models. For asymmetric dispersal in deterministic
models, see Lutscher et al. (2005) and Lutscher et al. (2010).

Regardless of whether we are considering the results from the IBM, the population
level approximations, or the branching process models, the critical domain size of the
stochastic models was always larger than that of the corresponding deterministic IDE
models. This implies that the critical domain size of the deterministic model is not
large enough to sustain a population subject to either demographic or environmental
stochasticity. This disparity between the stochastic and deterministic models increased
for decreasing mean growth rates and with greater variance in growth rates. As was
shown by Watson and Galton (1875), certain extinction is determined only by the
expected reproductive rate, however, if extinction is not certain, then the variance
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will affect the ultimate extinction probability. The probability of extinction by a given
generation thus relies on both the expected reproductive rate and the variance in the
probability mass function {pi }. The higher the expected reproductive rate, the lower
the probability of extinction, and the greater the variance, the higher the probability of
extinction.

From studying the branching process models, we concluded that once the domain
is larger than the criticality condition dictates, any additional area added to the domain
does not greatly affect the probability of extinction for large initial populations. This
result followed from the assumption of independence of all individuals, which may
not be true in real populations. Density dependent reproduction either at low or high
densities may occur due to resource limitation or the effect of density on mating prob-
abilities. In addition, when including environmental stochasticity we did not allow
for the possibility that dispersal behaviour may be dependent on the environmental
conditions for a given generation. Including environmental dependence of disper-
sal behaviour may add additional realism. Further extensions to these models could
also include patchy domains connected via dispersal, as well as including stage or
age structure into the populations (Caswell 2006). Lutscher and Lewis (2004) have
made substantial progress obtaining analytic results for stage-structured populations
on patchy domainsmodelled with integrodifferencematrix populationmodels, as have
Fagan and Lutscher (2006).We have not, however, explored these extensions here, and
while an extension to patchy domains seems intuitively straightforward, the addition
of stage-structure may not lend itself to the branching process approximations.

Because both the population level and branching process approximations rely on
Ŝ rather than on a comprehensive understanding of the dispersal kernel, it would
be just as easy to have both the population level approximations and the branching
processmodels represent a domain in two or three dimensions, rather than along a one-
dimensional domain. Given empirical data, Ŝ could be parametrized in this way, rather
than requiring an explicit form for k(x, y), which may be beneficial in systems where
the mechanistic underpinnings of dispersal are unknown. For our modified BPRE, it
is sufficient if experimental information can be obtained on both reproductive rates in
a range of environments and the proportion of individuals retained within the area of
interest.

In spite of the fact that analytic results on the critical domain size of the IBM do
not exist, we were able to use branching processes to address the questions of critical
domain size for populations subject to demographic and environmental stochastic-
ity. While the population level approximations provided faster simulation results and
insight into the efficacy of using the Ŝ approximation to dispersal success in this
framework, it is the branching process approximations that allowed for insight into
the affects of varyingdemographic rates, dispersal distances, and environments.Demo-
graphic and environmental variability are known to be important in determining the
population persistence and these tools may aid in understanding their comparative
effects.
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Appendix: Proof of Eqs. (29) and (39)

Here we prove

ξ =
∞∑

q=1

q p̄ j =
∞∑

q=1

∞∑
v=q

q

(
v

q, v − q

)
pv(1 − F)q Fv−q

= E[r ] (1 − F) (46)

from Eq. (29) using induction. This proof also holds for Eq. (39), with a change of
notation to represent the dependence of ξ on the environment ζ j . We show that for all
k ∈ N,

ξ =
k∑

q=1

k∑
v=q

q

(
v

q, v − q

)
pv(1 − F)q Fv−q

= E[r ] (1 − F). (47)

First, let k = 1 (i.e. a parent either has zero or one offspring in a generation). Then

ξ = p1(1 − F)

= E[r ] (1 − F). (48)

Next, assume that Eq. (46) holds for any k ∈ N, say

ξk =
k∑

q=1

k∑
v=q

q

(
v

q, v − q

)
pv(1 − F)q Fv−q

= E[r ]k (1 − F). (49)

Therefore,

ξk+1 =
k+1∑
q=1

k+1∑
v=q

q

(
v

q, v − q

)
pv(1 − F)q Fv−q

= ξk +
k+1∑
q=1

q

(
k + 1

q, (k + 1) − q

)
pk+1(1 − F)q F (k+1)−q

︸ ︷︷ ︸
(a)

. (50)
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We now show that
(a) = (k + 1)pk+1(1 − F) (51)

for all k. This problem can be simplified to the proof that

k∑
q=1

(k − 1)!
(q − 1)!(k − q)! (1 − F)q−1Fk−q = 1. (52)

If we here let p = q − 1, and n = k − 1, this becomes

n∑
p=0

n!
p!(n − p)! (1 − F)p Fn−p, (53)

which is the binomial formula for [(1 − F) + F]n , which is 1. So now from Eq. (46),
we have that

ξk+1 = ξk + (k + 1)pk+1(1 − F)

= E[r ]k(1 − F) + (k + 1)pk+1(1 − F)

= E[r ]k+1(1 − F) � (54)
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