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The tumour control probability (TCP) is the probability that a treatment regimen of radiation therapy (RT)
eradicates all tumour cells in a given tissue. To decrease the toxic effects on healthy cells, RT is usually
delivered over a period of weeks in a series of fractions. This allows tumour cells to repair sublethal
damage (RSD) caused by radiation. In this article, we introduce a stochastic model for tumour response to
radiotherapy which accounts for the effects of RSD. The tumour is subdivided into two cell types: ‘affected’
cells which have been damaged by RT and ‘unaffected’ cells which have not. The model is formulated
as a birth-death process for which we can derive an explicit formula for the TCP. We apply our model
to prostate cancer, and find that the radiosensitivity parameters and the probability of sublethal damage
during radiation are the parameters to which the TCP predictions are most sensitive. We compare our
TCP predictions to those given by Zaider and Minerbo’s one-class model (Zaider & Minerbo, 2000) and
Dawson and Hillen’s two-class model (Dawson & Hillen, 2006) and find that for low doses of radiation,
our model predicts a lower TCP. Finally, we find that when the probability of sublethal damage during
radiation is large, the mean field assumption overestimates the TCP.

Keywords: tumour control probability; radiation treatment of cancer; sublethal damage; mathematical
modelling of cancer treatment.

1. Introduction

According to the World Health Organization, cancer is one of the leading causes of death worldwide,
particularly in developing countries. For instance, in 2012, there were approximately 14 million new
cases and over 8.2 million cancer related deaths (Stewart & Wild, 2014). Scientists have developed
several treatments to fight this disease, the most common being surgery, chemotherapy and radiotherapy
(RT) (Deisboeck et al., 2011) with approximately 50% of all cancer patients receiving RT (Baskar et al.,
2012). In this article, we will be concerned with ionizing radiation (commonly x-rays) that aims to destroy
the tumour mass while sparing the adjacent healthy tissue.

Radiation damages tumour cells mainly by inducing lesions in the DNA (Dale et al., 2007).
Lesions can be either single or double strand breaks. Double strand breaks are caused by a single
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182 A. V. PONCE BOBADILLA ET AL.

event that targets both DNA strands, or by two independent single strand breaks in which the second
one occurs, before the first break is repaired, in the same DNA locus (Halperin et al., 2013). Dou-
ble strand breaks cause lethal damage while single strand breaks can usually be repaired by the cell
(Weinberg, 1983). In practice, several factors reduce the effectiveness of RT. These include: reoxy-
genation, redistribution, repopulation, radioresistance and RSD, which are known collectively as ‘the 5
Rs of radiobiology’ (Baskar et al., 2014). In this work, we focus on RSD and its effect on treatment
efficacy.

Fractionated treatments are widely used to deliver RT. Small doses of radiation are delivered to the
affected region over a period of several weeks. The rationale for this treatment is that by giving smaller
doses, toxic effects on healthy cells are reduced. However, since the dose is small, the cancer cells can
repair themselves and one needs to take into account these repair mechanisms to accurately quantify the
efficacy of the treatment (Pollack & Ahmed, 2011).

Mathematically, the objective of RT treatment planning can be stated as the establishment of a
treatment protocol that maximizes the probability of cancer cell eradication and minimizes the prob-
ability of normal tissue complication. This gives rise to two key concepts: tumour control probability
(TCP) and normal tissue complication probability (NTCP). TCP is the probability that a treatment
regimen of RT eradicates all tumour cells in a given tissue, whereas NTCP estimates the negative
side effects on the surrounding healthy tissue. These concepts are used to compare the expected
success of different treatment protocols. In this work, we focus on TCP models, and ignore NTCP
models but refer the reader to Baumann & Petersen (2004) and Stocks et al. (2016) for further
details.

Most TCP models are based on the ‘linear quadratic’ (LQ) model. The LQ model is the most widely
used model for studying the response of cells to RT (Lea et al., 1962; Dale, 1996) and states that the
survival fraction (SF) of the tumour mass after a single acute dose d Gy is given by

SF(d) = e−(αd+βd2) (1.1)

where α (Gy−1) and β (Gy−2) are tissue-specific radiosensitivity parameters (Brenner, 2008). The ratio
α/β characterizes the radiosensitivity of tissues and can be used to classify tissues as either early
(α/β ≈ 10) or late (α/β ≈ 3) responding tissues. Several extensions have been made to the LQ model
to incorporate the 5 Rs of radiobiology (see Jones et al., 2001; O’Rourke et al., 2009 for a detailed
development of the LQ formalism).

There are numerous mathematical models describing the effects of RT on tumour cells: continu-
ous models (Enderling et al., 2006; Ribba et al., 2006; Rockne et al., 2009; Bertuzzi et al., 2010) and
hybrid/discrete models (Enderling et al., 2009; Richard et al., 2009; Kempf et al., 2010; Gao et al.,
2013; Powathil et al., 2013): for a review see Enderling et al. (2010). In this work, we consider
models where an explicit formula for the TCP can be obtained. The earliest and simplest expres-
sions are based on Poisson and binomial distributions (Munro & Gilbert, 1961; O’Rourke et al.,
2009). By assuming the cell distribution after the radiation treatment follows a particular probabil-
ity distribution, a statistical formula is obtained for the TCP. The Poisson TCP has been extensively
used in clinical radiation treatment protocols and several extensions have been developed (O’Rourke
et al., 2009; Zaider & Hanin, 2011). The limitations of both the binomial and the Poisson TCP
models are widely recognized (Tucker et al., 1990; Yakovlev, 1993). In 2000, Zaider and Minerbo
developed a non-Poissonian time-dependent TCP formula that could be applied to any treatment pro-
tocol (Zaider & Minerbo, 2000). They consider a stochastic birth–death process to include cellular
repopulation. Several extensions to their formulation have been made to include cell cycle effects
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(Dawson & Hillen, 2006; Hillen et al., 2010; Dhawan et al., 2014). Analysis of existing Poission
TCP models and birth–death process models have been presented by Hanin (2004) and Gong et al.
(2011).

In this article, we introduce an extension of Zaider and Minerbo’s model that incorporates RSD.
The outline of this article is as follows. In the next section, we introduce our model, we describe the
mean dynamics and then the stochastic process that gives rise to it. We also derive an explicit formula
for the TCP. In Section 3, we perform a parameter sensitivity analysis and find that variation in the
radiosensitivity parameters and the probability of sublethal damage during radiation can significantly
alter the TCP. We then compare our model with existing models, identifying conditions under which our
model reduces to existing ones and others under which it yields different predictions. We observe that
our model underestimates the TCP predicted by the Zaider and Minerbo (ZM) and Dawson and Hillen
(DH) models for small radiation doses. We investigate when the mean field assumption cannot be justified
and find that when the probability of sublethal damage is large this assumption is not valid. Lastly, in
Section 4, we summarize and discuss our results.

2. Methods and model setup

Inspired by Zaider & Minerbo (2000), we develop a cell population model in the form of a continuous
Markov chain model from which we can obtain an explicit expression for the TCP. First, we consider
a deterministic cell population model that describes the mean dynamics of our stochastic model and
accounts for cell proliferation and death, the effect of RT and the effect of sublethal damage.

To account for the different types of damage that RT can cause, we decompose the cancer cells into
two classes: Unaffected (U) and Affected (A) cells. Let bU , dU , dA and η be positive constants. Unaffected
cells are assumed to proliferate and die at rates bU and dU , respectively. Affected cells do not proliferate but
die at rate dA. The death rates here correspond to programmed cell death independent of RT. Furthermore,
we assume that affected cells recover from radiation damage at rate η.

We suppose that N doses of RT are delivered and denote by ti the time at which the i-th treatment is
administered. We assume that treatment is only delivered on week days and that it starts on a Monday.
We assume the treatment acts instantaneously.

At treatment time ti, we model lethal damage using the LQ model (Equation (1.1)). We assume
different radiosensitivity parameters for the two classes. Let αU , βU and αA, βA be the radiosensitivity
parameters of each class and SFU , SFA their respective survival fractions. The survival fraction of the
unaffected class (SFU) has the classic interpretation of the survival fraction: the fraction of clonogenic
cells that survives a fractional dose (Hall et al., 2006). For affected cells, which are by definition non-
clonogenic, we assume that a fraction SFA of them survives the fractionated dose and that it is smaller
or equal to SFU . We denote by f (t−i ) and f (t+i ) the values of the function f (t) before and after the i-th
treatment, respectively.

To include sublethal damage, we assume that the two cell classes respond differently at the treatment
times. For the unaffected class, we assume three outcomes: (1) a proportion of the cells survives and is
unaffected by RT, this factor is determined from the LQ model so that U(t+i ) = SFUU(t−i ); (2) a fraction,γ ,
of the cells harmed by RT acquire sublethal damage and switch to the affected class, γ (1 − SFU)U(t−i );
(3) the remaining cells are eliminated due to lethal damage caused by radiation. We assume that the
response of the affected cells to RT is simpler: the fraction of cells that survive is determined by the LQ
model. Thus we suppose that A(t+i ), the number of cells in the affected class after treatment, is given by
A(t+i ) = (SFA)A(t−i ) + γ (1 − SFU)U(t−i ). Finally, we assume that at the beginning of treatment we have
N0 cells in the unaffected class and none in the affected class. Under these assumptions, the deterministic
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model can be written as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dU(t)
dt = (bU − dU)U(t) + ηA(t), ti < t < ti+1, i = 0, 1, .., N ,

dA(t)
dt = −(dA + η)A(t), ti < t < ti+1, i = 0, 1, .., N ,

U(t+i ) = (SFU)U(t−i ), A(t+i ) = (SFA)A(t−i ) + γ (1 − SFU)U(t−i ), at t = ti, i = 1, 2, .., N ,
U(t0) = N0, A(t0) = 0.

(2.1)
We now can define a stochastic process whose mean behaviour is described by (2.1). We consider

the evolution of the joint probability distribution, pnU ,nA(t), which is the probability of having nU and
nA cells in the unaffected and affected classes, respectively, at time t. As in the deterministic case, for
the stochastic birth-death process we describe separately the evolution of the two cell types between
treatment times and at treatment times.

Between treatment times ti and ti+1, the model follows a stochastic birth-death process, with constant
birth (bU) and death (dU) rates for the unaffected class. We assume the affected class does not proliferate
and follows a stochastic death process with death rate dA and recovery rate η from A to U. The master
equation associated with this process can be written as

d

dt
pnU ,nA(t) = −[(bU + dU)nU + (dA + η)nA]pnU ,nA(t) + η(nA + 1)pnU −1,nA+1(t)

+ bU(nU − 1)pnU −1,nA(t) + dU(nU + 1)pnU +1,nA(t) + dA(nA + 1)pnU ,nA+1(t) (2.2)

where p−1,nA(t) = pnU ,−1(t) = 0 for nU , nA ≥ 0.
We consider the initial conditions:

pnU ,nA(t0) = 1, for nU = N0 and nA = 0, (2.3)

where N0 is the initial number of cancer cells and pnU ,nA(t0) = 0, for (nU , nA) �= (N0, 0) .
At each treatment time, the radiation response is modelled as a series of Bernoulli trials during which

unaffected and affected cells survive with probabilities SFU and SFA, respectively. Sublethal damage is
also modelled as a series of Bernoulli trials where an unaffected cell switches to the affected class with
probability γ . From these Bernoulli series we derive the following expression for pnU ,nA(t+i ):

pnU ,nA(t+i ) =
∞∑

j=0

P(nU unaffected cells survived radiation)

× P(j unaffected cells switched to the affected class)

× P(nA − j affected cells survived radiation),

which becomes

pnU ,nA(t+i ) =
∞∑

k=0

∞∑
l=0

nA∑
j=0

pnU +nA−j+k,j+l(t
−
i )

(
j + l

l

)(
nU + nA − j + k

nU

)(
nA − j + k

k

)

(SFU)nU [γ (1 − SFU)]nA−j(1 − γ (1 − SFU) − SFU)k(SFA)
j(1 − SFA)

l.

(2.4)
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In summary, our model consists of the master equation (2.2), with the evolution at treatment time
defined by Equation (2.4) and the initial conditions specified by Equation (2.3).

Finally, for this stochastic model, it is straightforward to show that the mean number of cells in each
class, 〈nU(t)〉 = ∑∞

nU =0

∑∞
nA=0 nUpnU ,nA(t) and 〈nA(t)〉 = ∑∞

nU =0

∑∞
nA=0 pnU ,nA(t), satisfy Equation (2.1).

2.1 Derivation of the TCP

To obtain an explicit expression for the TCP, we consider the probability generating function (PGF)
G(t, x, y) = ∑∞

nU =0

∑∞
nA=0 pnU ,nA(t)xnU ynA . The evolution of the PGF satisfies a partial differential equa-

tion (PDE) that is derived from the master equation and the evolution of pnU ,nA(t) at treatment times.
Denoting by Gi(t, x, y) the PGF during the interval [ti, ti+1], it is possible to show that Gi(t, x, y) evolves
in the following way:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂

∂t Gi(t, x, y) = BU(x) ∂

∂x Gi(t, x, y) + DA(x)
∂

∂y Gi(t, x, y) ti < t < ti+1, 0 < x, y < 1,

Gi(ti, x, y) = Gi−1(ti, FU(x, y), GA(y)) 0 < x, y < 1,

G0(t0, x, y) = xN0 0 < x, y < 1,

Gi(t, 0, 0) = p0,0(t), Gi(t, 1, 1) = 1 ti < t < ti+1,

(2.5)

where BU(x) = bUx2 − (bU + dU)x + dU , DA(x, y) = −(dA + η)y + dA + ηx, FU(x, y) = SFUx + γ (1 −
SFU)y + 1 − γ (1 − SFU) − SFU and GA(y) = SFAy + 1 − SFA.

The TCP at time t can be determined from the PGF, Gi(t, x, y) . We use the method of characteristics
to solve the hyperbolic PDE for Gi(t, x, y) and then obtain an explicit expression for the TCP:

TCP(t) := p0,0(t) = Gi(t, 0, 0) (2.6)

where

Gi(t, x, y) = Gi−1(ti, fi(t, x, y), gi(t, x, y)),

fi(t, x, y) = SFUX(t − ti, x) + γ (1 − SFU)Y(t − ti, x, y) + 1 − γ (1 − SFU) − SFU ,

gi(t, x, y) = SFAY(t − ti, x, y) + 1 − SFA,

in which

X(t, x) = dU(1 − x)e(bU −dU )t + bUx + dU

bU(1 − x)e(bU −dU )t + bUx + dU
,

Y(t, x, y) = ye−(dA+η)t + dA

dA + η

[
1 − e−(dA+η)t

] + η

∫ t

0
e−(dA+η)t′X(t′, x)dt′

and

G0(t, x, y) =
[
(x − 1)dUe(bU −dU )t − bUx + dU

(x − 1)bUe(bU −dU )t − bUx + dU

]N0

. (2.7)

X and Y are the characteristics of the hyperbolic PDE for Gi(t, x, y) while fi and gi incorporate the
effects of the stochastic evolution at the treatment times. A derivation of the TCP formula is included in
Appendix A.

Downloaded from https://academic.oup.com/imammb/article-abstract/35/2/181/3055078
by Cairns Library, University of Oxford user
on 13 June 2018



186 A. V. PONCE BOBADILLA ET AL.

Table 1 Summary of parameter values used to simulate ZM (Equation (3.4)) DH (Equation (3.7)) and
our model TCP (Equation (2.6)). The parameter values for the DH model are taken from Gong et al.
(2011) while those for the ZM and our model are taken from Wang et al. (2003).

Description TCPZM TCPDH TCPRSD Units

Initial cell N(0) = 105 a(0) = 105 U(0) = 105 cells
number q(0) = 0 A(0) = 0 cells
Net growth rate b − d = 0.0165 μ − da − dq = 0.0165 bU − dU − dA = 0.0165 1/day
Kinetic b = 0.0330 μ = 0.1310 bU = 0.1131 1/day
parameters d = 0.0165 da = 0.0655 dU = 0.03 1/day

ν = 0.0476 η = 8.31 1/day
dq = 0.0952 1/day

γ = 0.1 N/A*
Radiosensitivity α = 0.14 αa = 0.145 αU = 0.14 Gy−1

parameters αq = 0.145 αA = 0.14 Gy−1

β = 0.0452 βa = 0.0353 βA = 0.0452 Gy−2

βq = 0. βQ = 0.0452 Gy−2

*Probability of unaffected cells to switch to the affected class

2.2 Case study: treatment of prostate cancer

In order to perform a parameter sensitivity analysis and model comparison we consider, as a case study,
prostate cancer. Prostate cancer is a late responding, slow growing tumour. There is considerable uncer-
tainty in its doubling time. For example, Wang et al. (2003) report doubling times in the range 15–170
days, with a median value of 42 days; this corresponds to a net growth rate of 0.0165 = ln(2)/42 per
day. Based on this work and other reviews (Ritter, 2008), we estimate the range of doubling times to be
10–100 days while there are no direct methods available to measure in vivo apoptotic rates (Werahera
et al., 2011), nevertheless the uncertainty in the apoptotic rates with a fixed net growth rate will turn
out not to be significant for our model predictions. Following Wang et al. (2003), we suppose that the
LQ parameters are within the following ranges α = 0.14 ± 0.05 Gy−1 and α/β = 3.1+2.6

−1.6 Gy. These
ranges encompass all parameter ranges reported in the references mentioned above. The recovery rate for
prostate cancer cells has been estimated to be 8.31 − 16.63 per day, although some authors report rates
as high as 62.38 per day (Wang et al., 2003). In Table 1, we summarize the parameter values that we use
to generate simulation results based on the previous biological studies.

3. Results

To investigate our model, we study the evolution of the TCP during treatment. Since the underlying model
is stochastic, the TCP can be obtained as a statistic from multiple realizations of the stochastic process.
For each realization i, we track the time t∗i at which there are zero cancerous cells, and define TCPi(t)
such that

TCPi(t) :=
{

1 t > t∗i ,
0 otherwise.
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A B

Fig. 1. (a) Time evolution of twenty realizations of the stochastic model (Equations (2.2)–(2.4)) generated using the Gillespie
algorithm and the parameter values stated in Table 1. The treatment protocol consists of a dose per fraction of 4.3 Gy delivered on
five consecutive days per week. The dashed lines indicate the times at which treatment is given (5 consecutive days per week). The
inset highlights the variability between the realizations. (b) Plot of the approximation of the TCP (via Equation (3.1)) and of the
TCP formula (Equation (2.6)).

After M simulations, the TCP is approximated by:

TCP(t) ≈ 1

M

M∑
i=1

TCPi(t). (3.1)

As the number of realizations increases, our approximation to the TCP for the stochastic process improves.
However, as we have an explicit formula for the TCP for every time t (Equation (2.6)), we do not
need to perform multiple realizations to calculate the TCP. In Fig. 1(a), we plot the output from 20
stochastic simulations, using the parameter values stated in Table 1. In the right corner of this figure, the
magnification shows the different realizations and the associated stochasticity. From 500 such simulations,
we approximate the TCP using Equation (3.1) and plot the resultant curve in Fig. 1(b). We also plot the
TCP formula (Equation (2.6)) and observe good agreement between the two curves.

We continue below by presenting the results of a parameter sensitivity analysis. We then compare
our model predictions with those of other models before finally analysing the validity of the mean field
approximation.

Sensitivity analysis

The model parameters are either related to biological characteristics of the cancer (birth, death and
recovery rates, radiosensitivity parameters and the probability of acquiring sublethal damage) or to the
treatment protocol parameters (dose per fraction, number of fractions and total dose). Parameter values
are obtained from clinical or experimental data, with confidence intervals (see Section 2.2). In what
follows, we analyse the effects of varying the parameters in the reported ranges. Since our objective
is to understand how RSD affects the TCP, we focus our sensitivity analysis on parameters associated
with RSD: the repair rate, the radiosensitivity parameters for the two cell classes and the probability of
an unaffected cell entering the affected class. When we vary a specific parameter, all other parameters
are held fixed at the mean values reported in Table 1. Regarding the treatment protocol, we consider a
dose per fraction of 4.3 Gy, delivered on five consecutive days per week: this is a standard protocol for
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188 A. V. PONCE BOBADILLA ET AL.

A B C

Fig. 2. Series of plots showing how the evolution of the TCP defined by Equation (2.6) changes as the parameters βU , γ and η

are varied. (a) Increasing βU increases the rate at which the TCP approaches 1; (b) as γ increases, the time taken for the TCP to
reach 1 also increases; (c) increasing η has negligible effect on the TCP dynamics. Parameter values as per Table 1. The treatment
protocol consists of a dose per fraction of 4.3 Gy delivered on five consecutive days per week.

prostate cancer (Ritter, 2008). To improve the sensitivity analysis of the TCP curves, the simulations are
continued beyond the treatment end time (16 days), until such time as all TCP curves reach the value 1.

First, we vary the radiosensitivity parameters in the ranges specified in Section 2.2. We assume both
cell types have the same mean value for α and fix αU = αA = 0.14. We fix βA = 0.1267 so the survival
factor of the affected cells takes the smallest possible value. By varying βU in the range [0.0158, 0.1267]
in steps of 0.037, we investigate how differences in the radiosensitivity of the two classes affects the TCP
curve. The results presented in Fig. 2 (a) show that as βU increases, the TCP reaches 1 more rapidly; this
is to be expected, since higher values of βU correspond to smaller survival fractions, so the tumour takes
less time to disappear. If βU = 0.0158, then TCP(t) = 1 for t ≥ 38 days whereas if βU = 0.01267, then
TCP(t) = 1 for t ≥ 16 days.

We now consider the impact on the TCP of varying γ , the proportion of cells that acquire sublethal
damage in response to radiation (see Equation (2.1)). If γ = 0, then A(t) = 0 for t ≥ 0 and all viable
cells are unaffected. As γ increases, more unaffected cells acquire sublethal damage and the affected
class plays a bigger role in the system dynamics. In Fig. 2 (b), we show how increasing γ increases the
time taken for the TCP to reach 1, from 24 days when γ = 0 to 33 days when γ = 0.3. By contrast,
varying η in the reported range has a negligible effect on the TCP (see Fig. 2(c)).

Comparison with other models

We now compare our TCP with those associated with the ZM and DH models.
In 2000, Zaider and Minerbo considered a homogeneous population of cells that undergoes a stochastic

birth–death process with linear birth and death rates (Zaider & Minerbo, 2000). The master equation
associated with this process can be written as

d

dt
pn(t) = b(n − 1)pn−1(t) + (d + h(t))(n + 1)pn+1(t) − (b + d + h(t))npn(t), (3.2)

where b and d are the birth and death rates, respectively. In Equation (3.2), the hazard function h(t)
models the effect of radiation on the cell population and depends on the radiosensitivity parameters α, β

and the dose distribution D(t) via

h(t) = (α + 2βD(t))
dD(t)

dt
= d

dt
(αD + βD2). (3.3)
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A STOCHASTIC MODEL FOR TCP THAT ACCOUNTS FOR REPAIR FROM SUBLETHAL DAMAGE 189

From Equation (3.2), Zaider and Minerbo derived the following expression for the TCP:

TCPZM(t) =
⎡
⎣1 − Sh(t)e(b−d)t

1 + bSh(t)e(b−d)t
∫ t

0
dr

Sh(r)e(b−d)r

⎤
⎦

n0

, (3.4)

wherein

Sh(t) = exp{−(αD(t) + βD2(t)) + αD(0) + βD2(0))}.

Dawson and Hillen (2006) extended the ZM model to account for variation in radiosensitivity due
to the cell cycle. They distinguish active (a(t)) and quiescent (q(t)) populations, with the following
dynamics:

da

dt
= −μa + νq − (da + ha(t))a,

dq

dt
= 2μa − νq − (dq + hq(t))q.

(3.5)

Dawson and Hillen assumed that only active cells can proliferate and when an active cell divides, both
daughter cells are quiescent. If μ denotes the proliferation rate, cell division leads to a loss term (μa)
from the ordinary differential equation (ODE) for the active cells and a source term (2μa) in the ODE
for the quiescent cells. Quiescent cells are assumed to re-enter the active compartment at rate ν > 0.

In equations (3.5), ha(t) and hq(t) are the hazard functions, and da and dq are the natural death rates of
the active and quiescent cells, respectively. The hazard functions are derived from target theory principles
considering one hit or two hit interactions

ha(t) = αa
dD(t)

dt
+ βa

dD(t)

dt
(D(t) − D(t − ω)) ,

hq(t) = αq
dD(t)

dt
+ βq

dD(t)

dt
(D(t) − D(t − ω)) ,

(3.6)

where ω is the mean two-hit interaction time.
If the dose D(t) is given in a time interval smaller than the mean two-hit interaction time, and

additionally we have ν << 1 and μ << 1, then the hazard functions (3.6) reduce to (3.3) and we find
that α = min{αa, αq} and β = βa/2 (Dawson & Hillen, 2006).

If v >> 1, then q << 1 and n = a + q ≈ a. In this case, addition of Equations (3.5) implies

da

dt
= (μ − da − ha(t))a

and we recover the mean field dynamics of the ZM model.
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Table 2 Treatment protocols to compare TCP predictions and references

Protocol Dose/fraction Total Times/ Total dose Reference
( Gy ) days day ( Gy )

A 2 52 once 78 Nilsson et al. (2004)
B 3.13 22 once 50 Ritter (2008)
C 4.3 16 once 51.6 Ritter (2008)

Dawson and Hillen (2006) reformulated their deterministic model (3.5) as a nonlinear birth–death
process and, in so doing, derived the following expression for the TCP:

TCPDH = (
1 − e−F(t)

)a0
(
1 − e−G(t)

)q0 exp

[
−νe−F(t)

∫ t

0
q(z)eF(z)dz

+μe−2G(t)

∫ t

0
a(z)e2G(z)dz − 2μe−G(t)

∫ t

0
a(z)eG(z)dz

] (3.7)

where

F(t) =
∫ t

0
(μ + ha(z))dz, G(t) =

∫ t

0
(μ + hq(z))dz,

and the functions a(z) and q(z) satisfy Equations (3.5) with a(0) = a0 and q(0) = q0.
Since the DM model deals with two cell populations, the master equation should be viewed as a

differential equation for the joint probability of Xna and Ynq , the random variables that count the number
of active and quiescent cells, respectively. We remark that in deriving Equation (3.7), Dawson and Hillen
assumed the random variables Xna and Ynq to be independent.

To begin our model comparison, we first place our model in the same framework as these models. If
the probability of moving from the unaffected to the affected class is zero (γ = 0), then we recover the
ZM model. It is not possible to recover the DH model from our model, because the two classes in the DH
model are based on the cell cycle whereas we distinguish damaged and undamaged cells, that is, each
model accounts for different biological processes.

We compare the TCPs in a clinical setting by applying to each model the three treatment protocols
for prostate cancer specified in Table 2. Protocol A is the standard one, while Protocols B and C are
hypofractionated treatments which are specialized for slow growing tumours (higher doses per fraction
are delivered over a shorter time period (Ritter, 2008)). We fix the net growth rate for the three models
to 0.0165 and the hazard function as in Equation (3.3) for the ZM and DH models. In this setting, the
discrepancies between the models’ predictions are due to the biological processes implicit in each model.
We compare the TCP for each model at the end of treatment since this quantity is used by clinicians to
decide whether or not to apply treatment.

The TCPs for the three protocols are presented in Fig. 3. In each case, the DH and our model predict
a smaller TCP than the ZM model; this is to be expected since both models consider two distinct cell
populations (see also Gong et al. (2011)). In our model, the discrepancy arises because a proportion of
irradiated cells are not killed and enter the affected class; in the DH model, the quiescent and active cells
have different radiosensitivity parameters. For protocol A, at the end of the prescribed treatment (t = 52
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A B C

Fig. 3. TCP calculations for the protocols described in Table 2 for the ZM, DH and our two-class model (Equations (3.4), (3.7)
and (2.6), respectively.) The calculations are performed using the parameter values listed in Table 1. In each subplot, the vertical
dashed line marks the time at which the treatment ends. However, we continue the simulations beyond the treatment end point.

days), the ZM and DH models predict TCPs of 0.9946 and 0.8574, respectively, while our model predicts
a TCP of 0.3273. For Protocol B, while the ZM model predicts a TCP of 0.9020, the other models predict
TCP< 0.05. For Protocol C, at the end of treatment, the ZM model predicts a TCP of 0.999 while our
model predicts a TCP of 0.7357. In this case, the DH model predicts no chance of tumour control. We
remark that for these TCP calculations, we fixed γ = 0.1. However, our parameter sensitivity analysis
indicates that if we increase γ then the TCP will be smaller (see Fig. 2(c)). We conclude that by suitable
choice of γ our model will yield predictions similar to or lower than, those of the DH model. This
highlights the importance of estimating γ from experimental data to obtain an accurate prediction.

Analysis of the mean field hypothesis

Existing models involving two cell populations (Dawson & Hillen, 2006; Hillen et al., 2010) assume
mean field dynamics to derive explicit formulae for the TCP. We now investigate, for our model, the
range of parameter values for which this assumption is invalid.

First, we derive a TCP formula for our model by assuming mean field dynamics, so that pnU ,nA(t) =
pnU (t)pnA(t). We denote the TCP under this assumption as TCPmean and write TCPreal for the TCP formula
(2.6).

After some algebra (see Appendix B), we obtain the following expression for TCPmean(t):

TCPmean(t) = vi(t, 0)wi(t, 0) for t ∈ [ti, ti+1], (3.8)

wherein

vi(t, x) = vi−1(ti, fi(t, x))Ii(t, x),

wi(t, x) = vi−1

(
ti, 1 − γ (1 − SF)(1 − x)e−(dA+η)(t−ti)

)
wi−1

(
ti, 1 − SF(1 − x)e−(dA+η)(t−ti)

)
,

ni(t, x) = 1 − SF(1 − x)(bU − dU)

(bUx − dU)e−(bU −dU )(t−ti) + bU(1 − x)
, (3.9)

Ii(t, x) = exp

[
−η(1 − x)(bU − dU)

∫ t

ti

A(s)e−(bU −dU )(s−ti)ds

bU(1 − x)e−(bU −dU )(s−ti) + (bUx − dU)e−(bU −dU )(t−ti)

]
,
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A B C

Fig. 4. Plots of discrepancy between the TCPreal(t) as defined by Equation (2.6) and TCP∗
mean(t) as defined by Equation (3.8) for

γ = 0.1, 0.2 and 0.3. The plots show that the difference between the TCP with the mean field dynamics assumption and the real
TCP increases as γ increases. In each subplot, the vertical dashed line marks the time at which the treatment ends (t = 16 days).
However, we continue the simulations beyond the treatment end point. Parameter values as per Table 1.

and A(t) denotes the number of cells at time t, as defined by the mean dynamics (see Equations (2.1)).
Finally, for i = 0, v0(t, x) = G0(t, x) (Equation (2.7)) and w0(t, x) = 1.

We consider the approximation to be valid when

∫ Tend

0
|TCPreal(t) − TCPmean(t)|2dt < TOL (3.10)

where TOL is an acceptable deviation (TOL should be less than 0.10 (Brahme, 1984)).
We identify a range of parameters for which the inequality (3.10) is not satisfied. We focus in the case

when the TCP calculated from the mean field assumption overestimates the true value, TCPreal(t) <<

TCPmean(t).
Given the difficulty of calculating Ii(t, x) either explicitly or by discretization, in order to find a range

of parameter values for which TCPreal(t) << TCPmean(t), we define a function TCP∗
mean(t) such that

TCP∗
mean(t) < TCPmean(t). We then find a range of parameter values for which TCPreal(t) << TCP∗

mean(t).
In this way, we can identify a range of parameter values for which inequality (3.10) does not hold. In
Appendix C, we define TCP∗

mean(t) and prove that TCP∗
mean(t) < TCPmean(t).

When identifying a parameter range for which inequality (3.10) does not hold, we note that as the
value of γ is increased, the affected class plays a more significant role in the system dynamics. We
anticipate that in such cases the mean field assumption will be less accurate. The results presented in
Fig. 4 verify this. We consider Protocol C and three values for γ (0.1, 0.2 and 0.3). For each value of γ ,
TCPreal(t) < TCP∗

mean(t); as the value of γ is increased, the discrepancy between the TCP predictions
increases. We analyse how this difference affects the predicted TCP after 16 days of treatment with
Protocol C. We present the computed TCP values after the 16 days for γ = 0.1, 0.2 and 0.3 in Table 3.
We conclude that when γ = 0.1, the difference between the predictions is not significant whereas for
larger values of γ it is.

4. Discussion

We have introduced a new TCP model that incorporates RSD. The model assumes the tumour is subdivided
into two cell populations: affected cells which have sublethal damage and unaffected cells which have
not. Between treatment times, unaffected cells are assumed to proliferate and die while the affected cells
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Table 3 TCP values after 16 days of treatment
of TCPreal(t) as defined by Equation (2.6) and
TCP∗

mean(t) as defined by Equation (3.8) for γ = 0.1,
0.2 and 0.3. As the value of γ is increased, the
discrepancy between the TCP predictions increases

γ value TCP∗
mean(16) TCPreal(16)

0.1 0.78 0.73
0.2 0.55 0.02
0.3 0.30 0

do not proliferate but recover to the unaffected class and die at a certain rate. At treatment times, both
classes are affected by radiation and the unaffected cells have the possibility of acquiring sublethal damage
(move to the affected class) with a certain probability. The model is formulated as a birth–death process
for which we derived an explicit formula for the TCP without making a mean field approximation, that is,
by not assuming the random variables that count the cell number in each population are independent. We
showed how changes in the model parameters affect the TCP predictions and how our model predictions
compare to those of existing models in clinically relevant situations. Finally, we identified that when
the probability of sublethal damage during radiation is large, the mean field assumption significantly
overestimates the TCP.

Our model and Curtis’ lethal-potentially lethal (LPL) model both analyse irreparable and reparable
lesions caused by RT, however, there are distinct assumptions and processes that one considers that
the other does not. Our model takes into account cell repopulation whereas the LPL model assumes a
stationary-phase cell population (Curtis, 1986). In the LPL model, potentially lethal lesions can transform
to lethal ones throughout the treatment duration (Curtis, 1986), in our model, this is only possible at
treatment times.

Our parameter sensitivity analysis revealed that increasing γ , the probability that an unaffected cell
enters the affected class when RT is applied, significantly slows down the TCP. Given how sensitive the
TCP is to variation in γ , we conclude that experimental estimates are needed in order to validate the
model and/or to use it to make qualitative predictions. In future work, the parameter sensitivity analysis
could be extended to determine whether changing the radiosensitivity parameters affects the TCP and to
establish which parameters have the greatest impact on its dynamics.

We compared our model predictions with those of two existing models. As pointed out by Gong
et al. (2011), since our model and the DH model consider two cell populations, the models predict lower
TCPs than the ZM model. However, what we were interested in determining is how different our TCP
predictions could be from the DH model, since Gong et al. (2011) claimed that TCP predictions from
two cell population models are quite similar to each other. We found that for low radiation doses, our
model yields TCPs which are significantly different from, and underestimate the TCP predicted by, the
DH model. For high doses, the DH model underestimates our model predictions when γ = 0.1. However,
for larger values of γ this trend reverses and our model underestimate the predictions from the DH model.

The way in which we formulate our model has several advantages. First, we can derive explicit
expressions showing how the mean and variance of the cell number evolve during treatment. As a result,
we can provide confidence intervals for the TCP predictions. Second, since we are working with an
explicit TCP formula, minimal computational effort is needed to calculate the TCP. We emphasize that
in contrast to existing TCP models that involve two cell populations, in our model, we did not make any
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mean field dynamics assumptions. Additionally, we showed that for larger values of γ , the mean field
dynamics are less accurate; they overestimate the TCP. In this work, we used an auxiliary function to
identify the range of parameters for which the real value of the TCP and that obtained from the mean
field assumption differ. In future work, it would be interesting to not use an auxiliary function and obtain
the complete parameter range where this assumption is invalid.

Maler & Lutscher (2010) also formulated a cell population model without the independence assump-
tion and compared it to the DH model. In order to incorporate realistic distributions of cell-cycle times, they
formulated a deterministic age-structured model and a corresponding branching process. They showed
that for fractionated treatments, their model underestimates the TCP in comparison to the DH model while
for treatments that are constant in time, it gives similar predictions. They also analysed the effects of the
compartmental independence assumption in the DH model. They found that by dropping the assumption
of independence between active and quiescent cells, the TCP increases. This behaviour is contrary to
what happens in our model: in their model not considering the independence assumption gives more
conservative TCP predictions, while in ours, it overestimates the TCP.

In conclusion, we have introduced a new TCP model that includes RSD from which we were able
to determine an explicit formula for the TCP. We identified the effects of parameter variation, we dis-
covered clinically relevant situations when our model gives predictions which differ from those assumed
with existing TCP models. We also identified parameter ranges for which the mean field assumption
overestimates the TCP. There are several ways the model could be extended: we could account for the
effects of hypoxia (Rockwell et al., 2009), spatial heterogeneity (Enderling et al., 2009) and angiogenic
factors (Kleibeuker et al., 2012) on treatment efficacy. Also, the current version of the model assumes
RT is delivered instantly, whereas for certain treatment protocols the exposure to RT can last several
days or even months (e.g. brachytherapy). Our model should be able to simulate these alternative dose
distributions. Finally, while this work focused on prostate cancer, it could easily be extended to consider
fast growing tumours, like head-neck or brain cancers (Fu et al., 2000; Badri et al., 2015).
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Appendix A. Derivation of the TCP formula

In this section, we derive the TCP formula (Equation (2.6)) for our stochastic model described by
Equations (2.2) and (2.4).

Let

Gi(t, x, y) :=
∞∑

nU =0

∞∑
nA=0

xnU ynApnU ,nA(t)

denote the PGF between treatment times [ti, ti+1].
From the master equation (2.2), by multiplying by xnU ynA and adding the terms from nU , nA = 0 to

infinity, we obtain the hyperbolic equation for the PGF

∂

∂t
Gi(t, x, y) = (bUx2 − (bU + dU)x + dU)

∂

∂x
Gi(t, x, y) + [−(dA + η)y + dA + ηx

] ∂

∂y
Gi(t, x, y).
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The initial condition for G0(t, x, y) is given by the initial condition of the deterministic model (Equation
(2.1)) :

G0(0, x, y) =
∞∑

nU =0

∞∑
nA=0

pnU ,nA(0)xnU ynA = xN0 .

The initial conditions for Gi(t, x, y) with i > 1 are determined by the evolution of pnU ,nA(t) at treat-
ment times. We simplify expression (2.4) noticing that pn,m(t) = ∂n

∂xn
∂m

∂ym G(t, x, y)|(x,y)=(0,0) = pn,m(t) and
identifying Taylor expansions in each variable, we deduce that

pnU ,nA(t+i ) =
nA∑
j=0

(SFU)nU [γ (1 − SFU)]nA−j(SFA)
j

j!nU !(nA − j)!
∂(nU +nA−j)∂ j

∂x(nU +nA−j)∂yj
G(ti, x, y)

∣∣∣∣
x=1−γ (1−SFU )−SFU

y=1−SFA

. (A.1)

Substituting (A.1) in Gi(ti, x, y) = ∑∞
nU =0

∑∞
nA=0 pnU ,nA(t+i , x, y) and noticing the resultant expression is

a Taylor expansion in two variables enables us to derive the following expression which relates the PGFs
before and after RT:

Gi(ti, x, y) = Gi−1(ti, SFUx + γ (1 − SFU)y + 1 − γ (1 − SFU) − SFU , SFAy + 1 − SFA).

In summary, Gi(t, x, y) satisfies the following PDE:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂

∂t Gi(t, x, y) = BU(x) ∂

∂x Gi(t, x, y) + DA(x, y) ∂

∂y Gi(t, x, y) ti < t < ti+1, 0 < x, y < 1,

Gi(ti, x, y) = Gi−1(ti, FU(x, y), GA(y)) 0 < x, y < 1,

G0(t, x, y) = xN0 0 < x, y < 1,

Gi(t, 0, 0) = p0,0(t), Gi(t, 1, 1) = 1 ti < t < ti+1,

(A.2)

where BU(x) = bUx2 − (bU + dU)x + dU , DA(x, y) = −(dA + η)y + dA + ηx, FU(x, y) = SFUx + γ (1 −
SFU)y + 1 − γ (1 − SFU) − SFU and GA(y) = SFAy + 1 − SFA.

We use the method of characteristics to solve for Gi(t, x, y). First we determine the characteristic
curves X(t) = (X(t), Y(t)),

⎧⎪⎨
⎪⎩

d
dt X(t) = −(bUX2 − (bU + dU)X + dU),
d
dt Y(t) = − [−(dA + η)Y + dA + ηX],

X(t0) = x0, Y(t0) = y0.

We have that

X(t) = dU(1 − x0)e(bU −dU )(t0−t) + bUx0 + dU

bU(1 − x0)e(bU −dU )(t0−t) + bUx0 + dU

and

Y(t) = y0e(dA+η)(t−t0) + dA

dA + η

[
1 − e(dA+η)(t−t0)

] − ηe(dA+η)t

∫ t

t0

e−(dA+η)t′X(t′)dt′. (A.3)
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Since the solution of (A.2) is constant along the characteristics it is sufficient to take the initial condition to
determine the solution. At point (t0, x0, y0), the solution is given by Gi(ti+1, SFUX(0)+γ (1−SFU)Y(0)+
1 − γ (1 − SFU) − SFU , SFAY(0) + 1 − SFA) for i > 1 and X(0)N0 for i = 0. Since we want the solution
for (t − ti, x, y), we make the change of variables: x0 → x, y0 → y, t0 → t − ti. We have then that for
t ∈ [t0, t1],

G0(t, x, y) =
[

(x − 1)de(bU −dU )t − bUx + dU

(x − 1)bUe(bU −dU )t − bUx + dU

]N0

(A.4)

and for t ∈ [ti, ti+1] with i > 1

Gi(t, x, y) = Gi−1(ti, fi(t, x, y), gi(t, x, y)) (A.5)

where

fi(t, x, y) = SFUX(t − ti, x) + γ (1 − SFU)Y(t − ti, x, y) + 1 − γ (1 − SFU) − SFU ,

gi(t, x, y) = SFAY(t − ti, x, y) + 1 − SFA,

X(t, x) = dU(1 − x)e(bU −dU )t + bUx + dU

bU(1 − x)e(bU −dU )t + bUx + dU

and

Y(t, x, y) = ye(dA+η)(−t) + dA

dA + η

[
1 − e−(dA+η)t

] + η

∫ t

0
e−(dA+η)t′X(t′)dt′.

Equation (A.5) defines a recursive formula for the PGF from which an explicit formula can be derived in
terms of G0(t, x, y) and model parameters.

Appendix B. Derivation of the TCP formula under mean field dynamics

In this section, we derive the TCP formula (Equation (3.8)) for our stochastic model under the mean field
assumption.

When we make the mean field approximation

pnU ,nA(t) = pnU (t)pnA(t), (B.1)

we are assuming that the two cell populations are independent and have distinct PGFs. For t ∈ [ti, ti+1],
let vi(t, x) = ∑∞

nU =0 pnU (t)xnU and wi(t, x) = ∑∞
nA=0 pnA(t)xnA denote the PGFs for the unaffected and

affected classes, respectively.
If we multiply the master equation (2.2) by xnU and sum the resulting equations from nU = 0 to

nU → ∞ then we obtain the following hyperbolic PDE for vi(t, x):

∂vi(t, x)

∂t
= [bUx2 − (bU + dU)x + dU]∂vi(t, x)

∂x
+ η(x − 1)A(t)vi(t, x),
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where A(t) = ∑∞
nA=0 nApnA(t) denotes the mean number of active cells at time t and its dynamics is

defined by Equation (2.1).
As for the derivation of the TCP formula in Appendix B, the initial condition for vi(t, x) with i > 1

is determined from the evolution of pnU (t) at the treatment times via

vi(ti, x) = vi−1(ti, 1 + SF(x − 1)).

The boundary conditions are determined by noting that vi(t, x) is a PGF with

vi(t, 0) = p0(t), and vi(t, 1) = 1.

In summary, vi(t, x) satisfies the following boundary value problem

⎧⎪⎨
⎪⎩

∂vi(t,x)
∂t = [bUx2 − (bU + dU)x + dU] ∂vi(t,x)

∂x + η(x − 1)A(t)vi(t, x) 0 < x < 1, ti < t < ti+1,

if i > 1, vi(ti, x) = vi−1(ti, 1 + SF(x − 1)) if i = 0, v0(t, x) = xN0 0 < x, y < 1,

vi(t, 0) = p0(t), vi(t, 1) = 1 ti < t < ti+1.
(B.2)

Following the same procedure, we deduce that wi(t, x) satisfies the following boundary value problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂wi(t,x)
∂t = (dA + η)(1 − x) ∂wi(t,x)

∂x 0 < x < 1, ti < t < ti+1,

wi(ti, x) = vi−1(ti, 1 + γ (1 − SF)(x − 1))wi−1(ti, 1 + SF(x − 1)) 0 < x, y < 1, i > 1,

w0(t, x) = 1 0 < x, y < 1, i = 0,

wi(t, 0) = p0(t), wi(t, 1) = 1 ti < t < ti.
(B.3)

We use the method of characteristics to solve both Equation (B.2) and (B.3) for vi and wi. Let us
assume the initial time is 0 and then we make a change of variables to return to the initial condition at ti.
Equation (B.2) has the characteristic equations:

dX

dt
= (bUX − dU)(1 − X) = (1 − X)(bU − dU) − bU(1 − X)2, X(0) = x0, (B.4)

dvi

dt
= η(X − 1)A(t)vi, vi(0, x0) = f (x0), (B.5)

where f (x) = vi−1(ti, 1 + SF(x − 1)) if i > 1 and f (x) = xN0 if i = 0.
We introduce Y(t) = 1

1−X(t) to transform Equation (B.4) into a linear equation for Y(t):

dY

dt
= (bU − dU)Y(t) − bU , Y(0) = 1

1 − x0
.

The solution of this equation is

Y(t) = e(bU −dU )t

(
Y(0) − bU

bU − dU

[
e−(bU −dU )t − 1

])
. (B.6)
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After some algebra we obtain,

x0 = 1 − 1
e−(bU −dU )t

1−x(t) + bU

∫ t
0 e−(bU −dU )sds

. (B.7)

The solution of Equation (B.5) is

vi(t, x(t)) = vi(0, x0) exp(η

∫ t

0
A(z)(x(z) − 1)dz). (B.8)

The right hand side contains the term x(z) − 1 for intermediate values x(z) with z ∈ [0, t). To make this
expression independent of the characteristic, we notice that (B.7) is valid for z ∈ [0, t), and for t we have
the following equality

x0 = 1 − 1
e−(bU −dU )t

1−x(t) + bU

∫ t
0 e−(bU −dU )sds

= 1 − 1
e−(bU −dU )z

1−x(z) + bU

∫ z
0 e−(bU −dU )sds

.

(B.9)

Hence

x(z) − 1 = − e−(bU −dU )t

e−(bU −dU )t

1−x(t) + bU

∫ t
z e−(bU −dU )rdr

. (B.10)

Substituting this expression in Equation (B.8), and making the change of variables t → t − ti, we obtain
an explicit expression for vi(t, x) for t ∈ [ti, ti+1]:

vi(t, x) =vi−1

(
ti, 1 − BUSF(1 − x)

(bUx − dU)e−(bU −dU )(t−ti) + bU(1 − x)

)

× exp

[
−BUη(1 − x)

∫ t

ti

A(s)e−BU (s−ti)ds

bU(1 − x)e−BU (s−ti) + (bUx − dU)e−BU (t−ti)

]
,

where BU = bU − dU .
For i = 0, A(t) ≡ 0 in [t0, t1], so the characteristic equation is the same as the one for the TCP without

the mean field assumption, therefore,

v0(t, x) = G0(t, x). (B.11)

We now solve for wi. The characteristic equation of (B.3) is

dX

dt
= −(dA + η)(1 − X), X(t0) = x0, (B.12)

from which we obtain

x(t) = 1 − [1 − x(t0)]e(dA+η)(t−t0). (B.13)
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Evaluating at t = 0 and making the change of variables x0 → x, t0 → t, we obtain

x(0) = 1 − (1 − x)e−(dA+η)t . (B.14)

Substituting Equation (B.14) in the initial condition of Equation (B.3), we obtain an expression for wi,
namely

wi(t, x) = vi−1(ti, 1 − γ (1 − SF)(1 − x)e−(dA+η)(t−ti))wi−1(ti, 1 − SF(1 − x)e−(dA+η)(t−ti)).

Since pnA(t) = 0 for t ∈ [t0, t1], it follows that, for i = 0,

w0(t, x) = 1.

Appendix C. Function TCP∗
mean(t)

In this section, we define the function TCP∗
mean(t) and prove that TCP∗

mean(t) < TCPmean(t).
The function TCP∗

mean(t) is defined as follows:

TCP∗
mean(t) = v̂i(t, 0)ŵi(t, 0)

such that for i > 0,

v̂i(t, x) = v̂i−1(ti, fi(t, x))Îi(t, x),

ŵi(t, x) = v̂i−1(ti, 1 − γ (1 − SF)(1 − x)e−(dA+η)(t−ti))ŵi−1(ti, 1 − SF(1 − x)e−(dA+η)(t−ti)),

where ni is defined in Equation (3.9) and Îi(t, x) is defined as

Îi(t, x) = exp

[−ηA(t+i )(1 − x)

bU − dU

(
e(bU −dU )(t−ti) − 1

)]
.

For i = 0, v0(t, x) = G0(t, x) and w0(t, x) = 1.
Notice that TCPreal(t) and TCP∗

mean(t) only differ in the terms Îi(t, x) and Ii(t, x), therefore, to prove
that TCPreal(t) < TCP∗

mean(t), it is sufficient to prove that Îi(t, x) < Ii(t, x). For this, we notice that

Ii(t, x) = exp

[
−η(1 − x)(bU − dU)

∫ t

ti

A(s)e−(bU −dU )(s−ti)ds

bU(1 − x)e−(bU −dU )(s−ti) + (bUx − dU)e−(bU −dU )(t−ti)

]

= exp

⎡
⎣−η

∫ t

ti

A(s)e−(bU −dU )(s−ti)ds
e−(bU −dU )(t−ti)

1−x + bU
bU +dU

(
e−(bU −dU )(s−ti) − e−(bU −dU )(t−ti)

)
⎤
⎦.
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We also note that

∫ t

ti

A(s)e−(bU −dU )(s−ti)ds
e−(bU −dU )(t−ti)

1−x + bU
bU +dU

(
e−(bU −dU )(s−ti) − e−(bU −dU )(t−ti)

)

≤
∫ t

ti

A(s)e−(bU −dU )(s−ti)ds
e−(bU −dU )(t−ti)

1−x

≤ e(bU −dU )(t−ti)(1 − x)A(t+i )

∫ t

ti

e−(bU −dU )(s−ti)ds

= A(t+i )(1 − x)

bU − dU

[
e(bU −dU )(t−ti) − 1

]
.

The first inequality is valid since the term that we eliminated in the denominator is positive. The second
inequality is true because A(t) is a decreasing function between the treatment times and at treatment times
we have that A(t+i+1) < A(t+i ).

Therefore, from the above definition of Îi(t, x) it follows that Îi(t, x) < Ii(t, x).
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