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ABSTRACT During differentiation, intestinal stem cells (ISCs), a prototypical adult stem cell pool, become either secretory
transit-amplifying cells, which give rise to all secretory cell types, or absorptive transit-amplifying cells, which give rise to enter-
ocytes. These cells exhibit distinct cell cycle dynamics: ISCs cycle with a period of 24 h and absorptive transit-amplifying cells
cycle with a period of �12 h, whereas secretory transit-amplifying cells arrest their cycle. The cell cycle dynamics of ISCs and
their progeny are a systems-level property that emerges from interactions between the cell cycle control machinery and multiple
regulatory pathways. Although many mathematical models have been developed to study the details of the cell cycle and related
regulatory pathways, few models have been constructed to unravel the dynamic consequences of their interactions. To fill this
gap, we present a simplified model focusing on the interaction between four key regulatory pathways (STAT, Wnt, Notch, and
MAPK) and cell cycle control. After experimentally validating a model prediction, which showed that the Notch pathway can
fine-tune the cell cycle period, we perform further model analysis that reveals that the change of cell cycle period accompanying
ISC differentiation may be controlled by a design principle that has been well studied in dynamical systems theory—a saddle
node on invariant circle bifurcation. Given that the mechanisms that control the cell cycle are conserved in most eukaryotic
cell types, this general principle potentially controls the interplay between proliferation and differentiation for a broad range of
stem cells.
INTRODUCTION
Stem cells are characterized by their distinct ability to both
proliferate and differentiate and can be broadly classified
into two types: embryonic stem cells, which give rise to
the three germ layers during embryonic development, and
adult (somatic) stem cells, which reside in a number of adult
tissues where they serve as a lifelong source of cells that can
regenerate damaged tissues and replenish dying cells (1,2).
Intestinal stem cells (ISCs) represent a prototypical adult
stem cell pool that resides in niches at the base of intestinal
crypts (2) (Fig. 1 A, left panel). The differentiation of these
cells and their progenitors continuously repopulate the
epithelial layer of the intestine, whereas the active prolifer-
ation of ISCs allows for the prolonged maintenance of the
stem cell pool (2).
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Differentiation of ISCs is associated with a change in
their proliferation dynamics (Fig. 1 A, right panel). When
they differentiate, ISCs make a binary fate decision to
become either absorptive transit-amplifying cells (aTAs)
or secretory transit-amplifying cells (sTAs) (3). ISCs have
been estimated to proliferate with a period of �24 h (4,5),
whereas their daughter cells either cycle with a shorter
period of 12 h (aTAs) (4) or exit the cell cycle (sTAs) (6).
Such experimental observations trigger an intriguing ques-
tion: how do these stem cells alter their proliferation rates
during the differentiation process?

To uncover the dynamical control of proliferation during
ISC differentiation, we have developed a simple mathemat-
ical model that includes a number of key signaling pathways
(Wnt, Notch, and MAPK [mitogen-activated protein
kinases]), which have been shown experimentally to be crit-
ical regulators of proliferation and differentiation in ISCs
(2). These regulatory pathways were then coupled to the
cell-cycle control network to gain insights into how their
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FIGURE 1 The proliferative dynamics of intesti-

nal stem cells (ISCs) and transit-amplifying (TA)

cells. (A) A schematic illustration of the intestinal

crypt, which is divided into two regions: the stem

cell niche and TA zone. ISCs reside in a niche at

the base of the crypt where they are supported by

Paneth cells. The TA cells reside above the ISCs

in the TA zone, which comprises a heterogeneous

population of TA cells: absorptive TA cells

(aTAs) proliferate, whereas secretory TA cells

(sTAs), do not proliferate. Different TA cells can

be marked by their expression of ATOH1, with

sTAs expressing high levels of ATOH1 and aTAs

expressing low ATOH1. Both cell types are derived

from ISCs. (B) The influence diagram of the current

model. Solid shapes with names represent the

model components; arrows indicate activation;

solid circle heads indicate repression. The model

consists of four interacting modules. To see this

figure in color, go online.

Modeling Stem Cell Proliferation
interplay influences the cell cycle (Fig. 1). Using this simpli-
fied model, we are able to recapture the experimentally
observed proliferation dynamics of ISCs and their progeni-
tors that arise during the differentiation process. Rigorous
analysis of the model with a diverse set of tools revealed
that a simple dynamic scenario, in terms of a well-defined
saddle node of invariant circle (SNIC) bifurcation, might
underlie the dramatic changes of cell proliferation during
the differentiation of ISCs. In addition, the model also
predicts how the proliferation of ISCs is disrupted by
alterations in the STAT (signal transducers and activators
of transcription) signaling pathway that are present in
inflammatory bowel disease (7).

This work illustrates that simplified theoretical models
can be used to unravel complex biological control mecha-
nisms. The cell cycle dynamics of eukaryotic cells are
controlled by conserved cell cycle regulators (Cdks [cyclin
dependent kinase], Cyclins, Cdk inhibitors, etc.) and the
feedback between them (8). Hence, we believe that this
simplified model could be used to study a host of other types
of stem cells, such as embryonic or hematopoietic stem
cells, which alter their proliferation rates during differentia-
tion (9,10).
METHODS

Modeling approach

When developing our mathematical model, we adopt a generic approach in

which the dynamics of a particular model component, Xi, are determined by

the following ordinary differential equation:

dXi

dt
¼ ti ðFi � XiÞ;

1 i
X

i
where Fi ¼
1þ e�s Wi

and Wi ¼ R0 þ
j

Rj$Xj:

Briefly, each model component (Xi) reaches its desired steady state (Fi)

over timescale ti. The steady state of each model component (Fi) is a

nonlinear function of a weighted sum (Wi) over all model components Xj

jsið Þ. Positive weights ðRi
j > 0Þ promote Xi, whereas negative weights

ðRi
j < 0Þ inhibit Xi. Weights of zero ðRi

j ¼ 0Þ correspond to model compo-

nents which have no effect on Xi. A more detailed description of the

approach can be found in the literature (11,12) as well as in our previous

publications (13) and (14).

Existing experimental observations suggest that the cell cycle periods are

controlled by the signaling gradients in the crypt. For example, WNT

proteins are believed to form a gradient with the highest levels in the

crypt base (in the stem cell niche) and lowest levels near the top of the crypt
Biophysical Journal 115, 2250–2258, December 4, 2018 2251



Ballweg et al.
(15); a MAPK gradient is thought to run in the opposite direction (16). ISCs

reside near the crypt base, where they receive high levels of WNTand lower

levels of MAPK. As such, cells in this environment should cycle with a

period of �24 h. As cells move up the crypt and into the transit-amplifying

(TA) zone, they should begin to cycle faster with a period of �12 h (4). To

recapture these biological observations, we first manually estimated a single

set of parameters that could recapture these dynamics, and this served as the

basal parameter set. The governing equations and the basal parameter

values for the current models are shown in Tables S1 and S2. The differen-

tial equations were simulated using X-Windows Phase Plan Plus Auto

(http://www.math.pitt.edu/�bard/xpp/xpp.html) and plotted using Python

(https://www.python.org/).

To produce a population of models, parameters for each model were

randomly chosen from a uniform distribution that ranged between 70 and

130% of their basal values. Because of the simplifications of the cell cycle

control module, the parameters controlling the interactions between CDK

and C20 were not allowed to vary nor were the strengths of the interactions

between CCS, CKR, and CDK. For the environmental variables (WNT,

MAPK, and DSL), a value was chosen randomly from a uniform distribu-

tion over the range [0,2].

An approximate Bayesian computation rejection scheme (17) was used

to identify feasible parameter sets. For a given model (i.e., a given param-

eter set), if simulation of the parameter set satisfied any of our preset

criteria (CCT> 20 h, CCT< 18 h, or cell cycle arrest), then the parameter

set was saved. If the parameter set did not meet any of these criteria, then

the parameter set was rejected. This process continued until a desired

number of parameter sets was amassed for each of the three cell types.

Some parameter sets produced cells that arrest with high levels of CDK.

Because these do not resemble any known intestinal cells, the correspond-

ing models were not used in any further analyses.

To simulate the cellular response to inflammation, representative cells

were first chosen and simulated. Then, an addition of interleukin-22 was

mimicked at hour 40 of the temporal simulation by changing the environ-

ment variable interleukin-22 from 0 to 1.
Bifurcation analysis

To perform the one parameter bifurcation analysis, the differential equa-

tions for CDK, CKR, and C20 were solved with CCS as a control parameter.

For the two-parameter bifurcation analysis, both CCS and ATOH1 were

viewed as control parameters, and the position of the threshold between

the oscillatory and the nonoscillatory regions was tracked with Oscill8

(http://oscill8.sourceforge.net). All bifurcation diagrams were plotted

with Python (https://www.python.org/).
Classification tree analysis

Each simulation was binned into one of three groups based on its cell cycle

time (CCT): fast (CCT< 18 h), slow (CCT> 20 h), or arrested (CCT¼ 0).

These groups were then used as classifiers for tree analyses. Tree models

were run using the model parameters in addition to the steady-state values

for model components, which were not shown to oscillate. Trees were

computed in R (https://www.r-project.org/) using the rpart2 algorithm

within the caret package (18).
Random forest analysis

Groups (as defined above) were used as classifiers for the random forest

(RF) analysis. Computation was done in R using the randomForest algo-

rithm (19) within the caret package (18). Default settings were used

along with 10-fold cross validation. The most accurate model, defined

as the model with the lowest misclassification rate, was chosen to calcu-

late variable importance, which is a measure of the reduction in the
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accuracy of the statistical model when each of the predictors is

permuted. This is done by permuting the value of each parameter and

calculating the difference between the out-of-bag error for the initial

model and the permuted model. This difference is then averaged over

all trees within the forest and normalized by the standard error. The

resulting error values are scaled to the maximal error value so that pre-

dictors with a value of 100 are the most important predictors within the

statistical model, and predictors with a value of 0 have no importance in

the model (18).

Both the number of models and the parameter variations included in the

models influence the results of the CARTand RF analyses. To address these

effects, we performed additional simulations in which either the number of

models increased (12,000 total models) or decreased (3000 total models).

We also carried out simulations in which the parameter ranges were varied.

See Fig. S2, A–D (CART analysis) and Fig. S3, A–D (RF analysis).
Confocal imaging and analysis

The imaging data from control and Atoh1-deficient enteroids (Matsu-Ura

et al. (20)) were processed using ZEN (Zeiss, Thornwood, NY) or NIS el-

ements (Nikon, Melville, NY). Three-dimensional (3D) images were recon-

structed and analyzed using IMARIS (Bitplane, Zurich, Switzerland) to

quantify the duration of fluorescent intensity in crypt structures.

Histogram distributions and Student’s t-tests (significance level: p ¼
0.05) were conducted using Prism 6 (GraphPad Software, La Jolla, CA)

and SigmaPlot (Systat Software, San Jose, CA).
RESULTS

Diverse parameter sets allow a single model
structure to recapture the proliferation dynamics
of ISC, aTA, and sTA cells

Our mathematical model comprises four interacting
modules representing the STAT signaling pathway, the
WNT/MAPK pathways, the Notch signaling pathway, and
the cell cycle (Fig. 1 B). The cell cycle module has been
reduced to its core components. CDK levels are controlled
via two interactions: a negative feedback formed by CDK
and its repressor APC/CDC20 (C20), and a mutually antag-
onistic positive feedback that exists between CDK and a
generic class of cell cycle repressors (CKRs), which repre-
sent the action of many repressors of the cell cycle (i.e.,
p21, p27, p57). CKRs are also inhibited by cell cycle start-
ers (CCSs), which represent the net effect of cell cycle
promoters (i.e., CyclinD, cMyc), which are activated by
upstream signaling pathways such as the Wnt or MAPK
pathways. Both WNT and MAPK can promote cell prolif-
eration (21), and the downstream transcriptional activities
of these two pathways are hypothesized to repress each
other in a mutually antagonistic feedback (22,23). The
STAT signaling pathway, which plays a significant role in
the pathogenesis of inflammatory bowel disease, is
assumed to activate CCSs through inflammatory signals
(24,25). The Notch signaling pathway represses CDK
inhibitors through its inhibition of ATOH1, thus promoting
cell proliferation in response to DSL (26). A detailed
description of these modules is available in Supporting
Materials and Methods.

http://www.math.pitt.edu/%7Ebard/xpp/xpp.html
http://www.math.pitt.edu/%7Ebard/xpp/xpp.html
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The molecular interactions contained within the modules
were translated into a system of ordinary differential equa-
tions (Table S1) and parameter sets (which yielded experi-
mentally observed cell cycle periods) were chosen at
random (elaborated in Methods). With differing parameter
sets, the model structure could reproduce the characteristic
proliferation dynamics of ISCs, aTAs, and sTAs. Some
parameter sets mimic ISC dynamics with a 24 h period of
proliferation (see Fig. 2 A for three examples); others exhibit
a 12 h proliferation rate similar to aTAs (see Fig. 2 B). A
third group of models do not exhibit proliferative (oscilla-
tory) dynamics and instead reach a stable steady state with
low CDK, which is characteristic of sTAs (simulations not
shown). Because the population of models recapitulate the
proliferation dynamics of stem and TA cells, we intend to
use them as functional ‘‘in silico’’ representations of the
cell types of interest. However, before we use them for
such a purpose, we must first understand how the molecular
network can give rise to such drastic differences in prolifer-
ation rates of intestinal cells, and second, we must investi-
gate whether these models show similar properties when
compared to their experimental counterparts.
The simplified models indicate that ATOH1
contributes significantly to the control of cell
proliferation

As an initial test of model quality, we subject our population
of models to a classification and regression tree (CART)
FIGURE 2 The simplified models suggest that ATOH1 might contribute signifi

of three slowly-cycling cells. (B) Representative CDK activities of three rapidly

dominate are labeled as Slow; those in which rapidly dividing cells dominate are

Avariable-importance calculation with a random forest (RF) analysis. Values are

for classification and values of 100 indicate the most important model compon
(27) analysis to understand how individual elements of the
molecular control network in our model might contribute
to cell cycle periods. Bearing the same structure but
different parameter values, our models are characterized
by three different types of cell cycle dynamics: fast
(<18 h period), slow (>20 h period), or arrested. Mean-
while, six model components (ATOH1, CCS, b-catenin,
HES1, NOTCH, and AP1) reach nonoscillatory steady
states. For a comprehensive analysis, all 35 model parame-
ters and the six model components that reach nonoscillatory
steady states are analyzed using the CART algorithm.

With recursive partitioning (27), the algorithm finds
optimal predictors (parameter values or steady-state values)
that can classify models. The models are then split into
leaves (nodes or clusters) with similar identities. The result-
ing classification tree divides 6000 models in a binary
fashion (Fig. 2 C). All models are included in the root
node (Fig. 2 C, first red node on the top). It comprises
33% arrested cells, 33% rapidly cycling cells, and 33%
slowly cycling cells and is labeled as ‘‘arrested’’ by the soft-
ware. Then, at a threshold level of Atoh1 (ATOH1 R 0.38),
the root node is divided into two daughter nodes. All models
with ATOH1 R 0.38 are binned into a node that is
characterized by a high percentage (91%) of arrested
cells (Fig. 2 C, red node). In contrast, models with
ATOH1 < 0.38 are incorporated into a second node with a
high percentage (45%) of fast-cycling cells. These two no-
des are also labeled on the basis of the dominant cell type.
The algorithm continues to divide the resulting nodes in a
cantly to the control of cell proliferation. (A) Representative CDK activities

cycling cells. (C) A classification tree. Nodes in which slowly cycling cells

labeled Fast; nodes associated with arrested nodes are labeled Arrested. (D)

scaled from 0 to 100, for which predictors with a value of 0 are dispensable

ents or parameters. To see this figure in color, go online.
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similar manner until a preset threshold is met. This single
tree has a classification accuracy of more than 70%, mean-
ing that given the steady-state values of CCS and ATOH1,
the tree can correctly classify the cell cycle dynamics of
more than 70% of cells.

In theory, splitting can continue until leaves contain only
models of homogeneous behaviors (example tree, Fig. S1).
Growing a tree in this way comes with a number of costs;
the trees can be difficult to visualize and hard to interpret
and are vastly overfitted. So for practical purposes, trees
are pruned to a smaller size to aid with visualization and
to prevent overfitting (Fig. 2 C).

To overcome the limitations brought on by a single
classification tree, the RF algorithm was used to achieve
collective results from an ensemble of randomly modified
trees (i.e., forest) (28). By computing and averaging the
consequential error when a single model parameter or
component is permuted, the RF algorithm was used to calcu-
late the relative importance of each model parameter or
component (Fig. 2 D). The RF analysis revealed that
ATOH1 and CCS, the two model components used for the
initial splitting in the classification tree, play critical roles
in classifying cell cycle periods. Given the data-driven na-
ture of the CART and RF methods, the results they generate
are sensitive to the number of the models analyzed and the
parameter variations included in these models (Fig. S2,
A–D, CART analysis and Fig. S3, A–D, RF analysis).
Despite such variation, these analyses consistently reveal
that Atoh1 and CCS play significant roles in regulating
the length of cell cycle periods in intestinal cells. In other
words, the CART and RF analyses essentially examined
the sensitivity of cell cycle dynamics to all changing model
components (parameters and variables) and revealed that the
cell cycle period is most sensitive to ATOH1 and CCS.

It is reasonable that ATOH1 and CCS were revealed to be
the most significant regulators of cell cycle because CCS is
the model component that summarizes the relative abun-
dance of classical cell cycle promoters, and ATOH1 directly
promotes the transcription of cell cycle inhibitors (elabora-
tion and references in Supporting Materials and Methods).
On the other hand, variation in parameters associated with
upstream regulators of the cell cycle (e.g., HES1) have
less of an effect on the cell cycle.

Given that CCS promotes the activation of CDK, it is ex-
pected that CCS significantly contributes to the regulation of
cell cycle periods. Therefore, we focused on understanding
the role of ATOH1 in controlling ISC proliferation in vitro.
Single cell cycle dynamics of enteroids reveal a
significant role for ATOH1 in controlling cell
proliferation rates

Traditionally, the CCTs of intestinal crypt cells have been
estimated by pulse chase staining with tritiated thymidine,
bromodeoxyuridine, or 5-ethynyl-20-deoxyuridine (4,5).
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These methods have low precision (because it is difficult
to measure single cells) and can have poor temporal re-
solution (cells not sampled often enough). 3D intestinal
enteroids represent a suitable experimental system to study
crypt cell dynamics because their in vitro nature allows for
increased precision and resolution of cellular measure-
ments. Formed by the self-organization of intestinal epithe-
lial cells into ‘‘mini guts,’’ enteroids contain the different
cell types seen within the in vivo crypt (ISCs, TAs, and
differentiated cell types) (29). By combining this 3D culture
system with the fluorescent ubiquitination-based cell cycle
indicator (FUCCI) system (30), we have developed a frame-
work that allows for measurements of cell cycle periods
with high temporal resolution in single crypt cells (20). In
previous work, we have used this technique to show that
the duration of the Gap 1 (G1) phase of the cell cycle has
a strong positive correlation with the CCT of intestinal
stem and progenitor cells (20). Based on this strong correla-
tion, we measured the duration of the G1 phase in control
versus Atoh1-knocked-down (KD) enteroids to evaluate
the contribution of ATOH1 to cell cycle dynamics, as pro-
posed by our CART and RF analyses (Fig. 2, C and D).
Our experimental results show marked differences in the
duration of G1 phases between control and Atoh1-KD enter-
oids (Fig. 3, B and C). The average duration of the G1 phase
in Atoh1-KD enteroids (2.284 5 0.213 h (average 5 stan-
dard error); n ¼ 81) is significantly reduced when compared
to control enteroids (6.684 5 0.856 h; n ¼ 38; p < 0.0001)
(Fig. 3 D). These findings are consistent with separate
studies, which show that the induction of ATOH1 in skin
cancer cell lines increases their doubling time (31).

Given the consistency between the experimental results
and the theoretically predicted significance of ATOH1, we
conclude that the theoretical models can serve as in silico
representations of the intestinal cells of interest and can be
used for further investigation.
A SNIC bifurcation controls cell cycle period in
differentiating ISCs

Although ATOH1 and CCS are ‘‘model components’’ in the
full model, they rapidly attain steady states in time-depen-
dent simulations. Hence, their effect on CCT can be under-
stood by treating them as ‘‘control parameters’’ of the CDK
control system.

To investigate how cell proliferation is controlled by
CCS, we performed a one-parameter bifurcation analysis
using CDK as the representative variable and CCS as the
control parameter. CDK was chosen as the representative
variable because its oscillatory dynamics give rise to the
cell cycle. At low levels of CCS, the cell cycle control sys-
tem is attracted to a G1-like stable steady state with low
levels of CDK. When CCS levels increase above a threshold
(�0.3, Fig. 4 A), the stable steady state collides with an un-
stable saddle point and disappears. For levels of CCS above



FIGURE 3 Experimental observations confirm

the significant role of ATOH1 in controlling cell

proliferation. (A) Representative crypt images

from time-course confocal microscopy of an

FUCCI2 (fluorescent ubiquitination-based cell cy-

cle indicator)-derived enteroid. The arrow indicates

a single cell that is traced to estimate the duration

of the G1 phase of the cell cycle. Scale bar repre-

sents 10 mm. (B) The distribution of G1 phase

durations obtained from FUCCI2 cells in control

enteroids. (C) The distribution of G1 phase dura-

tions obtained from cells in Atoh1-KD enteroids.

(D) Cells from control enteroids have a signifi-

cantly longer G1 phase than Atoh1-deficient

FUCCI enteroids (p< 0.0001). Error bars represent

standard error. To see this figure in color, go online.
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the threshold, the cell cycle module evolves to a stable oscil-
lation (Fig. 4 A).

This particular transition from a stable steady state to
oscillation is defined as a SNIC bifurcation (32). Such bifur-
cations arise when a stable node disappears by colliding
with an unstable saddle point, generating an oscillatory so-
lution with a very large period (hence the term invariant
‘‘circle’’). As the level of CCS further increases, the system
moves away from the SNIC transition and the oscillation
period decreases (Fig. S4 A). The observed change of period
with sustained amplitude distinguishes a SNIC bifurcation
from the more widely studied Hopf bifurcation that controls
the transition out of the oscillatory region (Fig. S4 B) (32).

The level of CCS needed to generate oscillatory behavior
is regulated by other model components. Given the signifi-
cant contribution of ATOH1 in our computational analyses
and experimental observations, we performed a two-param-
eter bifurcation analysis and tracked the position of the
FIGURE 4 Bifurcation analysis revealed that a

SNIC bifurcation controls ISC proliferation (A).

A one-parameter bifurcation analysis showing the

control of CDK by CCS. The solid curve indicates

stable steady-state solutions, whereas the dashed

curve indicates unstable steady states. Circles

indicate the minimal and maximal amplitudes in

oscillatory solutions of CDK. (B) A two-parameter

bifurcation diagram showing how CCS and ATOH1

control the dynamics of CDK. The plane is sepa-

rated into three distinct regions: one oscillatory

and two nonoscillatory regions. The positions of

different cells on this map determine their prolifer-

ative dynamics. (C) ISCs, aTAs, and arrested cells

plotted on a two-parameter bifurcation diagram.

ISCs and aTAs reside within the oscillatory region,

whereas the arrested cells lie outside this region.

(D) A three-dimensional (3D) plot of ISCs, aTAs,

and arrested cells, with a third parameter, RCKR
Ato .

To see this figure in color, go online.
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SNIC bifurcation and Hopf bifurcation in response to
continuous changes in both CCS and ATOH1. In this way,
we identified a pair of lines that decompose the two-dimen-
sional (2D) parameter plane into three distinct regions: a
central region associated with oscillatory solutions, which
is surrounded by two regions characterized by nonoscilla-
tory solutions (Fig. 4 B).
The SNIC bifurcation explains the altered
proliferation dynamics that occur during
differentiation

We plotted model solutions that correspond to slow-cycling
ISCs, fast-cycling aTAs, and arrested sTAs on the 2D plane
spanned by CCS and ATOH1 (Fig. 4 C). Each model resides
at a different position on this 2D plane, and the relationship
between the positions of these models and the SNIC bifur-
cation line (Fig. 4 C, left line) readily explains both the
quantitative and qualitative differences between their prolif-
eration dynamics. Quantitatively, the ISCs reside near the
threshold and proliferate with a large period of �24 h
(Fig. 4 C, blue circles), whereas the aTAs reside far from
the threshold and proliferate with a short period of �12 h
(Fig. 4 C, green circles); qualitatively, the sTAs reside
outside the oscillatory region (Fig. 4 C, red circles) and
do not proliferate.

The RF analysis (Fig. 2 D) indicated that cell cycle dy-
namics are also controlled by the parameter, RCKR

Ato , which
specifies the extent to which ATOH1 promotes CKR
production.

Different values of RCKR
Ato within individual cells result in

different locations of their SNIC bifurcation lines, and the
relationship between the SNIC bifurcation lines and the
cellular position is what determines the cell cycle period
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for each cell. To visualize this control, we have plotted a se-
ries of SNIC bifurcation curves for different values of RCKR

Ato

(Fig. S5). As the level of RCKR
Ato varies, so too do the slopes of

the bifurcation curves (Fig. S5). This indicates that not only
are the levels of individual model components (e.g.,
ATOH1) important in determining the dynamics of the
system, but so too are the parameters that control their
respective functions (e.g., RCKR

Ato ). When plotted in three
dimensions (Fig. 4 D), we see that CCS, ATOH1, and
RCKR
Ato are sufficient to separate the three cell populations.

Collectively, these plots reveal how the positions of individ-
ual cells relative to the SNIC boundary can explain their
different dynamic behaviors.
The model predicts three types of proliferation
changes in response to STAT activation

In response to inflammatory signals, innate immune cells
secrete cytokines that activate the STAT signaling pathway
within ISCs and consequently enhance their proliferation
(25). Consistent with this observation, overexpression of
STAT has been shown to increase the pool of actively prolif-
erating ISCs, whereas its deletion decreased this pool (24).

Given that the STAT pathway promotes the transcription
of CyclinD (24), a component of CCS, STAT activation re-
sults in a rightward shift of cells on the ATOH1-CCS plane
(indicated by arrows in Fig. 5 A).

Increasing CCS causes different effects within individual
cells. A stem cell that was quiescent before STAT activation
may be pushed into the oscillatory region and start to prolif-
erate (black arrow in Fig. 5 A; the corresponding dynamic
simulation is shown in Fig. 5 C). Alternatively, if STAT
activation is insufficient to drive a quiescent stem cell into
the oscillatory region, then the cell remains quiescent (red
FIGURE 5 The model predicts three types of

proliferation changes in response to STAT pathway

activation. (A) The change in intestinal stem cells

(ISCs) in response to activation of the STAT

pathway. By elevating CCS, activation of the

STAT pathway moves the ISCs rightward. Solid

circles show the ISCs before STAT activation;

open circles of identical colors show these ISCs af-

ter activation of the STAT pathway. Each arrow

represents the trajectory of an individual cell

following STAT activation. (B–D) Time series sim-

ulations of cells before and after STAT activation

(dotted line); a cell that remains arrested after acti-

vation (B), a cell that begins to proliferate upon

activation (C), and a third cell that proliferates

faster after activation (D). To see this figure in

color, go online.
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arrow in Fig. 5 A; the corresponding dynamic simulation is
shown in Fig. 5 B). Such heterogeneous responses may
explain why, in the experimental setting, only some but
not all arrested cells resume cycling upon STAT5 activation
(24). Cells that are already slowly proliferating are predicted
to respond to STAT activation by relocating into the middle
of the oscillatory region and cycling more rapidly (blue ar-
row in Fig. 5 B; corresponding temporal simulation in Fig. 5
D). After STAT activation, some cycling cells are arrested
with high CDK activity (data not shown); these do not
resemble any known intestinal cells and are not analyzed
further.

STAT activation has been shown to increase the number
of total cycling cells (24,25). In addition, the overall crypt
length is shown to be increased and is accompanied by an
increase in the size of the TA zone (25). Shorter cell cycle
periods after STAT in ISCs represent, to our knowledge, a
novel and testable prediction of our mathematical model.
DISCUSSION

We have shown how a simple mathematical model can be
used to understand complex biological control mechanisms
and, in doing so, highlighted how mathematical modeling
can be used as a powerful tool in biology (33). Like a micro-
scope, a mathematical model has to strike a balance between
its field of view (how many pathways should be included)
and its magnification (what level of molecular detail should
be included). Finding this balance between field of view and
magnification is essential and depends on the model’s
purpose.

Our current model is designed to understand how the pro-
liferation dynamics of ISCs change during differentiation.
Accordingly, our model focuses on interactions between
four simple functional modules rather than detailed mecha-
nistic descriptions of each module.

There are, however, many detailed mathematical models
of ISCs, some of which have been developed and validated
against experimental data (34–37). Additional models can
be found in the reviews by Kershaw et al. (38), Fletcher
et al. (39), Carulli et al. (40), and Lloyd-Lewis et al. (41).
Compared with these models, our model is purposely
simplified to unravel the complex dynamics that govern
cell proliferation during differentiation. In future work, it
would be interesting to assemble these existing models
into multiscale models and to test whether the predictions
generated by our simplified model are preserved as we
vary the level of detail used to describe each module.

All stem cells undergo proliferation and differentiation.
To date, Waddington’s Valley has been widely used as the
dominant metaphor to describe stem cell differentiation.
In mathematical terms, Waddington’s Valley represents a
pitchfork bifurcation (42). Here, we propose that a SNIC
bifurcation may explain the change in the proliferation rates
of ISCs during differentiation. As discussed above, this
SNIC bifurcation is sufficient to explain many of the exper-
imentally observed differences between ISCs and TA cells.
Qualitatively, presence inside or outside of the oscillatory
region distinguishes the cycling cells of the crypt (ISCs
and aTAs) from the noncycling sTA cells; quantitatively,
the distance between an oscillatory cell and the SNIC
boundary (Fig. 4 B, left line) can provide insight into the dif-
ferences between ISCs (slow cell cycle period) and aTA
cells (fast cell cycle period). Meanwhile, it helps us to un-
derstand the effect of STAT pathway activation on ISCs
and was able to predict a shorter cell cycle period in these
cells, which has not been experimentally observed. Previous
models have used SNIC bifurcations to explain how cellular
mass controls cell cycle oscillations (43). Here, we demon-
strate that the same SNIC bifurcation may explain how ISC
cell cycle dynamics are controlled by multiple regulatory
pathways during differentiation. As the mechanisms that
control the cell cycle are highly conserved among eukary-
otes (8), we anticipate that our model could be tailored to
study the interplay between proliferation and differentiation
in other stem cell types.
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