
Supplementary Material

S. 1 Algorithm and parameter values for agent-based model
(a) Initialization. We consider an idealised initial condition unless otherwise speci�ed: la�ice points

(x, y), for which x < D/4 or x > 3D/4, are occupied by an agent.

(b) Update algorithm. Let N(t) denote the number of agents at time t. To update the agent-based
model at time t to the next simulation time t+ τ , we do the following:

1. First, N(t) agents are chosen sequentially at random and given the opportunity to move. An
agent at (x, y) a�empts to move with probability pm to (x ± ∆, y) or (x, y ± ∆), with the
target site chosen with equal probability.

2. N(t) agents are then selected sequentially at random again and given the opportunity to pro-
liferate. An agent at (x, y) a�empts to proliferate with probability pp and places its daughter
agent at (x±∆, y) or (x, y ±∆), target sites being chosen with equal probability.

At each update time, agents can move and/or proliferate only if the target site is vacant. A list
of the parameters that are used in the agent-based model is presented in Table S1.

Parameter Description Value Units
pm Motility probability 0.3 N/A
pp Proliferation probability 0.1 N/A
T End time 24 hr
τ Time step 0.01 hr
D Domain length 500 µm
∆ La�ice spacing 10 µm

Table S1: List of the parameters used in the agent-based model, together with their default values.
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S. 2 Objective function for optimal window size
We describe the objective function to calculate the optimal window size in detail. Let us consider
a window size w and divide Y , which has size D, into M = D/w segments of length w, denoted
by Ys for 1 ≤ s ≤ M . Ys is the set of pixels that belong to a segment of length w. When D is not
divisible by w, Y is divided into M =

⌊
Y
w

⌋
+ 1 segments, where the �rst

⌊
Y
w

⌋
segments have length

w and the last one has length D − w ×
⌊

D
w

⌋
. A�er applying the linear approximation with respect

to the window size w, we have the following approximation for the interface position at time tn for
each j ∈ Ys,

ij(tn) ≈ mstn + bs, (S1)

where ms and bs are determined as described in Section 2.4. We consider the following �tness
functions that evaluate the interface position approximation (S1):

1. Residual sum of squares

E(w) = 1
2D

D∑
j=1

N∗∑
n=1

(
el,j,n

2 + er,j,n
2
)

(S2)

where el,j,n = ij(tn)− (mstn + bs) is the residual at time tn for j ∈ Ys of the linear approxi-
mation (S1). �e �rst subscript denotes the interface (le� or right). N∗ denotes the time point
when the two interfaces meet.

2. Linear �tness

R(w) = 1
2D

D∑
j=1

Rl
2
j +Rr

2
j (S3)

where Rl
2
j is the coe�cient of determination R2 of the linear approximation to the j-th co-

ordinate of the le� interface position progress over time, i.e. let ij(tn) = 1
N∗
∑N∗

n=1 ij(tn),
SStol = ∑N∗

n=1(ij(tn) − ij)2 and SSres = ∑N∗

n=1(mstn + bs − ij(tn))2, then Rl
2
j := 1 − SSres

SStol
.

�e be�er the overall linear �t, the closer FitR2 should be to 1. �e subscript denotes the
interface (le� or right).

3. Fitness between le� and right velocities
We consider a distance metric derived from the Kolmogorov-Smirnov test statistic [1]. Given
two data sets {as}n

s=1 and {br}m
r=1 and their empirical cumulative distributions Fn and Fm,

respectively, the Kolmogorov-Smirnov statistic is:

Dn,m = sup
x∈R
|Fn(x)− Fm(x)|. (S4)

Normalizing the statistic by the e�ective number of data points, we obtain the KS distance
that was introduced in [4]:

Dist({as}n
s=1 , {br}m

r=1) = nm

n+m
Dn,m, (S5)

where {as}n
s=1, {br}m

r=1 are two ordered data points. We consider the KSdistance between the
le� and right windowed velocity distributions

KSdistance(w) = Dist ({ml} , {mr}) , (S6)

where the subscripts denote the le� and right side, respectively. Ideally, the le� and right
windowed velocity distribution should be the smallest possible.
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We consider the following global function:

F̂ (w) = Fitresid(w) + FitRsquared(w) + FitKSdistance
(w), (S7)

where

Fitresid(w) :=
max

1≤w≤D
E(w)− E(w)

max
1≤w≤D

E(w)− min
1≤w≤D

E(w) , (S8)

FitRsquared(w) :=
R(w)− min

1≤w≤D
R(w)

max
1≤w≤D

R(w)− min
1≤w≤D

R(w) , (S9)

and

FitKSdistance
(w) :=

max
1≤w≤D

KSdistance(w)−KSdistance(w)

max
1≤w≤D

KSdistance(w)− min
1≤w≤D

KSdistance(w) . (S10)

�e terms are normalized so each term is between 0 and 1 and the largest value is the one maximizing
each criterion. �e global �tness function is normalized, F (w) = 1

3 F̂ (w), such that 0 ≤ F (w) ≤ 1.
�e width of the window with the largest F (w) value is considered the optimal value with respect
to the three �tness functions, weighted equally through the global function.

If additional scratches are considered to calculate the optimal window, we take a weighted sum
of objective functions for each of the scratches considered. In such cases, the objective function can
be wri�en as

F (w) = 1
S

n∑
s=1

Fs(w), (S11)

where Fs is the individual objective function for scratch assay s and S is the number of scratch
assays considered.
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S. 2.1 Similarity between le� and right velocities

In this subsection we discuss why similarity between the le� and right velocities is necessary for
optimal window size calculation.

If the termFitKSdistance
is neglected when calculating the objective function (Equation (S7)), then

the optimal window size will be a window of size 1µm since the front position is not averaged over a
window and the actual interface position is considered for the linear �t, reducing the overall �tness
error. We can observe this behaviour for the in vitro data in Figure S6 (a) and (b) where the �tness
increases as the window size decreases. We now outline the problems of considering a window of
size signi�cantly smaller than the cell diameter.

For windows of size signi�cantly smaller than the cell diameter, velocity values are correlated
(See Figure S1 (a) and (b)) and not amenable to standard statistical analysis. In order to apply stan-
dard statistical tests, the velocities must have the same statistics as an independent and identically
distributed (iid) sequence. One way to test for iid sequences is to consider the sample autocorrelation
function [2] which, for an iid sequence with n elements and �nite variance, gives approximately iid
values that follow a normal distributionN (0, 1/n) [3]. A general observation from the in silico and
in vitro data is that the autocorrelation function values from velocities corresponding to windows
of size signi�cantly smaller than the cell diameter di�er greatly from an iid sequence. On the other
hand, when considering windows whose sizes are similar to that of the cell diameter, the autocor-
relation function resembles one for an iid sequence. To illustrate this, we simulate our agent-based
model with the parameters in Table S1. We plot the autocorrelation function of the le� velocities
for windows of sizes 1, 2, 10 and 12µm in Figure S1. �e horizontal red lines in each plot delimit the
95% con�dence interval from a normal distribution N (0, 1/n) where n is the number of velocities.
We observe that for windows of size smaller than the cell diameter (1 and 2µm), the autocorrelation
values exceed the upper limit of the con�dence interval and decrease slightly as the lag increases
(see Figure S1 (a) and (b)). On the other hand, for velocities with windows of sizes similar to that of
the cell diameter, most of the autocorrelation values are within the 95% con�dence interval and as
such can be considered to belong to an iid sequence (See Figure S1 (c) and (d)).

Another problem with windows of size signi�cantly smaller than the cell diameter is that the
velocity values of individual cells at the leading edge are over-represented and a�ect the overall dis-
tribution. �is e�ect can be analysed by looking at the similarity between the le� and right velocities
of the in vitro and in silico data. Since the cells on each side come from a common monolayer, they
are subject to the same biological conditions. As such, we expect the velocities from the le� and
right sides to exhibit the same statistics. A general observation from the in silico and in vitro data
is that for windows of size signi�cantly smaller than the cell diameter, the velocity distributions of
each side di�er while for windows whose sizes are similar to that of the cell diameter, the distribu-
tions more closely resemble each other. To illustrate this, we simulate the agent-based model with
the parameters in Table S1. Violin plots of the velocity distributions for the le� and right velocities
corresponding to windows of size 1, 2, 10 and 12µm are presented in Figure S2 (b). For windows
that are smaller than the cell diameter, the velocity distribution of the le� and right interfaces dif-
fer but for windows whose size are similar to that of the cell diameter, the distributions are more
similar. �e similarity between the le� and the right velocity distributions can be quanti�ed using
the Kolmogorov Smirnov (KS) distance, Equation (S6). In Figure S2 (a) we plot the mean KS distance
between the le� and right velocities for 150 simulations of the agent based model using the param-
eter values listed in Table S1, we observe that the mean KS distance decreases as the window size
increases.

We account for the statistical problems associated with windows which are signi�cantly smaller
than the cell diameter, by including the KS distance in the objective function. We evaluated this ob-
jective function for an agent-based model in which the cells only move horizontally in the direction
of the scratch. In this case, the optimal window size is the cell diameter and this window gave the
best �t and the best similarity between the le� and right velocities (results not shown). Deviations
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from this result indicates lateral movement of the cells.

(a) (b)

(c) (d)

Figure S1: Plot of sample autocorrelation functions of le� velocities corresponding to di�erent win-
dow sizes for an agent-based simulation with the parameters in Table S1. We consider windows
of size: (a) 1, (b) 2, (c) 10 and (d) 12µm. �e velocities show high correlation between neighbors
for windows of size signi�cantly smaller than the cell diameter, while for windows whose sizes are
similar to that of the cell diameter, the autocorrelation values are within the expected con�dence
interval of an iid sequence that follow a normal distribution N (0, 1/n) where n is the number of
velocities.

(a) (b)

Figure S2: (a) Mean KS distance for the le� and right velocity distributions while varying the window
size. (b) Violin plots of the le� and right velocities in blue and green, respectively, for di�erent
windows of size: 1, 2, 10 and 12 µm.

5



S. 3 Classi�cation tests using in silico data
We present the results of the classi�cation tests for the three quanti�cation methods with respect to
the focal parameter P̂ with values in {0.1, 0.5, 0.9} × {0.01, 0.09}. We consider n = 4 simulations
as the sample size for our test and repeat the classi�cation test 20 times.

P̂ = (0.1, 0.05) P̂ = (0.5, 0.05) P̂ = (0.9, 0.05)
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Figure S3: Series of plots showing how the performance of the three quanti�cation methods changes
as the motility rate of the focal parameters varies with �xed proliferation probability p̂p = 0.01. In
each plot, the color of the circle at each parameter pair (pm, pp) indicates the percentage of times the
migration measurements associated with the parameter pair are statistically signi�cantly di�erent
from those associated with the focal parameters P̂ . �e focal parameters P̂ are indicated by a red
circle. �e results reveal that the monolayer edge velocimetry method yields a be�er statistical
classi�cation than the other methods. We note also the performance of all three methods declines
as the motility rate of the focal parameters P̂ increases.
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P̂ = (0.1, 0.09) P̂ = (0.5, 0.09) P̂ = (0.9, 0.09)
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Figure S4: Series of plots showing how the performance of the three quanti�cation methods changes
as the motility rate of the focal parameters varies with �xed proliferation probability p̂p = 0.09. In
each plot, the color of the circle at each parameter pair (pm, pp) indicates the percentage of times the
migration measurements associated with the parameter pair are statistically signi�cantly di�erent
from those associated with the focal parameters P̂ . �e focal parameters P̂ are indicated by a red
circle. �e results reveal that the monolayer edge velocimetry method yields a be�er statistical
classi�cation than the other methods. We note also the performance of all three methods declines
as the motility rate of the focal parameters P̂ increases.

7



S. 4 Determination of the optimal window size of the in vitro
data

We present the plots of the objective function and the three �tness functions that contribute to its
calculation, applied to the in vitro data.

Figure S5: Plot of the objective function for the in silico data. �e optimal window size, w∗ = 16
µm is indicated with a dashed line in red.

(a) (b) (c)

Figure S6: Plot of the �tness functions that constitute the objective function: (a) Fitresid, (b)
FitRsquared and (c) FitKSdistance

. �e functions have been rescaled so their values are between 0
and 1.
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S. 5 Statistical classi�cation of the in vitro data
We present the results of performing the unpaired two-sample t-test (t-test), the Wilcoxon rank-sum
test and the two-sample Kolmogorov-Smirnov test (K-S test) between the migration measurements
of the S1 group against the other groups’ measurements. We �x a p-value< 0.05 to de�ne statistical
signi�cance. We indicate in each row the statistical test performed and in each column we indicate
if the hypothesis was rejected (h = 1) or not (h = 0), and the corresponding p-value for each
hypothesis test.

S2 S3 S4 S5 S6

t-test h=1,
p=1.101e-07

h=1,
p=3.489e-46

h=1,
p=5.102e-27

h=0,
p=3.822e-01

h=0,
p=1.026e-01

Wilcoxon
rank sum

test

h=1,
p=3.626e-09

h=1,
p=7.146e-41

h=1,
p=4.907e-25

h=0,
p=3.401e-01

h=0,
p=4.520e-01

K-S test h=1,
p=4.026e-09

h=1,
p=1.668e-33

h=1,
p=5.865e-18

h=0,
p=1.041e-01

h=1,
p=1.093e-02

Table S2: Hypothesis test results comparing S1 and the other group’s windowed velocities. In each
row the statistical test performed is indicated.

S2 S3 S4 S5 S6

t-test h=0,
p=1.199e-01

h=0,
p=6.562e-02

h=0,
p=1.291e-01

h=0,
p=8.490e-01

h=0,
p=7.062e-01

Wilcoxon
rank sum

test

h=0,
p=3.429e-01

h=1,
p=2.857e-02

h=0,
p=2.000e-01

h=0,
p=6.857e-01

h=0,
p=3.429e-01

K-S test h=0,
p=1.075e-01

h=1,
p=1.107e-02

h=0,
p=1.075e-01

h=0,
p=5.344e-01

h=0,
p=1.075e-01

Table S3: Hypothesis test results comparing S1 and the other group’s closure rates. In each row the
statistical test performed is indicated.

�e evolution of the percentage wound area of each scratch assay during the course of the ex-
periment is shown in Figure S7.

Figure S7: Evolution of the percentage wound area during the course of the experiment of each
scratch assay. Experiments of the same cell group are plo�ed with the same color.
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We calculated the time of comparison for the di�erent groups, and the results are presented in
Table S7.

S2 S3 S4 S5 S6
Time of comparison (hr) 21 15 13 13 15

Table S4: Comparison times for the wound percentage areas of the di�erent groups. �e time of
comparison was set to be half the time it takes for the �rst scratch being compared in which the
leading edges touch.

�e wound percentage area at the comparison times are shown in Figure S8.

(a) t = 21 hr (b) t = 15 hr (c) t = 13 hr

Figure S8: Percentage wound area between S1 and the other groups at the time of comparison.

�e results of the statistical tests applied to the percentage wound area at the time of comparison
are shown in Table S5.

S2 S3 S4 S5 S6

t-test h=0,
p=5.819e-01

h=0,
p=6.936e-02

h=0,
p=1.632e-01

h=0,
p=4.790e-01

h=0,
p=4.447e-01

Wilcoxon
rank sum

test

h=0,
p=1.000e+00

h=0,
p=5.714e-02

h=0,
p=3.429e-01

h=0,
p=4.857e-01

h=0,
p=4.857e-01

K-S test h=0,
p=5.344e-01

h=0,
p=1.075e-01

h=0,
p=5.344e-01

h=0,
p=5.344e-01

h=0,
p=5.344e-01

Table S5: Hypothesis test results comparing S1 and the other group’s percentage wound areas. In
each row the statistical test performed is indicated.
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