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Abstract
Scratch assays are in vitro methods for studying cell migration. In these experiments,
a scratch is made on a cell monolayer and recolonisation of the scratched region is
imaged to quantify cell migration rates. Typically, scratch assays aremodelled by reac-
tion diffusion equations depicting cell migration by Fickian diffusion and proliferation
by a logistic term. In a recent paper (Jin et al. in Bull Math Biol 79(5):1028–1050,
2017), the authors observed experimentally that during the early stage of the recoloni-
sation process, there is a disturbance phase where proliferation is not logistic, and
this is followed by a growth phase where proliferation appears to be logistic. The
authors did not identify the precise mechanism that causes the disturbance phase but
showed that ignoring it can lead to incorrect parameter estimates. The aim of this
work is to show that a nonlinear age-structured population model can account for the
two phases of proliferation in scratch assays. The model consists of an age-structured
cell cycle model of a cell population, coupled with an ordinary differential equation
describing the resource concentration dynamics in the substrate. The model assumes a
resource-dependent cell cycle threshold age, above which cells are able to proliferate.
By studying the dynamics of the full system in terms of the subpopulations of cells that
can proliferate and the ones that can not, we are able to find conditions under which
the model captures the two-phase behaviour. Through numerical simulations, we are
able to show that the interplay between the resource concentration in the substrate and
the cell subpopulations dynamics can explain the biphasic dynamics.
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1 Introduction

Cell migration and proliferation are central processes in the development and
homoeostasis of many organisms. They also play a key role in pathological processes
such as cancer invasion, chronic inflammatory diseases and vascular diseases (Cohen
and Ellwein 1990; Liu et al. 2017; Menyhárt et al. 2016). To understand the biochem-
ical and physical cues that regulate cell migration and proliferation, in vitro assays
are used to quantify the ability of cell populations to migrate and proliferate under
controlled situations (Adan et al. 2016; Celis 2009; Kramer et al. 2013). Scratch assays
are typically used to study cell migration (Kramer et al. 2013; Liang et al. 2007). A
scratch assay involves: growing a cell monolayer to confluence; creating a “scratch”
in the monolayer; and monitoring the cell dynamics as the scratch closes (Liang et al.
2007). The resulting time-course data are then analysed to estimate the cell migra-
tion rate (Masuzzo et al. 2016; Topman et al. 2012). Other common cell-based assays
are proliferation assays that focus on measuring the cell number or the proportion of
cells that are dividing (Romar et al. 2016). The simplest proliferation assay consists
of growing a cell monolayer to low density on a two-dimensional substrate and mea-
suring the cell number change in time (Bourseguin et al. 2016; Browning et al. 2017;
Romar et al. 2016). See Fig. 1a, b for a schematic representation of the typical time
progression of these two in vitro assays.

Many mathematical models have been developed to describe these in-vitro assays
and to test hypotheses concerning the mechanisms that govern cell migration and
proliferation (Billy et al. 2012; Gerlee 2013; Jin et al. 2016; Johnston et al. 2015;
Kramer et al. 2013; Maini et al. 2004; Nardini and Bortz 2018; Savla et al. 2004;
Walker et al. 2004a, b). Themacroscale dynamics of scratch assays are often described
by reaction-diffusion equations (Jin et al. 2016; Maini et al. 2004; Savla et al. 2004) in
which cell migration ismodelled as Fickian diffusion and cell proliferation ismodelled
by a logistic source term. For the proliferation assay, where no scratch is performed,
the logistic growth equation is widely used (Gerlee 2013; Johnston et al. 2015; Kramer
et al. 2013). Models are calibrated by fitting their solutions to the experimental time-
course data. Amodel is considered valid if the residual error is below a prescribed value
(Jin et al. 2017; Sarapata and de Pillis 2014; West et al. 2001). However, as several
authors have remarked, this conditionmay not be sufficient formodel validation (Baker
and Simpson 2010; Warne et al. 2018).

In Jin et al. (2017), the ability of the logistic growth model to describe cell prolifer-
ation in scratch assays was studied. A series of scratch and proliferation assays using
PC-3 prostate cancer cells were performed, and the changes in cell density in two
subregions located far from the scratch were quantified. These two subregions were
chosen so the changes in cell density were not due to cell migration. To assess the suit-
ability of the logistic growth model, they analysed the model fit to experimental data
and the per capita growth rate of the experimental data, σ(N ) = dN

dt
1
N , as a function

of the cell density, N . Calibrating solutions of the logistic model to the experimental
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2708 A. V. Ponce Bobadilla et al.

Fig. 1 Schematic representation of how the a proliferation and b scratch assays evolve in time. In the plots
c–f, we consider the experimental data from the proliferation and scratch assays performed in Jin et al.
(2017). The authors consider three replicates for three initial degrees of confluence. In c and d, the mean
and the standard deviation of the cell population are plotted for each initial degree of confluence. In e and
f, the mean and the standard deviation of the per capita growth rate σ(N ) = dN

dt
1
N are plotted with respect

to the mean cell population N . For plots e and f, we consider only the assays with the highest degree of
confluence. We calculate the per capita growth rate in the same way as in Jin et al. (2017). A biphasic trend
can be observed in f (for the scratch assay) but not in e (for the proliferation assay) (Colour figure online)

data showed a good fit for both assays; however, analysing the per capita growth rate
revealed different behaviours between the proliferation and the scratch assays. The
authors observed that for proliferation assays, the per capita growth rate could be well
described by a linearly decreasing function of the cell density (see Fig. 1e), a result
consistent with the logistic model. However, for the scratch assay data, during the
first 18 h of the experiment, the per capita growth rate was found to increase with cell
density, whereas for 8 ≤ t ≤ 48 h, the per capita growth rate was found to decrease
approximately linearly with the cell density (see Fig. 1f).

Guided by their experimental observations, the authors in Jin et al. (2017) proposed
that cell proliferation in scratch assays involves two phases: an initial disturbance
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phase during which proliferation is not logistic and a growth phase during which
proliferation is approximately logistic. Since this behaviour was not observed in
the proliferation assays, the authors concluded that it was caused by the scratching
procedure. They hypothesised that scratching might create chemical or mechanical
disturbances but did not test their hypothesis.

In this work, we show that a nonlinear age-structured model can account for the
disturbance and growth phases observed in scratch assays.We refer to a cell’s age as the
cell’s temporal positionwithin the cell cycle. The cell cycle consists of four phases: first
gap G1, synthesis stage S, second gap G2 and mitosis stage M . G1 and G2 consist
of growth phases, DNA replication occurs in S phase and cell division in M phase
(Darnell et al. 1990). The progression in the cell cycle is regulated by environmental
cues and intracellular checkpoints involving various proteins, in particular cyclins and
cyclin-dependent kinases (Darnell et al. 1990; Lim and Kaldis 2013).

By considering an age-structured model, we can investigate how heterogeneity in
the cell population age distribution affects the total cell population dynamics. Previous
work has shown that heterogeneity in cell age distribution may still generate logistic
growth at the population scale (Jin et al. 2018). Other age-structured models have
described how the cell age distribution can affect the overall cell population dynamics
in scratch assays: the speed with which the cells invade the vacant region (Gavagnin
et al. 2018; Vittadello et al. 2018), the efficacy of anti-cancer drugs, particularly phase-
specific drugs (Billy and Clairambault 2013) and the influence of growth factors (Billy
et al. 2012). Agent-based models have also been considered to study the effect of
heterogeneity in cell age distribution on the overall dynamics in in vitro assays (Walker
et al. 2004a, b).

We consider an age-structured model that was first introduced in de la Cruz et al.
(2016). The model considers the interplay between a single cell population and the
resource concentration available in the substrate. The model assumes a resource-
dependent G1/S transition age above which cells are able to proliferate. This critical
age naturally divides the cell population into “immature” and “mature” cells. By study-
ing the dynamics of the full system in terms of these subpopulations, we are able to
find conditions under which the cell population evolution is of logistic-type and the
per capita growth rate follows a biphasic behaviour. We validate our predictions via
numerical simulations and show that the resource concentration regulates the distur-
bance phase.

The remainder of this paper is organised as follows. In Sect. 2, we describe the
nonlinear age-structured model. In Sect. 3, we describe the dynamics of the full model
in terms of the mature and immature subpopulation dynamics. We then derive con-
ditions under which the per capita growth rate will exhibit biphasic behaviour and
logistic-type proliferation. In Sect. 4, we investigate numerically these conditions and
determine parameter regimes in which the resource concentration regulates the distur-
bance phase. We conclude in Sect. 5 with a discussion of the results and conclusions.
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2710 A. V. Ponce Bobadilla et al.

2 An Age-StructuredModel with Resource-Regulated Proliferation

To take into account the cell cycle heterogeneity of a cell population, we consider
a McKendrick–von Foerster model (Kermack and McKendrick 1932; Keyfitz and
Keyfitz 1997). The model considered in this work was first used to describe the mean
field dynamics of a stochastic multiscale model of a cell population with oxygen-
regulated proliferation (de la Cruz et al. 2016). Here, themodel describes the dynamics
of an in vitro cell population assumed homogeneously distributed in space, like cell
cultures in proliferation assays or cells in far away regions from the wound in scratch
assays, as in Jin et al. (2017).We are interested in the population dynamicswith respect
to the resources available in the medium. We denote by n(a, t), the number of cells
of age a at time t . We consider a ∈ [0,∞]. We denote by T > 0 the duration of
the experimental observation. The model focuses on the cell population proliferation
dependence on the growth factors, oxygen and nutrients available in the medium. We
refer to these components as a single, generic resource and denote it by c(t).

We assume cells mature with constant speed 1, die with rate μ and proliferate at a
rate b(a, c(t)) which we consider to be age and resource-dependent (Ortmann et al.
2014; Smith et al. 1984). Combining the above assumptions, it is straightforward to
show that the evolution of the cell density function n(a, t) : [0,∞] × [0, T ] → R is
therefore given by

∂n(a, t)

∂t
+ ∂n(a, t)

∂a
= −(μ + b(a, c(t)))n(a, t). (1)

We suppose further that when a cell divides it produces two daughter cells of age
a = 0. By considering all possible division events, we deduce that

n(0, t) = 2
∫ ∞

0
b(a, c(t))n(a, t)da. (2)

We consider a coarse-grained description of the cell cycle by lumping S, G2 and M
into one phase, so we consider a two-phase model G1 and S–G2–M . We assume
cells proliferate at a constant rate, τ−1

p , provided they successfully enter the S–G2–M
phase. Entry to the S–G2–M phase is regulated by the G1/S checkpoint which has
been shown to depend on the presence of resources needed for cell growth (Foster
et al. 2010). Therefore, we assume that the proliferation rate is given by

b(a, c(t)) := τ−1
p H(a − aG1/S(c(t))) (3)

where H is the Heaviside function and aG1/S(c(t)) denotes the G1/S transition age,
the age at which a cell passes from the G1 to the S phase.

The G1/S transition age, aG1/S(c) is given as a function of c to capture the depen-
dence of the checkpoint on the available resource concentration. The authors in de la
Cruz et al. (2016) describe this dependence by a simple scaling which was derived
from analysing an oxygen-dependent cell cycle progression model,
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aG1/S(c) =
{

a−
(

c
ccr

− 1
)−β

for c > ccr,

∞ for c ≤ ccr,

where a− and β are positive constants. The positive quantity ccr is the critical resource
concentration that allows cell proliferation. For high resource values, the transition
age becomes smaller, so the cell requires less time to proliferate. On the other hand,
for resource values slightly higher than ccr, the transition age becomes bigger and cells
take longer to transition to the G1/S phase and to proliferate. For c ≤ ccr, cells are
assumed to enter the quiescent state.

If we assume that the resource, c(t), is supplied at a constant rate S and consumed
by all cells at a constant rate k, then

dc

dt
= S − k Nc, (4)

where N (t) = ∫ ∞
0 n(a, t)da denotes the total number of cells at time t .

The full model consists of Eqs. (1)–(4) and the initial conditions

n(a, 0) = v0(a) for a > 0 and c(0) = c0 where c0 > 0. (5)

The long-time dynamics of this model was described in de la Cruz et al. (2016).
Before beginning our analysis, we summarise below those results from de la Cruz
et al. (2016) that are relevant for our work.

• For large times, the solution of the age-structured model approaches a separable
solution, Q(a, t) = A(a) exp(λt), i.e. n(a, t) ≈ Q(a, t) for t � 1, where λ

satisfies the Euler–Lotka equation:

1 = 2
∫ ∞

0
b(a, c∞) exp

(
−λa −

∫ a

0
[μ + b(y, c∞)] dy

)
da (6)

in which c∞ > 0 is the steady-state value of the resource concentration. A(a) is
referred to as the stable age distribution of the model. The separable solution is
assumed to be in equilibriumwhen λ = 0 and therefore N (t) → N∞ and dN

dt → 0
as t → ∞.

• For the separable solution to be in equilibrium, the average waiting time to division
after the G1/S transition, τp, must be smaller than the average cell life span, μ−1.

τp < μ−1. (7)

• If Eq. (7) is satisfied, after solving Eq. (6) with λ = 0, they obtained that:

– The transition age, aG1/S , reaches the steady-state value

a∗ = − 1

μ
log

(
τp(μ + τ−1

p )

2

)
. (8)
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– The steady-state resource concentration is given by

c∞ = a−1
G1/S

(
a∗) . (9)

– The steady-state value of the total cell population density is given by:

N∞ = S

kc∞
. (10)

The above results will be useful for parametrising our model.

3 Model Analysis

In this section, we derive necessary and sufficient conditions for Eqs. (1)–(5) to exhibit
logistic-type behaviour and biphasic behaviour in the per capita growth rate.

These conditions can be obtained by distinguishing two subpopulations: cellswhose
age is greater than the G1/S transition age and which can proliferate, and cells whose
age is below the threshold. We refer to these subpopulations as, respectively, mature
and immature cells.We nowanalyse the full systemwith respect to these subpopulation
dynamics.

3.1 Mature and Immature Subpopulation Dynamics

Let us denote by X(t) and Y (t), respectively, the subpopulations of mature and imma-
ture cells so that

X(t) =
∫ aG1/S(t)

0
n(a, t)da and Y (t) =

∫ ∞

aG1/S(t)
n(a, t)da, (11)

where aG1/S(t) := aG1/S(c(t)).
With these definitions, it is possible to obtain the following result:

Theorem 1 Let X and Y be defined as in (11) and let n(a, t) and c(t) satisfy the model
Eqs. (1)–(5). Then, the dynamics of X and Y are given by the following system:

dX

dt
= 2τ−1

p Y − μX +
[
daG1/S

dt
(t) − 1

]
n(aG1/S(t), t),

dY

dt
= −(μ + τ−1

p )Y +
[
1 − daG1/S

dt
(t)

]
n(aG1/S(t), t), (12)

in which aG1/S(t) := a−
(

c(t)
ccr

− 1
)−β

and c(t) is formally given by

c(t) =
[

c0 + S
∫ t

0
exp

(
k

∫ t ′

0
N (s)ds

)
dt ′

]
exp

(
−k

∫ t

0
N (s)ds

)
.

123



Age Structure as Key to Delayed Logistic Proliferation of… 2713

Furthermore, if c(t) ≥ ccr ∀t ∈ [0, T ], then the number of cells with G1/S transition
age aG1/S(t) at time t, n(aG1/S(t), t), is formally given by

n(aG1/S(t), t) = v0(aG1/S(t) − t) exp

(
−

∫ t

0
[μ + b(s − t + aG1/S(t), c(s))]ds

)

(13)
for t ≤ aG1/S(t) and

n(aG1/S(t), t)

= 2τ−1
p Y (t − aG1/S(t)) exp

(
−

∫ aG1/S(t)

0
[μ + b(s, c(s + t − aG1/S(t)))]ds

)

(14)

for t > aG1/S(t).

Proof
Integrating Eq. (1) over the domains [0, aG1/S(t)] and [aG1/S(t),∞], we obtain the
dynamics of X and Y , respectively. The evolution of c(t) is given by solving the
differential Eq. (4), while assuming N (t) is a known function. Finally, the formula for
the cell concentration with G1/S transition age aG1/S(t) at time t , n(aG1/S(t), t), is
obtained by solving the age-structured model by the method of characteristics. The
characteristic curves of Eq. (1) are the lines a = t + μ where μ is a constant. By
solving Eq. (1) along the characteristic curves and taking into account the boundary
condition (2) and initial condition (5), we obtain that n(a, t) is given by:

n(a, t) =
{

v0(a − t) exp
(
− ∫ t

0 [μ + b(s − t + a, c(s))]ds
)

for t ≤ a,

n(0, t − a) exp
(− ∫ a

0 [μ + b(s, c(s + t − a))]ds
)
for a < t .

(15)

By considering a = aG1/S(t) and n(0, t − aG1/S(t)) in terms of the mature subpopu-
lation Y in Eq. (15), we derive expressions (13) and (14) for n(aG1/S(t), t). �

Theorem 1 reduces the analysis of the full model to the analysis of system (12).
Given Eqs. (13) and (14), we notice that for t ≤ aG1/S(t), (12) consists of a non-
homogeneous coupled linear system of ordinary differential equations that depends
on the initial age distribution and for t > aG1/S(t), the dynamics of Y is described by
a state-dependent delay differential equation,

dY

dt
= −(μ + τ−1

p )Y + 2τ−1
p a(t)Y (t − aG1/S(t)) (16)

in which a(t) =
[
1 − a′

G1/S(t)
]
exp

(
− ∫ aG1/S(t)

0 [μ + b(s, c(s + t − a))]ds
)
.

Having the dynamics of the full model expressed in terms of these subpopulations,
we can now describe the overall proliferation and the per capita growth rate in terms
of the dynamics of these two subpopulations. Let us denote by σ(N (t)) := dN (t)

dt
1

N (t) ,
the per capita growth rate. The following theorem gives the evolution of the per capita
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growth rate and the total population evolution in terms of the mature and immature
cell subpopulations.

Theorem 2 The evolution of N (t) and σ(N (t)) for t ∈ [0, T ] is given by:

dN

dt
= [τ−1

p − μ]Y − μX , (17)

dσ(N (t))

dt
= τ−1

p
d

dt

[
Y

N

]
. (18)

Proof By integrating Eq. (1) in the age domain [0,∞], we obtain Eq. (17). To derive
Eq. (18), we consider the definition of the per capita growth rate and Eq. (17) as
follows,

dσ(N (t))

dt
= d

dt

[
dN
dt

N

]
= d

dt

[
(τ−1

p − μ)Y − μX

N

]

= d

dt

[
τ−1

p
Y

N
− μ

]
= τ−1

p
d

dt

[
Y

N

]

from which we obtain Eq. (18). �

3.2 Conditions for Delayed Logistic Proliferation

In this section, we identify conditions under which the per capita growth rate of the
age-structured model exhibits biphasic dynamics and logistic-type growth. First, we
interpret the experimental behaviour in mathematical terms:

B1 The cell population undergoes a logistic-type behaviour, i.e.

• The population increases in size monotonically,

dN

dt
> 0 ∀t ∈ [0, T ].

• The population saturates

N (t) → N∞. as t → T ,

where N∞ > 0.

B2 The per capita growth rate exhibits biphasic behaviour, i.e. there exists t1 > 0 such
that the per capita growth rate, σ(N (t)), has the following behaviour:

dσ

dN

{
> 0 for t ∈ [0, t1],
< 0 for t ∈ [t1, T ].

123



Age Structure as Key to Delayed Logistic Proliferation of… 2715

Theorem 3 Necessary and sufficient conditions for the age-structured model with
resource-regulated proliferation, Eqs. (1)–(5), to exhibit the behaviour B1 and B2
are as follows

μ < τ−1
p , (19)

(τ−1
p − μ)Y (t) > μX(t) ∀t ∈ [0, T ], (20)

and there exists t1 > 0 such that

d

dt

[
Y

N

]
> 0 for t ∈ [0, t1] and

d

dt

[
Y

N

]
< 0 for t ∈ [t1, T ]. (21)

Proof Given the relationship in Eq. (17), it is clear that (20) is true if and only if
the derivative of N is positive. To derive (21), we notice from the chain rule that
dσ(N (t))

dt = dσ(N )
dN

dN
dt and given that dN

dt > 0, the sign of d
dt (σ (N (t))) is the same as

that of dσ(N )
dN . Finally, condition (19) needs to be satisfied so that the age-structured

model has a stable steady-state solution as described in de la Cruz et al. (2016). �
Theorem 3 gives necessary and sufficient conditions for the model to exhibit the

behaviour described in B1 and B2. We note that the conditions for the biphasic
behaviour are given by Eq. (21) which can be interpreted biologically as an initial
increase in the fraction of mature cells followed by a stabilisation phase in which the
mature cell fraction decreases to its steady-state value. Since the fraction of mature
cells is regulated by the transition age, aG1/S , and this critical age is regulated by
the resource concentration, we deduce that changes in the resource dynamics may
influence the biphasic behaviour.

4 Numerical Results

In this section, we perform numerical simulations to verify the predictions of Theo-
rem 3. First, we present the discretisation scheme that we use to solve Eqs. (1)–(5).

4.1 Discretisation Scheme

The model is composed of a hyperbolic partial differential equation with a nonlocal
boundary condition coupled to an ordinary differential equation. We use a splitting
method to discretise the coupled system. The ordinary differential equation is discre-
tised by an implicit Euler method. The partial differential equation is discretised using
the Rothe method: first discretised in time via the implicit Euler method and then
in space by linear finite elements (Grossmann et al. 2007). The method is stabilised
by considering the streamline upwind/Petrov Galerkin formulation (Kuzmin 2010).
The finite element discretisation is implemented in C++ using the software DEAL.II
(Bangerth et al. 2007).

To discretise the age domain [0,∞], we notice that the cell age is naturally bounded.
Hence, there exists amax > 0 such that n(a, t) = 0 for a ∈ (amax,∞), and so
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we restrict our attention to a ∈ [0, amax]. For the finite element discretisation to be
computationally efficient and not create spurious oscillations around the discontinuity
point of the proliferation rate (given by the Heaviside function), we discretise the
age domain [0, amax] differently in two subdomains: the subdomain [0, a∗], where a∗
is given by Eq. (8), is discretised with a step size of ha = a∗/210 ≈ 0.00469081,
and the domain [a∗, amax] is discretised with a step size of ha = (100 − a∗)/210 ≈
0.0442. We consider a smaller step size for the first domain since for the simulations
considered in this work, the evolution of aG1/S(t) occurs in this subdomain. For the
time discretisation, we consider a time step of ht = 0.1.

4.2 Model Parametrisation

We consider as a case study, PC-3 prostate cancer cells. In order to parametrise our
model, we use as a guideline the parameters that were estimated in Jin et al. (2018)
from the experimental time-course data of scratch assays. The authors estimated a
proliferation rate of λ̂ = 0.053 ± 0.005 (h)−1. We assume their estimate corresponds
in our model to τ−1

p , i.e.

τ−1
p = 0.053 (h)−1. (22)

Estimates of doubling times of PC-3 prostate cancer cells are in the range of 25–33 h
(Bairoch 2018; Cunningham and You 2015). In our model, the doubling time, which
we denote as DT, is given by

DT := aG1/S(t) + τp,

therefore,

25 ≤ DT ≤ 33. (23)

When the cell population reaches the steady-state age distribution, DT is given by:

DT := a∗ + τp = − 1

μ
log

(
τp(μ + τ−1

p )

2

)
+ τp. (24)

By considering this formula, the estimated value for the proliferation rate τ−1
p

[Eq. (22)] and the range of values for the doubling time [Eq. (23)], we obtain a range of
values for the death term, μ ∈ [0.0233− 0.0333]. We assume that μ = 0.0283 (h)−1

(the midpoint value).
The carrying capacity was also estimated in Jin et al. (2018) they found K̄ =

2.3 × 10−3 ± 2 × 10−4 (cells)/(µm)2. Since the size of the subregion where they
estimated K̄ is 1430 × 200 (µm)2, the carrying capacity in cell number is

N∞ = 657.8 ± 57.2 (cells). (25)
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We therefore assume that

N∞ = 657.8 (cells). (26)

The oxygen consumption rate of PC-3 prostate cancer cells was measured in Cook

et al. (2013) and found to be approximately 2 (nM)

(min)(106cells)
= 1.2 × 10−4 (nM)

(h) (cell) .
Using this value for the consumption rate, k, and the estimate of the carrying capacity
[Eq. (26)] in the formula of the steady-state value of the total population in our model

[Eq. (10)], we determine the value of the resource flux, S̄ = 26.63 × 10−4 (nM)
(h) .

Regarding the parameters that describe the resource dependence of theG1/S transi-
tion age, we take the parameter values that were derived from an intracellularmodel for
an oxygen-regulated proliferation rate in de la Cruz et al. (2016), namely, the dimen-
sionless parameter valuesβ = 0.2 and ccr = 0.23. For determining the parameter value
of a−, we notice that the admissible range of values for aG1/S(t) is 6 ≤ aG1/S(t) ≤ 14
given the range values of DT [Eq. (23)] and the estimate of τp [Eq. (22)]. We consider
a− = 8.25 (h), so aG1/S(t) is in this range for all our simulations.

We consider the following initial age distribution that is a multiple of the steady-
state age distribution:

v0(a) =
{

κ exp(−μa) if a < a∗
κ exp(−μa − τ−1

p (a − a∗)) if a ≥ a∗

where a∗ is the steady-state value of the transition age [Eq. (8)] and κ is estimated so the
initial number of cells corresponds to the average number of cells considered as initial
condition in Jin et al. (2018) for the most confluent initial condition, N (0) = 223. We
set c0 = c∞ as the steady-state value of the resource concentration given by Eq. (9).
The default parameters are listed in Table 1.

Table 1 Summary of model parameters

Parameter Description Value Units References

τ−1
p Proliferation rate 0.053 (h)−1 Jin et al. (2017)

μ Death rate 0.028 (h)−1 Estimated

k Consumption rate 1.2 × 10−4 (h)−1 Cook et al. (2013)

S Resource flux 26.635 × 10−4 (nM)
(h) Estimated

ccr Critical resource value 0.023 (nM) de la Cruz et al. (2016)

β Scaling constant 0.2 Dimensionless de la Cruz et al. (2016)

a− Scaling constant 8.25 (h) Assumed

c0 Initial resource value 0.034 Dimensionless Estimated

κ Scaling constant 12.488 Dimensionless Estimated

amax Maximum age 100 (h) Estimated
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4.3 Reference Dynamics

Under the default parameter values, themodel satisfies the conditions ofTheorem3and
therefore we expect a logistic-type behaviour and a biphasic dynamics. In Fig. 2a, b,
we plot the time evolution of the total cell population N (t) and of the resource concen-
tration c(t), respectively. As expected, the total cell population follows a logistic-type
behaviour: it grows exponentially and then saturates. The resource concentration has
an initial increase until it reaches a maximum value and then decreases until it reaches
its steady-state value. In Fig. 2c, we plot the evolution of the transition age aG1/S

and observe its dependence on the resource concentration: it decreases to a minimum
value and then increases towards the steady-state value given by Eq. (8). In Fig. 2d,
we plot the per capita growth rate σ(N ) as a function of the total cell population N ;
as expected, we observe biphasic behaviour, with an initial increase in σ with respect
to cell density followed by a linear decrease.

Fig. 2 Evolution of the age-structured model with resource-regulated proliferation, Eqs. (1) and (4). In
a, we plot the total cell population evolution and observe it follows a logistic-type growth. In b, we plot
the resource evolution that follows a rapid increase and then a monotonic decrease to the steady-state
value. In c, we plot the evolution of the transition age aG1/S(t) and the inverse dependence of the resource
concentration on the transition age can be observed. In d, we plot the per capita growth rate against the total
cell population evolution for which two proliferation phases can be observed (a rapid increase, then slower
decrease). Parameter values as per Table 1 (Colour figure online)
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4.4 Sensitivity Analysis

In this subsection, we perform a sensitivity analysis focusing on those parameters that
modulate the resource dynamics in order to understand their role in determining the
biphasic behaviour of the per capita growth rate.

We focus our sensitivity analysis on two parameters that can be experimentally
manipulated: the resource flux, S, and the initial concentration of resource, c0. We first
vary the resource flux, S, in the domain [25.63× 10−4 − 28.63× 10−4]. We consider
this domain so the cell population steady-state value, N∞, is within the confidence
interval given by Eq. (25). As expected, from Eq. (10), the steady-state value at which
the total cell population saturates, N∞, increases as the value of S increases (Fig. 3).
We observe also that the maximum value of c(t) increases and the minimum value
of aG1/S(t) decreases as S increases, see Fig. 3c, d. We observe in Fig. 3d that the
biphasic behaviour is present for all values of the resource flux that were considered.

We now vary the initial resource concentration c0. We focus only on increasing
the value of the resource concentration above c∞, since considering values below c∞

Fig. 3 Series of plots showing the dynamics of the coupled age-structured model with resource-regulated
proliferation given by Eqs. (1) and (4), as we vary the resource flux, S. Increasing the value of S: a increases
the steady-state value of the total cell population, N∞, b increases the maximum resource concentration
and the time it takes to reach the steady-state value, and c reduces the minimum value of the transition age
aG1/S . d The plots of the per capita growth rate against the total cell population exhibit biphasic dynamics

for the selected values of S. Parameter values as per Table 1 (Colour figure online)
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Fig. 4 Series of plots showing the dynamics of the coupled age-structured model with resource-regulated
proliferation, given by Eqs. (1) and (4), as we vary the initial resource concentration value, c0. Increasing c0:
a does not affect the total cell population, b increases the maximum resource concentration but reduces the
time it takes to reach it, and cmakes the initial decrease of the transition age aG1/S disappear. d Increasing
the initial resource concentration, c0, affects the plots of the per capita growth rate against the total cell
population by shortening the duration of the disturbance phase where there is no monotonic decreasing
dependence. Parameter values as per Table 1 (Colour figure online)

will make the population decrease and this will be in disagreement with experimental
observations. In Fig. 4, we show that when we increase c0, from 0.034 to 0.114, the
duration of the disturbance phase is shortened. The model predicts that by increas-
ing c0, the total cell population evolution does not change significantly; however,
the resource evolution changes from biphasic to monotonic, i.e. the duration of the
disturbance phase decreases and eventually disappears as c0 increases (see Fig. 4b).
Increasing the value of the initial resource concentration shifts the observation time of
the dynamics and now it is only possible to observe the resource concentration decline
to the steady-state value. This effect can be similarly observed in Fig. 4c where the
initial decrease of the transition age aG1/S is shortened as c0 increases.We observe that
increasing the initial resource concentration decreases the duration of the disturbance
phase where the dependence of the per capita growth rate with respect to the total cell
population is not linear (see Fig. 4d). We notice that during the disturbance phase, the
per capita growth rate does not increase monotonically with respect to the total cell
population as we saw previously for the reference dynamics and when varying the
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resource flux, S. For the simulations with c0 bigger than c∞ = 0.034, the per capita
growth rate initially decreases, then increases and finally follows a linear decreasing
trend with respect to the total cell population.

Finally, we perform a sensitivity analysis on the rest of the model parameters and
consider different initial age distributions to show that ourmodel predictions are robust.
We observe that uncertainty in the parameter values over the range of values that we
considered, has little effect on the overall dynamics. The two proliferation phases
are present for all the sets of parameters considered (see Supporting Information
Sect. 1). We then consider different initial age distributions that satisfy the conditions
of Theorem 3 and show that the biphasic dynamics is present in all cases considered
(see Supporting Information Sect. 2). We also analyse the model behaviour when the
resource concentration is below the critical value, c(t) < ccr. We show that in this
situation the population initially decreases and the per capita growth rate is constant
(see Supporting Information Sect. 3).

5 Discussion and Conclusions

In this work, we have presented an age-structured model with resource-dependent
proliferation rate that captures for the first time the biphasic behaviour in the per capita
growthobserved experimentally in Jin et al. (2017).Weanalysed the fullmodel in terms
of two subpopulations: cells which are able to proliferate or not (mature and immature
cells). We then derived necessary and sufficient conditions under which the model
presents a logistic-type behaviour and two phases of proliferation: an initial phase,
which in Jin et al. (2017) was named disturbance phase, in which proliferation does
not follow a logistic growth, and a growth phase, where proliferation is approximately
logistic. The biphasic behaviourwas demonstrated to be a result of an initial increase of
the fraction of mature cells followed by a decline to their steady-state concentration.
We then parametrised the model using PC-3 prostate cancer cells as a case study.
Finally, through numerical simulations, we showed that varying the resource initial
value results in a change in the dependence of the per capita growth rate on the total cell
population. The model predicts that the duration of the disturbance phase is decreased
as the initial resource concentration is increased.

In view of this model, the experimental observations in Jin et al. (2017) can be
explained as follows: the scratch procedure decreases the cell number in the plate and
by replenishing the medium to the same quantity, as customary, the resource con-
centration is increased, therefore triggering the biphasic dynamics in the per capita
growth rate. The predictions of the model could be experimentally tested by modi-
fying the resource concentration in the substrate, examining the plots of per capita
growth rate against the total cell population, as was performed in Jin et al. (2017), and
measuring the resource concentration, as in Billy et al. (2012), at the same times as the
cell population density is captured. The model predicts that by increasing the initial
resource concentration, the disturbance phase would shorten. Varying the resource
concentration has been shown to affect the overall dynamics of the scratch assay in
other situations (Billy et al. 2012).
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The age-structured model has some limitations. There is a critical constraint in the
biologically realistic parameter regime. The parameters need to be chosen such that
daG1/s (t)

dt < 1 for all t ∈ [0, T ]. Otherwise, cells could go from the S–G2–M phase
back to the G1 phase without proliferating [see Eq. (12)]. In all our simulations, the
derivative of the transition age is always less than one (results not shown). To avoid
restricting the parameter regime, age-structured models with multiple compartments
for the cell cycle phases (Billy et al. 2012; Chaffey et al. 2014) can be considered.

There are different ways that we can extend this work. The model was parametrised
using estimates calculated in Jin et al. (2017). Their estimates were calculated with
respect to the logistic equation and since we are considering a different model, the
values are expected to differ. The model could be parametrised using more appro-
priate methods as has been done for similar models (Gabriel et al. 2012; Billy et al.
2012). We acknowledge that our age-structured model is just one of many possible
explanations for the biphasic behaviour observed experimentally in Jin et al. (2017).
Mechanical and chemical disturbances have been known to affect cell proliferation
in other experimental settings (Nyegaard et al. 2016). Models that integrate explicitly
biochemical pathways, such as those in Domschke et al. (2017) and Nardini and Bortz
(2018), can be adapted to investigate whether the biphasic behaviour is a product
of signalling events. An inference-based modelling approach could be performed to
test multiple hypotheses and assist with the design of experiments that discriminate
between feasible alternatives.

In summary, this work identifies the interplay between the mature subpopulation
and the resource concentration as a plausible explanation for the biphasic behaviour
observed experimentally in Jin et al. (2017). Experimental validation and further
mathematical modelling will help elucidate the impact of heterogeneity in cell age
distribution in the overall dynamics.
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