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Moderate chemotherapy dosing can lead to optimal outcomes through balancing cytotoxicity with preserving immune state to
support a long-term antitumor T-cell response. 
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The immune system is a robust and often
untapped accomplice of many standard cancer
therapies. A majority of tumors exist in a state of
immune tolerance where the patient's immune
system has become insensitive to the cancer cells.
Because of its lymphodepleting effects, chemother-
apy has the potential to break this tolerance. To
investigate this, we created a mathematical model-
ing framework of tumor-immune dynamics. Our
results suggest that optimal chemotherapy sched-
uling must balance two opposing objectives: max-
imizing tumor reduction while preserving patient
immune function. Successful treatment requires
therapy to operate in a "Goldilocks Window"
where patient immune health is not overly com-
promised. By keeping therapy "just right," we show
that the synergistic effects of immune activation
and chemotherapy can maximize tumor reduction
and control.

Significance: To maximize the synergy between chemotherapy and antitumor immune response, lymphodepleting therapy
must be balanced in a "Goldilocks Window" of optimal dosing.

Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/20/5302/F1.large.jpg.

Introduction
Immune tolerance occurs when the immune system fails to

respond to a target despite its potential to induce an immune

response. In cancer, this failure leads to immune evasion and tumor
growth. CD8þ effector T cells, also known as cytotoxic T lympho-
cytes (CTL), are an essential component of the adaptive immune
system capable of responding to tumor antigens and inducing cell
death. Immunologically inert tumors induce T-cell tolerance
through multiple direct mechanisms such as inhibition of pro-
grammeddeath ligand1 (PD-L1), activationof the T-cell regulatory
protein CTLA4, and production of regulatory cytokines and meta-
bolites (1), as well as indirect methods such as recruitment of
regulatory T cells (Treg),myeloid-derived suppressor cells (MDSC),
and tolerogenic dendritic cells (DC; ref. 2) Tregs inhibit CTL
cytotoxic activity via cell-cell contact (3, 4) and through secreted
factors such as TGFb (5, 6). They have posed challenges for cancer
immunotherapies as well as preventing the activation of the
immune systemduringmore traditional therapy approaches (4, 7).

Breaking tolerance requires removal of multiple suppressive
factors and activation of cytotoxic immune cells. Chemotherapy,
while toxic to CTLs, also has paradoxical and important immu-
nostimulatory effects through dysregulation of the immunosup-
pressive tumor microenvironment by reducing regulatory cyto-
kine levels, changes in oxygen levels, and reduced metabolites.
Several chemotherapies, including cyclophosphamide, paclitaxel,
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gemcitabine, and 5-fluorouracil, can selectively targetMDSCs and
Tregs (8, 9).

In addition, highly cytotoxic chemotherapies with lymphode-
pleting effects create immunologic space (10, 11).During homeo-
stasis, the body maintains T-cell pools at consistent levels. When
these pools are depleted, T cells refill this space through antigen-
independent proliferation, termed homeostatic repopulation,
which favors memory T cells (12). This homeostatic proliferation
breaks tolerance, temporarily restoring immune response to
previously tolerated antigens (13). This was first characterized in
the posttransplant setting where memory T cells lose peripheral
tolerance during homeostatic repopulation, leading to graft
rejection (12).

Chemotherapy-induced tolerance breaking is dynamic and
transient, often requiring treatment breaks to achieve full effect.

Various studies report that regulatory cells return 5–10 days post-
treatment (8). Homeostatic repopulation following moderate
lymphopenia can fully restore the lymphocyte pool as early as
4 days following therapy in murine models (14). Even in the case
of nearly complete lymphodepletion using alemtuzumab in
nonhuman primate transplant models, the T-cell pool is
completely restored in 8 weeks, consisting of 96% memory T
cells (15). An obvious question then arises: is there an optimal
chemotherapy schedule that could maximize tumor kill and also
enhance immune response?

To investigate this question, we created a mathematical
model of the complex tumor-immune dynamics that occur
during multiple cycles of chemotherapy. In particular, we
investigated three, clinically relevant, therapeutic dynamics:
immunodepletion, immunostimulation via vaccination, and

Figure 1.

Tumor-immune dynamics during the sensitive (A) and
tolerant (B) stages of the immune response. During
antigen-sensitive immune expansion, CTLs are
recruited frommemory cells to attack tumor cells.
Tregs are being recruited but have not yet started
significantly inhibiting CTL responses. During immune
contraction once tolerance sets in, Tregs exert an
active inhibitory pressure on CTLs. Expansion of
memory cells into CTLs ceases. Both stages of the
immune response are characterized by competition
between memory and na€�ve immune cells for common
cytokine pools as well as homeostatic proliferation
and lymphopoiesis.
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immunosupportive prophylactics. We identified significant
immune trade-offs during chemotherapy as well as the relevant
patient metrics that determine the magnitude and severity of
these compromises. Furthermore, by exploring the impact of
clinically-established therapy, as well as more experimental
treatment decisions, we illustrate a more complex interplay
between chemotherapy and patient immune dynamics than
has been previously investigated. Our results indicate that
optimal chemotherapy requires identification of a "Goldilocks
Window" in which treatment can both induce cytotoxic effects
in the tumor and enhance the immune response to tumor
antigens. Therefore, instead of the one-size-fits-all paradigm of
fixed therapy regimens, patient immune biology should be a
key consideration when developing personalized chemothera-
py strategies.

Materials and Methods
Overall model design

A central assumption of this work is that a clinically detectable
tumor has induced a tolerant state in which the immune system
can no longer respond to tumor antigens. Chemotherapy tem-
porarily removes this tolerance through lymphodepletion, which
eliminates Tregs and allows a burst of immune response. How-
ever, the lymphodepletion itself also kills CTLs and therefore
reduces the potential cytotoxic efficacy. This double-edged
response to chemotherapy implies that there is an optimal ther-
apeutic strategy.

We develop a mathematical model that includes five
major populations of cells: tumor cells (T), CTLs (E), Tregs
(R), memory T cells (M), and na€�ve T cells (N). Immune function
is separated into two distinct temporal stages, relative to the
time of application of each chemotherapy cycle: (i) a period of
CTL expansion immediately following the application of chemo-
therapy (Fig. 1A); and (ii) CTL contraction as tolerance returns
(Fig. 1B). The transition time between these phases remains
poorly characterized, but empirically occurs 5–10 days after the
expansion starts (16). This range has been observed in murine
models and is dramatic, involving over a 90% decrease in pop-
ulation size (17). A central assumption of this work is that a
clinically detectable tumor has induced a tolerant state in which
the immune system can no longer respond to tumor antigens.
Systemic lymphodepletion, including that caused by chemother-
apy, can help break this tolerance. This can have drastically
different effects depending on the type and strength of lympho-
depletion (18, 19). First, chemotherapy can selectively reduce
Tregs (20, 21, 22) helping to break peripheral tolerance. Second,
strong lymphodepletion will cause homeostatic proliferation in
the lymphoid compartment, further reducing tolerance.

However, dead immune cells cannot elicit cytotoxic effects or
engage in homeostatic proliferation. This implies that there is an
optimal therapeutic strategy. If the dose is too high, then the few
remaining immune cells will not be able to take advantage of the
tolerance breaking; if the dose is too low, then the lymphodeplet-
ing effects will be insufficient to break tolerance. In addition to
these immune effects, the chemotherapy itself can induce cancer
cell death affecting both the tumor size directly and releasing
tumor antigens, adding another layer of complexity to the tumor-
immune dynamics.

While the full course of lymphocyte recoveries are not
observed in the treatment course, measurements of lymphocyte

populations over time have shown that a stable equilibrium is
reached between chemotherapeutic depletion and population
sizes (23). Therefore, in the model, there is a window of 5 days
immediately following each chemotherapy cycle in which the
immune system is sensitive, and outside of these periods, it is
tolerant. We explore the length of this window more thorough-
ly below.

Our efforts to use mathematical modeling to inform chemo-
therapy build upon previous immune and personalizedmedicine
works. Mathematical models of tumor-immune activity are
numerous, given the complexity of the mechanisms involved
(see refs. 24–28) for examples relevant to the current work).
Explained more fully below, we extend the modeling work of
Robertson-Tessi and colleagues (29) to a more clinically ori-
ented setting by simplifying the immunosuppressive dynamics
while maintaining Treg recruitment and function. There have
been efforts to study explicit spatial dynamics of the growing
cancer cell population in the context of healthy tissue (30, 31).
Here, we implement an implicit spatial limitation on growth
(see explanation of f(T) below); our model may be extended
in the future to incorporate explicit spatial dynamics. Our
initial framework choices have been to incorporate patient
immune parameters to build toward a model for personalized
oncology (32).

During the phase in which the immune system is sensitive to
the tumor, a few key processes occur. CTLs, which target and kill
the tumor, are recruited from a memory cell population due to
response to tumor antigens (16). Recent studies indicate that
memory T cells make up the majority of T cells engaged in
homeostatic repopulation (15, 33). These memory cells are
constantly undergoing a low level of replenishing proliferation,
but they only convert to CTLs during the sensitive expansion
phase following lymphodepletion.During this phase, there is also
tumor-mediated recruitment of Tregs. This eventually causes a
significant shift in immune dynamics, leading to a contraction of
the CTL compartment during the tolerized phase. Under toler-
ance, there is no longer a significant recruitment of CTLs from the
memory cell compartment. Instead, while the existing CTLs do
carry out some tumor-killing function, the Tregs decrease the CTL
number.

Quick guide to equations and assumptions
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Our immune tolerance model assumes that the growth of
tumor cells (T) can be checked by CTLs (E). However, CTLs are
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themselves inhibited by Tregs (R) that are recruited at a rate r by
tumor antigens. This leads to CTL-mediated tumor cell death
being moderated by the quantity of Tregs ð R

RþEÞ. CTLs exhibit
different behaviors during immune expansion and immune con-
traction. This switching behavior is modeled with the Heaviside
function ðHðtoff � tÞÞ. During the immune expansionphase, CTLs
are recruited from the memory pool based on both available
memory cells (M) and the tumor burden ð TM

TþMÞ. During immune
expansion, the antigenicity of the tumor ðaÞ induces differentia-
tion to CTLs ð TM

TþMÞ. However, as immune tolerance sets in, there is
a contraction in the CTL population, caused by degradation of
CTLs by Tregs ðbÞ. During immune contraction, CTLs can convert
back to memory T cells ðxE; x < 1Þ. Finally, the total remaining
lymphocyte population that is not sensitive to the tumor (N)
replicates in a logistic growth model rNNð1� MþN

Kmax
Þ.

Tumor dynamics

dT
dt

¼ T
f Tð Þ|ffl{zffl}
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Tumor growth dynamics (term 1) are approximated via a
combination of exponential growth for smaller tumors and
power law growth for larger tumors. This growth model includes
a few key assumptions about the limitations that a growing tumor
faces before clinical detection. In the absence of effector cells
attacking the tumor population, tumor cells first grow exponen-
tially but then transition to power-law growth. This growth
dynamic is typical of early-stage, preclinical malignant growths
and is based on mathematical modeling as well as experimental
observation (29). Furthermore, there are also practical limitations
to the biological validity of the tumor population sizes that the
model can approximate.While themodel can simulate unbound-
ed tumor growth, this is obviously clinically impossible due to the
resulting morbidity and eventual patient mortality. Here, we
restrict the analysis to the range of tumor sizes that are typical
for clinically detectable masses, namely TT <1010 cells. The tran-
sition between exponential and power law growth dynamics is
governed by f(T) as defined in Eq. B.
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The function f(T) employs the method of modeling tumor
growth in ref. 29. Beyond a certain size (Ttrans), small tumors are
not able to sustain their early exponential growth due to physical
and nutrient limitations, and therefore transition to power law
growth at larger tumor sizes. The smoothness of this transition is
governed by the exponent P. The parameter rT represents the
tumor growth coefficient.

Term2of Eq. A represents the tumor loss due to killing byCTLs.
Parameter k0 represents the CTL cytotoxic efficacy, with the actual
tumor kill rate dependent upon the relative numbers of tumor
and CTLs ð TE

TþEÞ. An estimate of this efficacy was initially set at
1 day�1 based on the potency of CTLs in preventing tumor growth
when stimulated by multiple types of tumor antigen (34). In vivo
killing capacities of CTLs have also been measured in the 1–
10 day�1 range by real-time imaging in viral systems, although
there is significant heterogeneity (35). However, this rate is
mitigated by the presence of Tregs, with b representing their

inhibition efficacy. As Tregs increase in density, the CTL-
mediated tumor death rate decreases.

CTL dynamics
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CTL dynamics aremodeled in two phases, expansion (terms 1–
3) and contraction into tolerance (terms 4–6). Terms 1 and 4
switch between these phases via the Heaviside function, with toff
being the length of the expansion phase (5 days, unless noted)
immediately following each roundof chemotherapy. Terms 2 and
3 govern the growth of CTLs during immune sensitivity to the
tumor. CTLs are generated based upon the antigenicity of the
tumor (a) as well as the number of tumor and memory cells.
Modulating this is an amplification rate, c, since onememory cell
can yield multiple CTLs. Term 2 accounts for the maximum
number of lymphocytes that can be supported by the cytokine
pool. This paradigm of CTL function being limited by cytokine
availability is supported by lymphodepletion studies showing
increased CTL activity when IL7 and IL15 cytokine-responsive
cells were removed (36). When the immune compartment is full
and in homeostasis, this term will be near zero, effectively
shutting down CTL recruitment; however, immediately after a
dose of chemotherapy, memory and na€�ve T cells are depleted,
which promotes CTL expansion.

Term 5 represents the contraction of the CTL compartment that
occurs due to immune tolerance. The death rate of CTLs during
contraction, q, is due to decreases in the level of supportive
cytokines. This rate is increased by the relative fraction of Tregs
that are present, R

RþE. The modifying constant c represents the
sensitivity of CTL suppression to Tregs through a variety of
mechanisms (37). Finally, term6 represents the rate of conversion
of CTLs back into memory cells, an active mechanism during
immune contraction (38, 39).

Memory T-cell dynamics
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Memory cells continually replenish themselves through
homeostatic growth in term 1. Parameter rM is the maximum
memory cell growth rate, subject to a carrying capacity, Kmax.
During the immune expansion phase (terms 2–4), memory cells
convert to CTLs, governed by the relative abundances of tumor
andmemory cells, TM

TþM, aswell as the antigenicity (a). As described
in Eq. C, the rate of recruitment is moderated by the homeostatic
fraction of the overall immune system (term 3). During the
contraction phase (terms 5 and 6), memory cells are replenished
from the CTL compartment. A fraction (x) of the CTLs is suc-
cessfully converted back to memory cells (38). Because of some
loss and inefficiency in conversion, x <1 (40).
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Treg and na€�ve T-cell dynamics

dR
dt

¼ sT � dRR ðEÞ

Tregs are recruited by tumor cells with rate r, and they decay
with a rate dR (41, 42).

dN
dt

¼ rNN 1�MþN
Kmax

� �
ðFÞ

Na€�ve T-cell dynamics follow homeostatic proliferation with
rate rN, up to a common carrying capacity of Kmax, which is the
maximum number of memory and na€�ve T cells in the immune
system (43).

The model was parameterized on the basis of literature sources
when possible, as shown in Table 1. For many cases, there was
evidence of variation in parameters, and some cannot be easily
measured. Where possible, we have tried to make a biologically
reasonable order-of-magnitude approximation. To address this
parameter uncertainty, we explicitly consider the impact of
parameter variation on model results.

Simulating chemotherapy and evaluating outcomes
To establish tolerance in the system and allow transients

from initial conditions to dampen before applying therapy, the
simulation was initialized with a tumor size of 107 cells.
Chemotherapy was started when the tumor reached 108 cells

and was simulated as periodic doses of cytotoxic therapy at 14-
day intervals. In total, 10 cycles of chemotherapy were applied.
At the time of each treatment cycle, all cell populations
(immune and tumor) were instantaneously reduced by a frac-
tion C0 representing the cytotoxic effect of chemotherapy on
that population.

This instantaneous death fraction can be understood as lethal
dose (LD) values with, for example, C0 ¼ 0.5 representing LD50.
The choice for an instantaneous decrease is simplifying, allowing
us to omit pharmacodynamics; however, this approach reflects
the general potency of many therapy agents. For example, in vitro
studies have shown that cellular uptake and incorporation into
RNA for 5-fluorouracil occurs as soon as 3 hours after expo-
sure (44). Uptake levels were directly shown to correlate with
cytotoxicity. For doxorubicin, cytotoxicity studies have found that
just 1 hour of exposure is enough to induce a 90% decrease in
viable, colony-forming cells (45).

Immune cells were reduced by the same fraction (C0) on each
chemotherapy cycle. However, to account for tumor resistance
to therapy, the fractional tumor reduction for cycle i (Ci) was
linearly reduced with each cycle, such that the cytotoxic fraction
on the last cycle was 75% of the initial fraction C0. Approxi-
mating the impact of chemoresistance on drug efficacy is chal-
lenging since values vary for different classes of drugs. Further-
more, Hao and colleagues (46) noted dose-dependent differ-
ences of up to 400% between resistant and resensitized prostate
cancer cell populations to docetaxel. Here, the value of 75%
chemotherapy efficacy at the last cycle represents a 33% advan-
tage of survivorship for a resistant population versus a suscep-
tible population. It is a conservative estimate of the impact of
resistance, but we believe it is reasonable given that tumor
populations are unlikely to be entirely resistant. Varying this
range is a relevant question for future research. For our pur-
poses, Ci is given by:

Ci ¼ C0 1� 0:25
i
10

� �
ðGÞ

The final tumor size after 10 cycles of chemotherapy was
compared with the tumor size at the start of treatment (108 cells)
and evaluated according to RECIST categories. Specifically, a total
loss of tumor (�99% change in size) is a complete response (CR).
A change between �30% and �99% is considered a partial
response (PR). Tumor changes between �30% and þ20% are
classified as stable disease (SD) and increases of greater than
þ20%are seen as progressive disease (PD; ref. 47).While there are
many different methods of measuring therapy efficacy impact on
disease, RECIST categories were chosen here because they have
correlated well with overall survival in patients across a variety of
cancers.

Simulation environment
The model was programmed in the Python language (ver.

2.7.11). The open-source packages Scipy (ver. 0.17.0), Numpy
(ver. 1.10.4), andMatplotlib (ver. 1.5.1) were used for simulation
of theODEs aswell as visualizationof the results. The platform for
the programwas both an Intel Core i7-6820HQprocessor as well
as the high performance computing cluster at H. Lee Moffitt
Cancer Center and Research Institute (Tampa, FL). The source
code is available at the github repository for the Integrated
Mathematical Oncology department at github.com/MathOnco/
Goldilocks.

Table 1. Model parameters were estimated based upon both preexisting
models, chiefly Althaus and colleagues (16) and Robertson-Tessi and colleagues
(29), as well as experimental studies

Parameter Symbol Value
Literature
reference

Tumor growth coefficient rT 1,000 cells1-m day�1 29
CTL kill rate k0 1 day�1 34, 35
Treg suppression efficacy b 0.75 29
Tumor growth transition size Ttrans 106 cells 49
Power-Law growth exponent m 0.5 29
Exponential to power smoothing
term

P 3.0 29

Time till immune contraction toff 4–8 days 15
Maximum sustainable number of
effector, na€�ve, and memory
cells

Emax 1012 cells 40

Tumor antigenicity a 1 day�1, a 29
CTL death/apoptosis rate dE 0.05 day�1, a 39
CTL contraction rate r 0.13 day�1 15
CTL contraction augmentation
due to Tregs

c 0.01a 29

Memory cell expansion factor g 100a 15, 48
Tumor-mediated Treg
recruitment rate

s 0.01 day�1 42, 29

Treg death rate dR 0.1 day�1, a 29
Memory cell growth rate rM 0.01 day�1, a 40
Memory cell reconversion rate w 0.01a 40
Na€�ve cell growth rate rN 0.1 day�1 40
Maximum number of na€�ve T
cells and memory cells

Kmax 1012 cells 43

Baseline chemotherapy strength C0 Varied in
simulation

aFor some parameters, the literature often indicated significant variation, so
order-of-magnitude approximations were made. Similarly, certain parameters
were not succinctly captured in literature studies and were therefore estimated.
We have addressed the impact of potential parameter variation through
sensitivity studies (see Results).
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Results
Patient memory cell populations determine a "Goldilocks
Window" of optimal dosing

Memory cell population sizes are variable among patients (48).
Arstila and colleagues have estimated 106–107 T-cell clones in the
human body with approximately 105 memory T cells per anti-
gen (48, 49). However, due to antigen responses being polyclon-
al, this suggests multiple orders of magnitude of potential vari-
ation in memory T-cell numbers. Therefore, varying doses of
chemotherapy were simulated for a range of memory cell pop-
ulation sizes (Fig. 2A and B). Results from the model show that
patient memory cell numbers significantly influence the opti-
mum chemotherapy dose. Generally, there is a minimum mem-
ory cell population size that is necessary for any given strength of
chemotherapy to be successful. Above this threshold, the more
memory cells there are, the better the improvement with stronger
doses of therapy. Conversely, this means that when memory cell
populations are close to the minimum threshold, chemotherapy
should be similarly weak for a more favorable outcome. Further-
more, ifmemory cells are below theminimum threshold, then the
optimal strategy is to use strong chemotherapy (Fig. 2A and B),
because the immune system will not contribute to tumor
regression.

The double-edged nature of chemotherapy on the immune
system can be better understood through the transient dynamics
during therapy (Fig. 2C and D). In cases with stronger chemo-

therapy dosing, there is an early decrease in tumor population
levels due to the cytotoxic strength of the therapy. However, we
observe a trend that these strong therapies tend to lead to failure
and larger final tumor sizes than if treated with a "weaker"
chemotherapy regimen, which provides lower cytotoxicity on the
tumor but maintain tumor size reduction for the duration of
therapy.

This counterintuitive result stems from the fact that cytotoxicity
alone is insufficient for suppressing tumor growth, especially due
to the accumulating chemoresistance. Rather, it is the synergistic
effect of cytotoxicity as well as the breaking of immune tolerance
and consequent recruitment of CTLs that keeps tumor popula-
tions in check.Our in silico treatments consistently show that there
is an inherent disadvantage to high-dose chemotherapy. There is a
gradual decrease in the CTL population over multiple rounds of
treatment due to the net loss that stronger dosing causes in
memory T-cell populations (Fig. 2D). It is these memory cells
that are affected themost by chemotherapy because they can only
recover relatively slowly. If the cytotoxic pressure onmemory cells
is greater than the recovery rate of that compartment, then
even with a resensitized immune system, expansion will lead to
fewer total CTLs and ultimate treatment failure. In contrast, if
the immunodepleting side effects of chemotherapy can be bal-
anced with immune recovery, then more sustainable treatment
responses are possible. In short, there is a tradeoff between having
chemotherapy strong enough to sufficiently break tolerance, but

Figure 2.

Interaction of memory cell populations and chemotherapy strength on treatment outcomes. RECIST outcomes are shown in Awith progressive disease (red),
stable disease (yellow), partial response (light blue), and complete response (dark blue). B, Finer grade responses are shown as percent changes in tumor size
after therapy versus the initial starting size (108 cells). The underlying dynamic reasons for these differences can be seen in the memory populations during low
(C) and high-dose (D) chemotherapy. Low-dose chemotherapy allows memory populations (light blue) to be sustained for longer and generate larger CTL
responses (green). High-dose chemotherapy, however, depletes memory cells faster and leads to declining CTL responses and concurrent tumor escape.
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mild enough to leave sufficient memory T cells for adequate CTL
expansion. Akin to the story of Goldilocks and the three bears, the
balancing of these two immunologic goals leads to an interme-
diary chemotherapy strength that is "just right." In silico simula-
tion shows that this "Goldilocks Window" is highly dependent
upon patient-specific, preexisting memory T-cell populations.

Patient-specific tumor growth rate and immune strength
determine chemotherapeutic flexibility

While we identified this Goldilocks Window of optimal, sub-
maximal chemotherapy dosing, we also sought to explore it in the
broader context of patient-specific disease and immune variation.
For tumor growth rates, we found that successful treatment out-
comes are more sensitive to chemotherapy dosing for faster
growing tumors and less sensitive for slower growing tumors.
Experimental and model analyses have shown that selection
pressures on growing tumors can lead to significant heterogeneity
inmetabolismand growth rates (49) In our framework, the tumor
growth rate parameter (rT) was set to the maximum speed for
doubling during the exponential growth phase (1,000 cells0.5

day�1, representing a doubling time of 1 day), but we also
explored faster and slower growth rates (Fig. 3A and B).

In slower growing tumors (rT < 1,000 cells0.5 day�1), che-
motherapy's cytotoxic effects are sufficient for tumor control.
After the partial tumor clearance due to each cycle, there is
regrowth of the cancer cell population (Fig. 2A and B). For slower
growing tumors, there is less intercycle regrowth and therefore

cancer cell populations can be controlled by chemotherapy alone
without the need for CTL killing. The result is that, for slower
growing tumors, there is no Goldilocks Window.

However, for faster growing tumors (rT > 1,000 cells0.5 day�1),
it becomes necessary to maintain chemotherapeutic strength
within the Goldilocks Window to achieve optimal outcomes. For
these tumors, regrowth between chemotherapy doses is signifi-
cant anddemands the addition of CTL-mediated tumor killing for
disease control. Chemotherapy that is stronger than the Goldi-
locks Window hamstrings the patient's immune activation.

Importantly, for the most aggressively growing tumors, there is
actually a "worst case scenario" of intermediary chemotherapy
strength (Fig. 3B). Here, the worst option for chemotherapy is
not the strongest possible dose, but a "mid-range" strength in
treatment instead. At this chemotherapeutic strength, the drug
alone is insufficient to cause a reduction in tumor size. However,
the dose is still strong enough to lead to severe memory cell
depletion, undermining any immune efforts at constraining
tumor growth.

Separate from tumor parameters, patient immune character-
istics can also impact the sensitivity of treatment outcomes to
chemotherapy dosing. One important parameter we sought to
explore was the rate of CTLs in killing tumor cells (k0, Fig. 3C and
D).Without changing the initial patientmemory cell populations
(M0 ¼ 106 cells), or the tumor growth rate (rT ¼ 1,000 cells0.5

day�1), the CTL-mediated cytotoxicity rate was varied around the
biologically realistic parameter of k0 ¼ 0.9 day�1 (34). CTL

Figure 3.

Treatment outcomes for variation in tumor growth rate (A and B) and CTL efficacy (C and D).A and C represent RECIST outcomes. Red, progressive disease;
dark blue, complete response; light blue, partial response; yellow, stable disease. Treatment outcomes with faster growing tumors are more sensitive to
maintaining chemotherapy dosing in the GoldilocksWindow. For slower growing tumors, treatment outcomes are more successful and less sensitive to dose.
Similarly, more efficient patient CTLs lead to more successful outcomes and have less dependence on chemotherapy. However, outcomes becomemore
sensitive to dosing for patients with less efficiently killing CTLs.
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efficacy was found to dramatically impact sensitivity chemother-
apy dosing and the Goldilocks Window. Lower rates of CTL-
mediated tumor cell death lead to greater sensitivity of treatment
outcomes on chemotherapy dosing (Fig. 2C and D). With a lower
value of k0, more CTLs are necessary to exert the same degree of
immune control over the tumor. However, strong chemotherapy
on a patientwith lower k0 values prevents sufficientCTL expansion
by rapidly diminishing the memory cell populations. Higher CTL
killing rates, although, removed the restriction of this Goldilocks
Window andmade successful treatment outcomes less sensitive to
dosing. While higher chemotherapy doses may lead to larger
immune depletion, more efficient CTLs mean that these smaller
immune populations still lead to successful treatment outcomes.

In addition, we examined the impact of changing the window
duration for immune expansion immediately following each
chemotherapy dose. Current literature indicates that immune
contraction can begin to occur anywhere from 4 to 8 days after
treatmen (8, 14, 17) When these extremes were explored (see
Supplementary Fig. S1), there was no significant qualitative
difference to our observation of a submaximal optimal dosing
range when compared between 4 days (Supplementary Fig. S1A)
and 8 days (Supplementary Fig. S1B). While a longer window of
immune expansion (Supplementary Fig. S1B) leads to more
favorable outcomes for more rapidly growing tumors when
treated in the optimal dosing range, the actual presence of this
submaximal dosing range does not change. Furthermore, there is
almost no difference in the outcomes of patients who are over-
treated. This also implicitly addresses our mathematical imple-
mentation of a switch via aHeaviside Function. Specifically, while
there might be any number of less abrupt and more gradual
transitions between immune expansion and immune contrac-
tion, our exploration of the dynamics at the extremes of this
transition range would give an idea of what the intermediate
behaviors due to a smoother transition might cause. That is, our
qualitative results wouldnot significantly changewith a smoother
function.

In a broader exploration of the model's immune parameters, a
general trend was observed that a more robust immune response
would improve the outcome (Supplementary Figs. S2–S7). For
certain model parameters that were more difficult to accurately
estimate from the literature, we explored their variation for the
default tumor growth rate and a chemotherapy strength of 25%. If
the patient had a stronger immune system characterized by lower
CTL death rate (dE), lower sensitivity to Tregs (c), greater memory
cell expansion (c), regrowth (rM), and back conversion (x), the
final tumor population was smaller. Furthermore, more robust
antitumor immune responses led to greater maximum possible
reductions over the range of chemotherapy. In addition, these
changes led to expansions of the Goldilocks Window in terms of
chemotherapy doses that could achieve tumor reductions.

In short, patient-specific disease and immune biology deter-
mines the sensitivity of treatment outcomes to chemotherapy
dosing. For rapidly growing tumors, chemotherapy must be
maintained in a submaximal Goldilocks Window to optimize
drug and immune synergies. However, patient immune biology
matters as well, with weaker immune characteristics also leading
to a greater necessity to stay within the Goldilocks Window.
Importantly, this presents potentially counterintuitive guidance
because an initial motivation may suggest that, in a situation
where a patient has a weaker immune system, chemotherapy
strength should be increased to compensate. However, ourmodel

suggests that the lymphodepleting impact of heavy chemotherapy
on an already weakened immune system will only worsen out-
comes. When confronted with weaker patient immune systems,
chemotherapy needs to be maintained within the Goldilocks
Window for successful outcomes.

Improvements to therapy outcomes from immunostimulatory
vaccines

Patient-specific vaccines have become a recent hallmark in
personalized cancer therapy. One of the first to acquire FDA
approval was Sipuleucel-T, for treating metastatic castrate resis-
tant prostate cancer (50). Each vaccine is tailored to a specific
patient by culturing dendritic cells from patients using a specific
tumor antigen. Reinjection into the patient would potentially
stimulate a T-cell–mediated antitumor immune response. Three
doses were administered in 2-week intervals with significant
clinical responses being observed. Vaccination led to a 22%
reduction in the relative risk of death, although there was no
noticeable decrease in the rate of progression of disease (50). The
specific effect on T cells was quantified by looking at T-cell
receptor changes in response to vaccination. Certain receptor
sequences were enriched, while others were significantly
decreased (51), suggesting that the vaccine promoted an anti-
gen-specific immune response against the tumor.

To study the effects and potential synergy of chemotherapy
with this method of T-cell stimulation, we simulated a vaccine
regime similar to that used for Sipuleucel-T (3 doses, spaced
14 days apart), with different vaccine strengths. Mathematically,
this was modeled by modifying the ODEs that govern CTL
expansion, without explicitly representing the complex DC-to-
T-cell cascade that the vaccine induces. Other models have exam-
ined the DC cascade in more detail. For example, the explicit
migration of dendritic cells between blood, spleen, and tumor
have been modeled via delay-differential equations to better
characterize the specific dose timing–dependent responses to
therapy (28) For simplicity, here we focus solely on the net effect
of the vaccine on T-cell numbers by changing the antigenicity
parameter of the tumor, a, from a constant coefficient to a
variable, time-dependent function, av(t):

a� tð Þ ¼ aþ �
1
2

� � t
thalf ðHÞ

Total antigenicity is modeled as the result of both the constant,
baseline antigenicity of the tumor, a, and an exponentially decay-
ing vaccine-augmented component, v, which decays with a half-
life, thalf ¼ 3 days, a biologically realistic timespan (52). This
model of dynamic antigenicity can be expanded for multiple
vaccinations, as used in the clinical protocol (Eq. I).

a� tð Þ ¼ aþ
Xnvac
n¼1

H t � tnð Þ� 1
2

� �t�tn
thalf ðIÞ

Here, H(t) is again the Heaviside function. The constant nvac
represents the total number of vaccine injections and tn represents
the time of the nth vaccination. The ODEs used for the simulation
of immune and tumor cell populations are then dependent on the
instantaneous current value of av(t) throughout the course of
simulated therapy.

Here, we explored a range of antigenic increases due to poten-
tial patient-to-patient variation in responses to immunostimula-
tory vaccines. While dendritic cell vaccines like Sipuleucel-T
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administer all of the available dendritic cells, responses in indi-
vidual patients vary in how much the antigenicity is changed. In
our range of exploration, though, we found some commonalities
in vaccine interaction for chemotherapy.

Results show that vaccine therapy can improve outcomes, but
only within a specific range of chemotherapy strengths (Fig. 4).
Treatment outcomes improve when a vaccine is used with mod-
erate chemotherapy (Fig. 4A), but for very high chemotherapy
doses, the beneficial effects of a vaccine are diminished. As before,
the underlying cause for decreasing efficacy is the persistent
lymphodepletion due to the chemotherapy. Antigenicity aug-
mentation due to vaccine stimulation is offset by reduced CTL
expansion. However, very low-dose chemotherapy poses its own
challenges, because with insufficient lymphodepletion, tolero-
genic mechanisms and greater Treg recruitment inhibit any CTL
response augmented by the vaccine. The immune system remains
closer to tumor-tolerized homeostasis, and as a result, vaccine
stimulation is mitigated because the immune system is already
suppressed. Therefore, the width of the optimal window is not
significantly affected by the vaccine because the vaccine has no
effect on a highly depleted or tolerized immune system.

Therefore, even with immunostimulatory vaccines, there exists
an optimal "Goldilocks" Window. Quantitatively, we define this
window tobe the region inwhich a therapydose canoffer at least a
20% reduction in tumor size because this is the necessary amount
for disease to become classified as a partial response. In order for
there to be this maximized benefit from vaccine application, the
chemotherapy regimenmust be "just right." Chemotherapymust
have sufficient lymphodepletion to resensitize the immune sys-
tem, but must leave enough immune cells such that vaccine

stimulation leads to a large CTL response. Similar to the results
of chemotherapy without the vaccine, the specific range of this
GoldilocksWindowdepends upon the initial patientmemory cell
(M0) numbers.

We note that the small oscillations observed in the plots
(Fig. 4B) are a result of the use of dual growth laws for the tumor.
Essentially, giving the vaccine causes the tumor to dip into the
faster exponential growth phase at an earlier chemo cycle than
when chemo is given alone. Because the chemo cycles are discrete
and instantaneous, this generates an effective step function to the
response with increasing chemo dose, superimposed on the
single-peaked optimal curve; this step function is further rounded
by both the smoothing exponent P between the growth laws and
the nonlinear interactions between tumor growth and immune
response at small tumor sizes.

Impact of variation in immune support
Chemotherapeutic lymphodepletion in the clinical setting

can pose a serious threat to the safety of the patient through
neutropenia (53), which commonly leads to dose reductions
and disruptions to the standard schedule of therapy for
patients. Consequently, multiple tools have been developed
to help mitigate the effects of chemotherapy on the immune
system. For example, it was recognized that dexamethasone
treatment before carboplatin and gemcitabine could not only
increase chemotherapy efficacy, but also reduce the lympho-
depleting effects by preventing uptake in the spleen and bone
marrow (54). In contrast, other aspects of cancer therapy
can potentially hamper CTL responses to tumor insults. For
example, G-CSF application has been shown to reduce CTL

Figure 4.

Improvements in tumor reduction due to vaccine
application. A, The RECIST responses achieved for
different vaccine strengths and chemotherapy
strengths, with black being the nonvaccine baseline.
Vaccine strengths (v) are 1 (blue), 10 (green), 100 (red),
1000 (light blue). Larger vaccine strengths lead to more
successful RECIST responses for stronger
chemotherapy doses. When looking at the absolute
number of improvement in cellular reduction (B), a
window of optimal chemotherapy ranges appears. Only
when chemotherapy is in this range can vaccines
provide a significant additional benefit.
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activation and could conceivably impede the impact of lym-
phodepletion as a break from immune tolerance (55, 56).
More generally, however, the broader impact of immune sys-
tem augmentation or suppression during therapy remains
unexamined.

To examine the effect of attenuated or augmented lympho-
depletion on therapy outcome, we allowed for variable che-
motherapeutic toxicity to immune populations, as compared
with the tumor population. Mathematically, this simply means
modifying the chemotherapy dose by a scaling factor h. The
effect of chemotherapy on immune cell populations at a given
treatment time is:

I1 ¼ I0 1� hCð Þ ðJÞ
where I1 is the immunologic population size after application of
chemotherapy, I0 is the population size before therapy, and 0 < C
< 1 is the dose strength. The specific numerical range in which h
falls represents either attenuated or augmented chemotherapeutic
toxicity. For values of 0 < h < 1, this represents an attenuated
toxicity on the immune system relative to the toxicity on the
tumor. In contrast, values of h > 1 represent higher toxicity on
patient immune populations than on the tumor. This could be
due to patient-dependent increased sensitivity to chemotherapy.
Themaximumpossible reduction of cells by chemotherapy when
modified by immune support is 100%. This leads to the resulting
condition that hC < 1. For our in silico therapies, h was varied
across the allowable ranges for three different strengths of che-
motherapy. Values of C were chosen to represent lower (C ¼
0.25),middle (C¼ 0.6), and higher (C¼ 0.9) dose chemotherapy
(Fig. 5A).

Interestingly, the results suggest that immune-supporting com-
bination therapy has essentially no benefit when given with low-
dose chemotherapy. As shown in Fig. 5, similar tumor reduction
occurred for a wide range of values of h around h ¼ 1. Further-
more, outcomes were worse when h was very low or very high. In
situations where it was very low, final tumor sizes were large
because a lack of lymphodepletion did not sufficiently break
immune tolerance. In contrast, for larger h values, there was
overdepletion that prevented an effective immune response
despite significant tolerance breaking.

In contrast, high-dose chemotherapy saw treatment failure or
success highly dependent upon the amount of immune sup-
port. Similar to low-dose therapy, a small value of h that
mitigated the depleting effects of chemotherapy led to the best
possible outcomes in terms of tumor shrinkage. Final tumor
sizes were, in fact, multiple orders of magnitude lower than was
possible with low-dose chemotherapy. As h increased (repre-
senting less toxicity mitigation) treatment outcomes rapidly
worsened. The transition value h�, where the clinical outcome
rapidly shifts, indicates a threshold effect with regard to
immune support. For high chemotherapy doses, immune sup-
port treatments must have a significantly large mitigation (h <
h�) of immunodepletion in order for successful treatment
responses to occur. The position of this inflection point is
influenced by the strength of the patient immune system to
begin with. In expanded parameter analyses, the strength or
weakness of the simulated patient's immune system led to
changes in the upper bound of the Goldilocks Window (Sup-
plementary Figs. S2–S7).

The moderate strength chemotherapy regimen yielded only
partial benefits of either extreme. The greatest tumor reduction

possible, with immune support, yielded tumors that were
smaller than those achievable with low-dose chemotherapy.
However, these tumors were still multiple orders of magni-
tude larger than those achievable with high-dose chemother-
apy. For treatment failure at lower immune support (h > h�),
tumor sizes were actually larger than when high dose che-
motherapy failed.

Clinically, the results suggest that chemotherapy dose
strength can be used to mitigate uncertainty regarding the
amount of immune support a certain treatment will give to
a specific patient. Low-dose therapy offers a wide range of
potential immune support in which treatment can successfully

Figure 5.

Therapeutic effects of differential response to immune prophylactics. A, Final
tumor sizes are shown for three different chemotherapy regimes (C¼ 0.25,
black curve; C¼ 0.6, dotted curve; C¼ 0.9, outlined curve) for a range of
immune modifier efficacies (h). The asterisk denotes that simulations were
only run up to this h value for the highest dose chemotherapy. The dotted line
represents the tumor size at the start of therapy. B, Cohorts were treated
with these differing regimes of high and low chemotherapy, showing
significant differences in the proportion of successful versus unsuccessful
responders.
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reduce tumor sizes. The disadvantage is that the maximum
tumor size reduction still leaves larger tumors than are possible
using higher doses of chemotherapy. While our model has not
analyzed this, a potential impact is that larger tumor sizes could
lead to more heterogeneous populations and thus lead to a
higher likelihood of resistant or metastatic populations. How-
ever, higher doses have a narrower range of immune support in
which they are successful. Chemotherapy can be balanced,
then, against how certain the clinician is of the benefit that
G-CSF (or other immune supporting drug) will give. For
patients where there is high certainty of a significant benefit
due to the drug, high-dose therapy is optimal. In contrast, lower
dosing should be used when the drug may have lower or
variable efficacy.

Finally, we sought to investigate how variation in the effec-
tiveness of these immune adjuvants might impact treatment
outcomes in a group of patients. Chemotherapy treatment leads
to a wide range of responses, both successful and unsuccessful,
across multiple types of cancer (47). This variation has been
attributed to disease variation, patient variation, and interactions
between the two. However, less attention has been given to
variable patient responses to secondary drugs, such as G-CSF,
and how they impact therapy. Patient responses to these second-
ary drugs are currently poorly measured and could have signif-
icant implications for therapy outcomes.

To better explore the effect of variable patient responses to
immune support drugs, cohorts of 500 patients were randomly
generated from a normal distribution with a mean immune
support response value of h ¼ 0.8 and variance of 0.2. These
values were chosen to center the distribution around the model-
derived threshold value h� ¼ 0.8. While not directly describing
patient responses to immune support drugs, a normal distribu-
tion for selection was chosen due to the fact that immune cell
counts have been found to be normally distributed in population
cohorts (57).

Similar to our previous investigations, cohorts were then sub-
jected to regimens of low (C ¼ 0.4) and high (C ¼ 0.8) chemo-
therapy strengths (Fig. 5B). Percent changes in tumor size after
therapywere displayed for each individual patient in the cohort to
generate a waterfall plot. In doing so, we used our model to
simulate cohort responses as is commonly measured in aggre-
gated studies of patient data (47). The waterfall plots (Fig. 5)
illustrate that chemotherapy strength can significantly change the
proportion of successfully responding patients in a population
with variable responses to immune prophylactics. This is signif-
icant because the proportion of successful responses is often an
important criterion for judging therapeutic efficacy. The simulat-
ed waterfall plots show how clinical outcomes could not only be
the result of therapy, but also due to inherent immune variation
within the cohort.

Discussion
A major barrier to success for immunotherapy in cancer is

tolerogenic mechanisms that reduce the immune response to
tumor antigen (4, 7, 58). A potential solution has come from
observations that lymphodepletion stimulates homeostatic
proliferation in the immune system that can transiently restore
an immune response. This has led to increasing efforts to
selectively apply chemotherapy to improve outcomes from
immunotherapy (59).

To better understand this potential synergy, we constructed
a mathematical model to frame these complex dynamics
and identify critical parameters that govern the clinical outcomes.
Our studies focused on three clinically observed dynamics of
immunodepletion, immunostimulatory vaccination, and immu-
nosupportive prophylactics. With regard to immunodepletion,
we demonstrated that chemotherapy results in a trade-off. At very
high doses, chemotherapy has a maximal cytotoxic effect on the
tumor but also maximally depletes T cells such that no effective
CTL response can be mounted despite the transient loss of
tolerance during reexpansion of the immune cells after comple-
tion of chemotherapy. Similarly, low doses of chemotherapy are
insufficient to produce the post-treatment immune cell expansion
that is necessary for reversal of immune tolerance.

Importantly, however, we find there is a GoldilocksWindow of
chemotherapy doses in which lymphodepletion causes adequate
immune resensitization, but does not impose an overly large
recovery burden. This window is governed by the patient-specific
quantity of memory T cells so that larger pretreatment T-cell
populations allow more favorable outcomes with higher doses
of chemotherapy. In contrast, fewer pretreatment CTLs can limit
the immune response even in the Goldilocks window of chemo-
therapy. Thus, there is a necessary "minimumefficacy" of CTLs for
successful stimulation of immune response by chemotherapy.
Below this threshold of immune activity, the benefit of chemo-
therapy is almost solely dependent on its inherent cytotoxicity
(Fig. 6).

Our model also provides insight into the potential effects of
variation in the tumor growth rate. In slower growing tumors,
chemotherapy alone can be sufficient to achieve optimal treat-
ment response. Treatment of faster growing tumors, however, is
best when the chemotherapy is administered to enhance the
immune response. Unfortunately, if the pretreatment population
of CTLs is small, we find chemotherapy for rapidly growing
tumors will be ineffective if it is both highly lymphodepleting

Figure 6.

A diagram explaining tumor outcomes at varying chemotherapy strengths
and immune support doses. If therapy is too weak, then immune stimulation
cannot be maximally effective and direct chemotherapy-mediated tumor cell
death is also low. This yields a suboptimal tumor reduction. When
chemotherapy is too strong, there may bemore tumor cell death due to the
drug, but insufficient immune activation due to overdepletion of T cells. There
is a moderate dose, however, that represents a Goldilocks Window of
maximizing both T-cell activation as well as drug-induced tumor cell death.
This range of dosing provides at least a 20% reduction in tumor size (relative
to the initial tumor size of 108 cells).
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and insufficiently cytotoxic to significantly reduce tumor
growth. Assessing the clinical importance of this question is
challenging because it remains unclear from the literature as to
the actual size of the population of tumor-specific T cells that
are present during treatment. In spite of these difficulties, the
impact and existence of antitumor immunity has been bol-
stered by recent immunotherapies that act to remove inhibi-
tions to T-cell action (60).

Chemotherapy is increasingly being used in concert with vac-
cines to help stimulate the patient immune system. We investi-
gated the interactions between vaccines and lymphodepletion
and found that, as before, there is a window of chemotherapy
ranges in which vaccines can improve outcomes versus chemo-
therapy alone. At very high doses, however, the resulting lym-
phodepletion substantially reduces benefits of immune stimula-
tion by vaccination. More broadly, other novel immunotherapies
could also potentially be hampered by overdepletion of the
immune system.

To further investigate the potential impact of this interaction,
we modeled the effect of differential responses to immune
prophylactics. G-CSF and other drugs have become common
recourses in chemotherapy for mitigating the immunodeple-
tion effects on patients (61). However, recent studies have
suggested that T cell response is hampered by G-CSF admin-
istration (55). While G-CSF may help prevent neutropenia and
cytopenia for patients, it may impede the ability of retolerized T
cells to mount an antitumor response. In addition, responses to
prophylactics are not constant but the significance of this
variation remains relatively uninvestigated. Our model sug-
gests that interpatient variation in prophylactic response can
lead to drastically different outcomes for the same dosing of
chemotherapy. Across larger samples, this variation can further
interact with chemotherapy to be a significant determinant of
whether the chemotherapy dose leads to more success or failure
across a range of patients.

In the clinical literature, our model results cautioning about
balancing chemotherapy and immunogenic effects has been
echoed in multiple situations. Previous studies have explored the
mechanisms of action in mAb-based treatments including target-
ing of HER2 (62, 63). When quantifying the impact of antibody-
dependent cytotoxicity-mediated by CTLs, it was noted that
addition of paclitaxel reduced the lasting impact of the immune
response generated against the tumor. While in the short term,
higher doses of chemotherapeutic agents could induce larger
tumor reductions, mice that were given both antigen and large
chemotherapy doses weremore susceptible to tumor rechallenge.
Similarly, in radiotherapy it has been found that CTL priming
occurs due to antigen-dependent cell death (64). However, the
addition of even a small amount of paclitaxelwas found to induce
a significant reduction in CTL numbers. Adjuvant chemotherapy
regimens were found to significantly abrogate the immunogenic
benefits of radiotherapy-induced immune responses, while
immunotherapies increased the efficacies. This result is also
significant because it implicitly addresses whether our results
might hold when antigen increase, due to cell death, is accounted
for. In this mouse model, even with tumor-cell death–mediated
antibodies, the loss of T cells leads to a worse overall out-
come (64). This presents a natural extension of our framework
to be applied to a specific disease and chemotherapy dosing
setting. While we created a general model of chemotherapy, there
may be interesting dynamics unique to individual cancers that

could be explored. It would also allow the employment of more
complex pharmacodynamics modeling for specific treatment
regimens.

In conclusion, our results suggest opportunities to increase
the efficacy of immunotherapy with precise application of che-
motherapy. Our model affirms the importance of CTL and mem-
ory T-cell expansion following chemotherapy to reduce immune
tolerance to tumor antigens. However, we demonstrate that
optimal chemotherapy requires identification of a Goldilocks
Window in which treatment can both induce cytotoxic effects in
the tumor and enhance the immune response to tumor antigens.
Identifying optimal strategies for chemotherapy in each patient
will likely benefit from the application of mathematical models
that are parameterized by patient data pretreatment to generate an
optimal treatment strategy for that patient. Importantly, these
predicted strategies would most likely need to change as patient
responses diverge from those predicted, leading to an iterative
loop of "predict-apply-refine." With the growing drive toward
precision medicine, we believe that mathematical models are
critical for the future of truly personalized therapy, where no two
patients will receive the same therapeutic regimen, and where
treatments adapt a change based on patient responses. Themodel
presented here is a step toward describing the complex landscape
of treatment decisions regarding dosing and combination of
different therapies, and we have shown how these decisions can
be sensitive to patient-specific parameters and guide clinical
intuition.
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