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Supplementary Material

S1 The K&M model

The Kermack and McKendrick (K&M) model [1] is an integro-differential equation (IDE)

epidemic model, in which the infectiousness of each infected host varies continuously in time.

We considered a form of the K&M model given by

dS

dt
= S(t)

[∫ t

0

β(τ)
dS(t− τ)

dt
dτ −

∫ ∞
t

β(τ)g(τ − t)dτ
]
, (S1.1)

where S(t) is the number of susceptible individuals at time t days since the start of the

outbreak, β(τ) day−1 is the expected transmission rate of an individual who has been infected

for time τ days (the expected infectiousness curve), and g(τ) represents the initial density of

individuals who have been infected for time τ days. The basic reproduction number of this

model is [2]

R0 = N

∫ ∞
0

β(τ)dτ, (S1.2)

where N is the (constant) total population size. Latent periods, as well as any distribu-

tion of latent and infectious periods between hosts, can be incorporated into the expected

infectiousness curve, β(τ).

If there is initially a single newly infected individual, with the remainder of the population

susceptible, then g(τ) = δ(τ), where δ(τ) is the Dirac delta function. In this case, the K&M

model reduces to
dS

dt
= S(t)

[∫ t

0

β(τ)
dS(t− τ)

dt
dτ − β(t)

]
. (S1.3)

The SInR model (see Methods in the main text) is in fact obtained as a special case of the

K&M model [3, 4]. The corresponding infectiousness curve, β(τ), is the expected transmis-

sion rate of an individual at time τ days since infection in the analogous stochastic SInR

model. In this case, the expected infectiousness curve is non-zero for all times since infec-

tion τ > 0, even if latent compartments are explicitly included in the SInR model. This is

because the time that a given patient spends in each infected compartment is exponentially
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distributed, and so may be arbitrarily short or long.

Numerical solution

To solve the K&M model numerically in the main text (figure 2b) and in Section S6 of the

Supplementary Material, we used a forward Euler method. In particular, we chose a time-

step δt, and approximated the solution of the K&M model (in the form given by equation

(S1.3)) using the finite difference scheme

Si+1 = Si

[
1 + δt

(
i∑

j=1

βj(Si+1−j − Si−j)− βi

)]
, (S1.4)

where ti = iδt, Si = S(ti), βi = β(ti). The time-step was chosen to be sufficiently small to

ensure that the error in the numerical solution was negligible compared to other sources of

error considered.

S2 Proof of equivalence between the compartmental

and IDE methods

In this section, we first explain how the parameter values in the SInR model can be chosen

in order to approximate the population-scale dynamics if the expected infectiousness curve,

β(τ), is known. We then prove that, for these parameter choices, the K&M IDE model is

obtained in the limit as the number of infected compartments, n→∞.

Choosing parameter values in the SInR model

We assume that the rates of progression through the infected compartments in the SInR

model, µi, all take the same value (where this value will depend on the number of compart-

ments), so that we can write

µ1 = µ2 = · · · = µn = 1/λ(n), (S2.1)
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where λ(n) is the mean time that a given host spends in each infected compartment (for a

given number of compartments, n). We will choose λ(n) so that λ(n) → 0 as n → ∞, in

order to ensure that the infectiousness of each host varies continuously in the limit n→∞
(an explicit choice for λ(n) is given below).

To choose the transmission rates, βi, we consider an individual who spends exactly the mean

time, λ(n), in each infected compartment. At time τ since infection, such an individual will

have infectiousness given by

β(τ ;n) =



β1, for 0 ≤ τ < λ(n),

β2, for λ(n) ≤ τ < 2λ(n),

...

βn, for (n− 1)λ(n) ≤ τ < nλ(n),

0, for τ ≥ nλ(n).

(S2.2)

We wish to choose the βi so that β(τ ;n) → β(τ) as n → ∞ with λ(n) → 0. This will

ensure that if a host spends exactly the mean time in each infected compartment, then their

infectiousness will tend to β(τ) at every time since infection, τ , as n → ∞. Therefore,

since infectiousness also varies continuously when n → ∞, each infected host will have an

individual infectiousness curve given exactly by β(τ) in the limit. In general, β(τ) may have

unbounded support, so we will also need to choose λ(n) so that nλ(n) → ∞ as n → ∞.

However, in practice we may expect there to be some T such that β(τ) = 0 for τ > T , in

which case we may fix nλ(n) = T (i.e., we can take λ(n) = T/n).

In particular, we choose the transmission rates to be

βi =
1

λ(n)

∫ iλ(n)

(i−1)λ(n)
β(τ)dτ, i = 1, . . . , n− 1, (S2.3)

βn =
1

λ(n)

∫ ∞
(n−1)λ(n)

β(τ)dτ, (S2.4)

so that βi is the average value of β(τ) between times (i − 1)λ(n) and iλ(n) since infection,

and βn is the average of β(τ) over times since infection greater than (n − 1)λ(n). These

choices ensure that, for each n, the SInR model has the same basic reproduction number as

the K&M model with infectiousness curve β(τ).
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The integro-differential equation and compartmental methods are

equivalent in the limit n→∞

To show that the K&M model is obtained in the limit of infinitely many compartments when

the SInR model is parameterised as outlined above, we first define an approximation to the

density of infected individuals who have been infected for time τ in the SInR model,

I(t, τ ;n) :=



I1/λ(n), for 0 ≤ τ < λ(n),

I2/λ(n), for λ(n) ≤ τ < 2λ(n),

...

In/λ(n), for (n− 1)λ(n) ≤ τ < nλ(n).

(S2.5)

We can rewrite the SInR equations in terms of β(τ ;n) and I(t, τ ;n) as

dS

dt
= −S

∫ nλ(n)

0

β(τ ;n)I(t, τ ;n)dτ, (S2.6)

∂I(t, τ ;n)

∂t
=


− 1

λ(n)

(
dS

dt
+ I(t, τ ;n)

)
, for 0 ≤ τ < λ(n),

1

λ(n)
(I (t, τ − λ(n);n)− I(t, τ ;n)) , for λ(n) ≤ τ < nλ(n).

(S2.7)

In the limit where n → ∞, with λ(n) → 0 (also taking nλ(n) → ∞ if β(τ) has unbounded

support), we find that S(t) and I(t, τ) = I(t, τ ;∞) satisfy

dS

dt
= −S(t)

∫ ∞
0

β(τ)I(t, τ)dτ, (S2.8)

∂I(t, τ)

∂t
+
∂I(t, τ)

∂τ
= 0, τ > 0, (S2.9)

I(t, 0) = −dS

dt
. (S2.10)

The PDE (S2.9), subject to boundary condition (S2.10) and a general initial condition

I(0, τ) = g(τ), has solution given by

I(t, τ) =

g(τ − t), for t < τ,

−dS(t− τ)

dt
, for t > τ.

(S2.11)
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Substituting this solution into equation (S2.8), we find that

dS

dt
= S(t)

[∫ t

0

β(τ)
dS(t− τ)

dt
dτ −

∫ ∞
t

β(τ)g(τ − t)dτ
]
, (S2.12)

recovering the K&M model.

Initial conditions

Whenever we solved the SInR model numerically starting with a single newly infected host

(e.g. the blue line in figure 2b of the main text), we took the initial conditions I1(0) = 1,

Ii(0) = 0 for i = 2, . . . , n, and S(0) = N − 1 (where N is the total population size). This

choice of initial conditions gives

I(0, τ ;n) :=


1

λ(n)
, for 0 ≤ τ < λ(n),

0, otherwise.

(S2.13)

Taking the limit n → ∞ with λ(n) → 0, we find that g(τ) = I(0, τ) = 0 for τ > 0, with∫∞
0
I(0, τ)dτ = 1. Therefore, g(τ) = δ(τ), where δ(τ) is the Dirac delta function.

Note on the computational efficiency of the two methods

We consider the case where β(τ) = 0 for τ > T , and suppose that the SInR model with

parameter choices as in equations (S2.1) and (S2.3)–(S2.4) is discretised using an Euler

method with a time-step δt = λ(n) = T/n. It is straightforward to see that this numerical

scheme is essentially equivalent to the finite difference scheme given for the numerical solution

of the K&M model in equation (S1.4), up to slight differences in the transmission rates.

This therefore suggests there is no innate difference in computational efficiency between

the compartmental and IDE approaches (rather, this will depend on the precise numerical

methods used to solve each model). The major advantage of our compartmental approach

is its ease of use, while remaining similarly computationally efficient to the IDE approach.

5



S3 Explicitly including variability between hosts in the

population-scale model

In this section we consider a SIm,nR compartmental model, which explicitly incorporates

variability in the time-course of infection between different hosts. We show that the K&M

model is also obtained in the limit of infinitely many infected compartments when the SIm,nR

model is used to predict population-scale dynamics.

The SIm,nR model

We consider a multi-stage compartmental model in which there are n possible “types” of

infection, which are acquired with probabilities pj, j = 1 . . . n. An infected individual with

infection type j progresses through m infected compartments, Ii,j, i = 1, . . . ,m. The model

is given by

dS

dt
= −S

m∑
k=1

n∑
l=1

βk,lIk,l, (S3.1)

dI1,j
dt

= pjS
m∑
k=1

n∑
l=1

βk,lIk,l − µ1,jI1,j, (S3.2)

dIi,j
dt

= µi−1,jIi−1,j − µi,jIi,j, i = 2, . . . ,m, (S3.3)

dR

dt
=

n∑
l=1

µm,lIm,l (S3.4)

where βi,jIi,jS is the total rate at which individuals in class Ii,j infect susceptibles, and

µi,jIi,j is the rate at which such hosts progress to the next infected compartment (or recover,

if i = m).

In the limit of a continuum of possible infection types, denoted by the real variable y, we

obtain the equations

dS

dt
= −S

m∑
k=1

∫ ∞
−∞

βk(y)Ik(t, y)dy, (S3.5)

∂I1(t, y)

∂t
= f(y)S

m∑
k=1

∫ ∞
−∞

βk(y)Ik(t, y)dy − µ1(y)I1(t, y), (S3.6)
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∂Ii(t, y)

∂t
= µi−1(y)Ii−1(t, y)− µi(y)Ii(t, y), i = 2, . . . ,m, (S3.7)

where f(y) is the probability density of acquiring a type y infection, Ii(t, y) is the density

of individuals with a type y infection and in the ith infected stage, βi(y) is the transmission

rate of such individuals, and µi(y) is the rate of transition into stage (i + 1). This easily

generalises to a multi-parameter distribution of infection types.

Approximating population-scale dynamics in the SIm,nR framework

when there are multiple infection types

Suppose now that there are n possible infection types, acquired with probabilities pj, and

that each host with a type j infection follows a known infectiousness curve, βj(τ). In this

case, we can approximate the population-scale dynamics within the SIm,nR framework by

taking

µij = 1/λ(m), (S3.8)

βij =
1

λ(m)

∫ iλ(m)

(i−1)λ(m)

βj(τ)dτ, i = 1, . . . ,m− 1, (S3.9)

βmj =
1

λ(m)

∫ ∞
(m−1)λ(m)

βj(τ)dτ, (S3.10)

where we will again take λ(m)→ 0 as the number of compartments, m→∞.

If we have a continuum of infection types, denoted by y, with corresponding infectiousness

curves β(τ, y), then we take

µi(y) = 1/λ(m), (S3.11)

βi(y) =
1

λ(m)

∫ iλ(m)

(i−1)λ(m)

β(τ, y)dτ, i = 1, . . . ,m− 1, (S3.12)

βm(y) =
1

λ(m)

∫ ∞
(m−1)λ(m)

β(τ, y)dτ, (S3.13)

in equations (S3.5)–(S3.7).
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The limit of infinitely many compartments

Now, suppose there are n possible infectiousness curves, and we parameterise the SIm,nR

model as outlined above. Analogously to our definitions in Section S2, we define βj(τ ;m) as

the piecewise constant approximation to the jth infectiousness curve, and Ij(t, τ ;m) as the

approximate density of individuals with a type j infection who have been infected for time

τ , so that the SIm,nR model can be written in the form

dS

dt
= −S

n∑
l=1

∫ mλ(m)

0

βl(τ ;m)Il(t, τ ;m)dτ, (S3.14)

∂Ij(t, τ ;n)

∂t
=


− 1

λ(m)

(
pj

dS

dt
+ Ij(t, τ ;m)

)
, for 0 ≤ τ < λ(m),

1

λ(m)
(Ij(t, τ − λ(m);m)− Ij(t, τ ;m)) , for λ(m) ≤ τ < mλ(m).

(S3.15)

In the limit m→∞, we obtain

dS

dt
= −S

n∑
l=1

∫ ∞
0

βl(τ)Il(t, τ)dτ, (S3.16)

∂Ij(t, τ)

∂t
+
∂Ij(t, τ)

∂τ
= 0, τ > 0, (S3.17)

Ij(t, 0) = −pj
dS

dt
. (S3.18)

The PDE (S3.17), subject to boundary condition (S3.18) general initial condition Ij(0, τ) =

gj(τ), has solution

Ij(t, τ) =

gj(τ − t), for t < τ,

−pj
dS(t− τ)

dt
, for t > τ.

(S3.19)

We then find that

dS

dt
= S

n∑
j=1

[∫ t

0

pjβj(τ)
dS(t− τ)

dt
dτ −

∫ ∞
t

βj(τ)gj(τ − t)dτ
]
. (S3.20)

If we now define the expected infectiousness of an individual who has been infected for time

τ to be

β(τ) :=
n∑
j=1

pjβj(τ), (S3.21)
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then we have that

dS

dt
= S

[∫ t

0

β(τ)
dS(t− τ)

dt
dτ −

n∑
j=1

∫ ∞
t

βj(τ)gj(τ − t)dτ

]
. (S3.22)

Assuming that the term generated by the initial conditions has little effect once the outbreak

has taken off, then this is simply the standard K&M model.

Therefore, the population-scale dynamics may be calculated by assuming that all infected

individuals follow infectiousness curve β(τ). In the limit of a continuum of possible infection

types, this analysis still holds, and equation (S3.21) becomes

β(τ) =

∫ ∞
−∞

f(y)β(τ, y)dy. (S3.23)

This may be generalised further to multi-parameter distributions of infection types. In our

example where the patient-level dynamics are described by the TCL model, the variation

of the within-host parameters δ and V (0) leads to a two-parameter distribution of possible

infectiousness curves.

S4 Real and synthetic patient-level data

To demonstrate that the synthetic data that we generated (see Methods in the main text)

was comparable to real data, we plotted real data from 6 patients collected in a cohort study

of influenza infection (figure S1a–f ) [5, 6] alongside synthetic data for 6 patients (figure

S1g–l).
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Figure S1: Real and synthetic patient-level data. (a–f ) Viral load data against time since
infection (black crosses) for 6 patients, taken from a cohort study of influenza infection and
previously used to parameterise the TCL within-host model [5, 6]. (g–l) Synthetic viral load
data against time since infection for 6 patients (red crosses), generated using the TCL model
(see Methods).

S5 How many compartments are required for accurate

population-scale predictions?

In this section, we consider the errors in predictions that can arise when a finite number of

compartments is used in our compartmental framework. For simplicity, we focus on the case

considered in the main text where the infectiousness curve has bounded support, so that

β(τ) = 0 for τ > T , and we can choose the mean time a given host spends in each infected

compartment to be λ(n) = T/n.

When taking the limit n→∞ in equation (S2.7), the leading order error terms areO(λ(n)) =

O(1/n). In this case of an infectiousness curve with bounded support, we will also have

β(τ ;n) = β(τ) +O(1/n), (S5.1)

for all τ > 0, so that the error terms when taking the limit in equation (S2.6) will also be

O(1/n). This therefore suggests that the error in the population-scale dynamics (as defined

by equation (4.10) in the main text) when the compartmental method is used, relative to the

dynamics predicted using the IDE method, will be O(1/n) as the number of compartments,

n→∞.
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In order to confirm this error estimate, and also to investigate how many compartments are

required for sufficiently accurate population-scale forecasts in our case study of influenza

A, we assumed that the patient-level dynamics were perfectly characterised so that the true

expected infectiousness curve (as shown in figure 2a of the main text) was known exactly. We

then generated the population-scale dynamics for different values of the number of infected

compartments, n, and compared these to the dynamics predicted using the IDE method

(figure S2a).

To quantify the improvement of the approximation as the number of compartments is in-

creased, we plotted the error in the population-scale dynamics against the number of com-

partments, n (figure S2b). In this case, n = 24 compartments were required for an error

of 10% or below, while 47 compartments were needed for a 5% error (figure S2b). We also

plotted the error on a log-log scale for a wider range of n, in order to confirm that the error

scales with 1/n as the number of compartments, n, becomes large (figure S2c).

Figure S2: How many compartments are required for accurate population-scale predictions?
(a) The population-scale dynamics, using our compartmental approach with n =10 (green),
20 (blue) and 50 (red) infected compartments, and using the IDE method (black dotted),
when the infectiousness curve is as in figure 2a of the main text. (b) The error in the
population-scale dynamics against the number of compartments used in our framework, n,
plotted on a log-scale. The crosses represent the errors corresponding to the curves of the
same colour in panel (a) (these are at values of 24%, 12% and 5% error). (c) The error in
the population-scale dynamics for a larger range of n (black), plotted on a log-log scale and
compared to an error proportional to 1/n (red dashed).
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S6 Results using the IDE method to transition from

patient-level to population-scale dynamics

We repeated the analyses in figures 3d, 4d and 5a of the main text, but using the IDE method

rather than our compartmental framework to transition from patient-level to population-

scale dynamics (figure S3), finding that the results we obtained using the two approaches

were almost identical.

Figure S3: Results using the IDE method to transition from patient-level to population-
scale dynamics. Panels (a–c) are equivalent to figures 3d, 4d and 5a in the main text,
respectively, but using the IDE method instead of our compartmental approach to calculate
population-scale dynamics.

S7 Increased frequency of data collection

In figure 5 of the main text, we assumed that patient-level data were collected once daily for a

week from each patient. If data are instead collected twice daily, then estimates of individual

patient-level dynamics may be more accurate (figure S4a). We repeated our analyses in figure

5, but assuming twice daily data collection from each patient (figure S4b–c), finding that in

this case data are only required from 20 patients for a 10% mean error (figure S4b).
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Figure S4: Results assuming patient-level data are collected twice daily from each pa-
tient. (a) Example of synthetic data for a single patient: the true viral load of the patient
against time since infection (blue), twice daily data with measurement noise level σ = 1
log10(TCID50/ml) (red crosses), and the viral load against time when the TCL model is fit-
ted to the data (green). (b) Box-and-whisker plots indicating the distributions of within-host
(black) and between-host (blue) errors for different patients chosen in the study cohort when
n = 1000 compartments are used in our framework, assuming a measurement noise level of
σ = 1 log10(TCID50/ml), for a range of values of the number of patients, d. (c) The expected
error in the population-scale dynamics when the compartmental method is used, against the
number of compartments, n, and the number of patients, d. The red line indicates where
the error is 10%.

We also considered a potential trade-off between the number of patients, d, and the number

of daily observations per patient, f , if the total number of measurements, M = 7fd, is

fixed. In particular, we considered values of M that were multiples of 84, so that data

acquisition was possible at f = 1, 2, 3 and 4 daily measurements from each patient. In figure

S5, the expected error in the population-scale dynamics (each time calculated over 10,000

repeats, using n = 1000 infected compartments in our framework) is plotted against M for

f = 1, 2, 3 and 4 (with d = M/(7f) in each case). At larger total numbers of measurements,

the expected errors were found to be similar when data were collected either once or twice

daily from each patient, whereas data collection 3 or 4 times daily (from a smaller number

of patients) could led to larger errors for a given value of M .

Frequencies of observation smaller than once daily could also be considered, in order to find

an optimal value of f (or d) for each M . We plan to explore this in future, using a modelling

approach in which the data from different individuals are partially pooled (such as a non-

linear mixed effects model), in order to ensure accurate parameter estimation in cases where

the numbers of data points per patient are very small. Such an approach could also be used
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to explore different timings of measurements.

Figure S5: Trading off the number of patients, d, and number of daily observations per
patient, f , when the total number of measurements, M = 7fd, is fixed. The expected
error in the population scale dynamics is plotted against M for f = 1 (black), 2 (green),
3 (blue) and 4 (red), with d = M/(7f) in each case. A measurement noise level of σ = 1
log10(TCID50/ml) is assumed.

S8 Alternative relationships between pathogen load and

infectiousness

In the main text, we assumed that the infectiousness, β(i)(τ), of an influenza-infected host

(where i represents the particular host under consideration) was proportional to their viral

load, V (i)(τ), at any time since infection, τ days. In figure S6, we considered two alternative

cases in which we instead assumed

β(i)(τ) = k × F
(
V (i)(τ)

)
, (S8.1)

where F (V ) is a known function of viral load, V , and k is a constant. In particular, we

considered the following two possibilities:

i) A case where infectiousness scales with the logarithm of the viral load, in which we took

F (V ) = max{log10 (V/V ∗) , 0}, (S8.2)
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where we assumed that V ∗ = 103 TCID50/ml.

ii) A case where infectiousness saturates at high viral loads, in which we took

F (V ) =
V

K + V
, (S8.3)

where we assumed that K = 105 TCID50/ml.

Assuming that, R0, was known, the expected infectiousness curve was therefore given in each

case by

β(τ) =
R0

N
∫∞
0
F (V (i)(τ))dτ

F (V (i)(τ)), (S8.4)

where the bar denotes the average (at a given time since infection, τ days), calculated over

a large number of realisations of the within-host model. To compute the “true” expected

infectiousness curve, β(τ), we calculated the average of F
(
V (i)(τ)

)
over 10,000 within-host

realisations (figures S6a and S6d). In cases where data were available from d patients, each

sampled once daily, we fitted the within-host model to the data for each patient in order to

estimate β(τ) using equation (S8.4).

For both choices of F (V ), assuming perfectly characterised patient-level dynamics so that

the infectiousness curve was known exactly (figures S6a and S6d), we used both the compart-

mental and IDE methods (see Methods in the main text) to transition to population-scale

dynamics (figures S6b and S6e). When our compartmental approach was used, we assumed

that the expected infectiousness was very small for times since infection greater than T = 8

days. We then repeated our analyses in figure 5b of the main text (figures S6c and S6f ),

finding similar results to those obtained in figure 5b for both choices of F (V )—for example,

when there were d = 40 patients and we used n = 200 compartments in our framework,

the mean population-scale errors were 9.7% (figure 5b), 9.2% (figure S6c) and 9.5% (figure

S6f ) under the assumptions of a linear (equation (4.5) in the main text), log-linear (equation

(S8.2)) or saturation (equation (S8.3)) relationship, respectively.
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Figure S6: Alternative relationships between pathogen load and infectiousness. (a–c) Re-
sults assuming infectiousness scales with the logarithm of the viral load (equation (S8.2)).
(a) The expected infectiousness curve, β(τ), when the patient-level dynamics are perfectly
characterised. (b) The population-scale dynamics, using our compartmental approach with
n = 1000 infected compartments (blue), and using the IDE method (black dashed), when
the infectiousness curve is as in panel (a). (c) The expected error in the population-scale
dynamics when the compartmental method is used, against the number of compartments, n,
and the number of patients, d. The red line indicates where the error is 10%. A measurement
noise level of σ = 1 log10(TCID50/ml) is assumed. (d–f ) Equivalent figures to (a–c), but
assuming a relationship where infectiousness saturates at high viral loads (equation (S8.3)).
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S9 Results for different values of the basic reproduc-

tion number, R0

Figure S7: Results for different values of the basic reproduction number, R0. (a) The
expected infectiousness curve, β(τ), when the patient-level dynamics are perfectly charac-
terised, and assuming a basic reproduction number of R0 = 1.1. (b) The population-scale
dynamics, using our compartmental approach with n = 1000 infected compartments (blue),
and using the IDE method (black dashed), when the infectiousness curve is as in panel (a).
(c) The expected error in the population-scale dynamics when the compartmental method
is used, against the number of compartments, n, and the number of patients, d. The red line
indicates where the error is 10%. A measurement noise level of σ = 1 log10(TCID50/ml) is
assumed. (d–f ) Equivalent figures to (a–c), for R0 = 2. (g–i) Equivalent figures to (a–c),
for R0 = 3.
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We considered the effect of the assumed value of the basic reproduction number, R0, on our

results (figure S7). The number of patients required for a mean population-scale error of

10% or below was found to increase with R0, with d = 10 patients required when R0 = 1.1

(figure S7c) and d = 70 patients required when R0 = 3 (figure S7i). We also found that fewer

compartments were required in our framework to ensure a mean error of 10% or below, for

values of R0 both lower and higher than 1.5 (the value considered in most of our analyses).

S10 Results for different values of the measurement

error level, σ

We repeated our analyses in figure 5b of the main text for different values of the measurement

noise level, σ, finding that both the number of patients, d, and number of compartments,

n, required for a population-scale error of 10% or below increased when there was more

measurement error (figure S8).

Figure S8: Results for different values of the measurement error level, σ. (a) The expected
error in the population-scale dynamics when σ = 0.5 log10(TCID50/ml), against the number
of compartments, n, and the number of patients, d. The red line indicates where the error
is 10%. (b) Equivalent figure to (a), for σ = 1.5 log10(TCID50/ml).
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S11 Results for different levels of variability in patient-

level parameter values

When we generated patient-level data, we sampled the logarithms of the parameters δ and

V (0) in the TCL model from normal distributions with standard deviations 0.25 log10(day-1)

and 1.12 log10(TCID50/ml), respectively, for each patient. These values were chosen to

match variability in previous individual parameter estimates for 6 patients [5], but the level

of variability was not known to high accuracy. Therefore, we also considered changing the

standard deviations of the distributions from which we sampled log10(δ) and log10(V (0))

to 0.25α log10(day-1) and 1.12α log10(TCID50/ml), respectively, and repeated our analyses

in figure 5b of the main text for different values of α (figure S9). The number of patients

required for a 10% population-scale error increased with α (figure S9).

Figure S9: Results for different levels of variability in patient-level parameter values. (a)
The expected error in the population-scale dynamics when the parameter α = 0.8 (see the
text in Section S11), against the number of compartments, n, and the number of patients,
d. The red line indicates where the error is 10%. A measurement noise level of σ = 1
log10(TCID50/ml) is assumed. (b) Equivalent figure to (a), for α = 0.9. (c) Equivalent
figure to (a), for α = 1.1. (d) Equivalent figure to (a), for α = 1.2.
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