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Abstract-We analyse a tissue interaction model recently proposed to account for pattern forma- 
tion in the morphogenesis of skin organ primordia. We show that the model can exhibit travelling 
wave solutions which leave in their wake a spatially nonuniform, steady state solution. 
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1. INTRODUCTION 

The formation of spatial pattern is one of the central processes in developmental biology. Many 

models have been proposed for this process and they are capable of producing a wide range of 

spatial patterns. In most of these, spatial pattern formation occurs simultaneously on the whole 

domain (see [I] f or review). However, for several development processes, pattern is actually 

formed sequentially and travelling wavefronts are the precursors to patterning. This is the case 

in, for example, the pattern formation of feather germ primordia on the chick back: the pattern 

propagates outwards from the dorsal midline. Recently, a mechanochemical tissue interaction 

model has been proposed to account for this phenomenon [2]. It has been shown that this model 

can give rise to travelling waves in one dimension [3] and to propagating patterns in one and two 

dimensions [4]. In this paper, we show that this tissue-interaction model, in one dimension, can 

give rise to a different type of patterning, in which a propagating travelling front leaves a spatial 

pattern behind. 

The model is based on the interaction of the epidermis and the dermis within the chick skin. 

The epidermis is considered to be a viscoelastic material at low Reynolds number which under- 
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goes contraction due to cell traction [1,5,6]. Epidermal cells move by convection, whereas dermal 
cells move randomly and are also chemotatic. The tissue interaction due to the production of 

two signal chemicals, one in each tissue, which diffuse into the adjacent tissue. The dermally 
produced chemical stimulates epidermal cell traction, whereas the epidermally produced chem- 

ical stimulates dermal cell chomotsxis. The equations for the chemical are standard are not 

reproduced here [2]. With the above assumptions, we can write down a viscoelastic force balance 
equation for the epidermal layer, and conservation equations for the epidermal and dermal cell 
sensitivities, respectively. The force balance equation is 

v. 
t 
& [E - /31V2e + +-(B - /32026)1] + p1$ + p2!$ + $1) = PUT 

(1) 

where U(X, t) is the displacement at time t of a material point in the epithelium which was 

initially at x, 8 = V. u is the dilation, E = 3 (Vu + VuT) is the strain tensor, where T denotes 
the transpose, and s is the concentration of the signal chemical secreted in the dermis. The 

parameters E and v are the Young’s modulus and Poisson’s ratio respectively, I is the unit 
tensor, and 01 and ,& reflect long-range elastic stresses [l]. 

The epidermal cell density iV(x, t) satisfies 

dN -=_V.N!$ 
at 

while the conservation equations for dermal cells is 

dn 
- = DV2n - aV. nVe + rn(fi-- n), 
I% 

(2) 

where D is the coefficient of diffusion, Q the chemotaxis coefficient, e the concentration of the 
signal chemical produced in the epithelium, and T and FL are positive constants. 

Assuming that the cell kinematics occur on a fast timescale and integrating the linearised 

epithelial cell conservation equation the model can be reduced to two equation [4] which, when 

nondimensionalized, take the form, in one dimension, 

an d2n 
-1 --a+-{7x:(&+-)}+n(l-n), 
a ax2 

(4b) 

where 0(x, t) and n(x, t) are the dilation in the epithelial layer and the dermal cell density, 

respectively, at position x and time t; p, p, T, v, p, a and y are positive parameters. 
The tissue interaction in these caricature equations is represented in (4a) by the fourth term on 

the left-hand side, in which cell traction in the epidermis is a function of dermal cell density, and 
in (4b) by the second term on the right-hand side in which dermal cell chemotaxis is a function 
of the dilation in the epidermis. 

2. PROPAGATING PATTERNS 

This system admits two steady states, n = B = 0, n = 1, 19 = 0. A standard linear analysis 
about the uniform steady state state n = 1, 8 = 0 shows that this state can be linearly unstable 
for certain parameter values [2]. At this steady state, the dispersion relation X(li2), which is the 

temporal growth rate of disturbances with wave number k, satisfies 

pk2X2 + [(pD + pQ1 + P)k4 + (PI + 1 + p)k2 + p]X + c(k2) = 0, (5) 
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Figure 1. The time evolution of travelling wavefronts acting ss precursors to pattern 
formation at times t = 1.5, 3.0 and 4.5 for (a), (b) and (c), respectively. The 
parameter values are ~1 = 0.001, D = 0.1, p = 0.01, T = 9.73, v = 3.17, p = 100.2, 
CY = 5.0, y = 0.285, c = 1.0, T = 5. 
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where 

c(k2) = P(D + Ql)k6 - (P2Q2 - r/3 - DPl - P,Q, - D - Ql)k4 + (r + rP1 + pD + p&&k2 + pr 

and PI, P2, &I, and Q2 are functions of the parameters. Cruywagen and Murray [2] showed that 
X can go positive for appropriate parameters values and that in this case the uniform state (1,O) 

evolves to a spatially nonuniform steady state. Moreover, one can choose the parameters so that 
a particular mode is isolated and grows while all other modes decay. 

Transforming the system to travelling wave coordinates, z = 3: + ct, one can show that the 

steady state (0,O) has an unstable manifold while the steady state (1,O) has a stable manifold. 
This suggests the possibility of travelling wave solutions connecting these two steady states. Fur- 

thermore, for biologically realistic solutions (that is, nonnegative cell densities), the wavespeed c 

must be greater than a minimum wavespeed, which is 2. That one can indeed obtain such trav- 
elling waves has been shown by [3]. There, we also demonstrated, that for initial conditions with 
compact support, the wave travels with the minimum wavespeed. 

Here we show that one can, in fact, obtain both pattern formation and travelling waves con- 
currently since travelling waves can act as precursors to spatial pattern formation. 

To illustrate this, we consider the domain z E [0,12] and we use the logical parameter search 

method [7] to find values for the parameters which isolate the mode number k = (13~)/2, so 

that only this particular mode grows while all others decay. This parameter set (see Figure 1) 
also gives rise to a travelling wave solution with the minimum wavespeed, c = 2, for appropriate 
initial conditions. We choose as specimen initial conditions 

72(x, 0) = 0.15(12 - 2), 0(x,0) = 0 (6) 

corresponding to an initial source of cells at the right-hand side of the domain. The results, as 
shown in Figure 1, confirm our prediction. 

The wavenumber of the pattern agrees with the linear analysis as does the wavespeed of the 

travelling wave. 

3. CONCLUSIONS 

We have shown that the tissue interaction model (4a),(4b) can give rise to sequential pattern 
formation behind a travelling wavefront of cell density. The fact that cell density acts as a bifur- 

cation variable to spatial patterning has important biological implications. Note that patterns 
are only possible as soon as 72 reaches 1. This suggests that sequential pattern formation could be 

set up by a travelling wave in cell density which increases cell density to appropriate bifurcation 

value. 
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