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Supporting Information Text

The Supplementary Information is organised as follows. First, we provide experimental evidence which supports the findings
that vessel lengths and diameters are uncorrelated in tumour environments. Next, we describe the fluid structure interaction
(FSI) algorithm used for the red blood cell (RBC) simulations and the method used to calculate the width of the cell free
layer (CFL). Next, we present our hybrid model of tissue perfusion and introduce our new haematocrtic splitting (HS) model.
Finally, we comment on the higher mean oxygen values predicted by our oxygen perfusion model for small λ values.

Vessel lengths and diameters in tumour microvasculature are uncorrelated. In Supplementary Tables S4 and S5 we list
Pearson’s r-values quantifying the correlation between vessel lengths, L, and diameters, d,

ρL,d = cov(L, d)
σLσd

, [1]

where cov(i, j) is the covariance of two variables and σi is the standard deviation of variable i, for the three tumour cell lines
used in our experiments. Results are presented for each mouse and each scan. Day 0 was chosen as the day when the tumour
vascular network appeared to be fully formed. This typically occurred approximately 8 days after tumour induction, when the
tumour size was approximately 4 mm in diameter. We note also that the duration of the observation period is cell-line specific;
some tumours grew faster than others and, as a result, soon started pushing on the window, and in such cases the animal had
to be culled as per licence limitations. The Pearson’s r-values are too low to conclude that a correlation exists between L and d
in the tumour vascular networks studied.

Red blood cell suspension model. The lattice Boltzmann method (LBM) numerically approximates the solution of the Navier-
Stokes equations for a weakly compressible Newtonian fluid discretised on a regular lattice. We employ the D3Q19 lattice, the
Bhatnagar–Gross–Krook collision operator extended with the Guo forcing scheme (1), the Bouzidi-Firdaouss-Lallemand (BFL)
implementation of the no-slip boundary condition at the walls (2), and the Ladd implementation of the velocity boundary
condition for open boundaries (3). These methods have been extensively used and analysed in the literature (see (4, 5) for a
detailed description).

The RBC membrane is modelled as a hyperelastic, isotropic and homogeneous material, following the model described in (6).
The total membrane energy W is defined by W = WS +WB +WA +WV , where the superscripts denote energy contributions
due to strain, bending, area and volume. We employ the surface strain energy density wS proposed by Skalak et al. (7):

wS = κs
12
(
I2
1 + 2I1 − 2I2

)
+ κα

12 I
2
2 , [2]

I1 = λ2
1 + λ2

2 − 2 , [3]
I2 = λ2

1λ
2
2 − 1 , [4]

where κs and κα are the shear and dilation moduli, λ1, λ2 are the local principal in-plane stretch ratios (see (8) for calculation
procedure), and WS =

∫
dA wS . The shape of the discocyte membrane is approximated by a number Nf of flat triangular

faces, and WS is numerically calculated based on a finite element method (FEM) approach as

WS =
Nf∑
j=1

A
(0)
j wsj , [5]

where A(0)
j is the undeformed area of face j. The bending energy of the RBC membrane is numerically calculated as

WB =
√

3κB
∑
〈i,j〉

(
θi,j − θ(0)

i,j

)2
, [6]

where κB is the bending modulus, θi,j is the angle between the normals of two neighbouring faces i and j, and θ(0)
i,j is the same

angle for the undeformed membrane. Finally, we penalise deviations of the total membrane surface area and volume by defining
two additional energy contributions:

WA = κA
2

(
A−A(0))2
A(0) , [7]

WV = κV
2

(
V − V (0))2
V (0) , [8]

where κA, κV are the surface area and volume moduli, A and A(0) are the current and undeformed membrane surface areas,
and similarly with V . The principle of virtual work yields the force acting on each membrane vertex i at position ~xi through

~Fi = −∂W ({~xi})
∂~xi

. [9]
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The immersed boundary method (9) is used to couple the fluid and membrane dynamics. The fluid velocity is interpolated
at the positions ~xi of the RBC mesh vertices, and a forward-Euler scheme is used to advect the vertices to satisfy the no-slip
condition. The vertex forces ~Fi are spread to the lattice where they are used as input to the forcing term in the LBM, which
ensures local momentum exchange between the membrane and the fluid. See (6) for a detailed numerical analysis of the
algorithm.

The RBC model contains five parameters (κs, κα, κB, κA, and κV ). While κs and κB are known from experiments (see
review in (10)), the exact values of the three remaining parameters are chosen to ensure that local area, total surface area and
volume drift are constrained within a few percent and simulations are stable (see analysis is (6, 8)). Table S7 summarises all
the parameters in the model.

CFL width calculation. To calculate the CFL width in channel 1 of the domains in Figure 3, let us consider a vessel cross-section
of diameter d at distance l downstream from the first bifurcation in the network. The RBC density, φ(r, θ, l, t), is 1 if there is a
RBC at time t occupying the point with radial coordinate r and angular coordinate θ of the cross-section and 0 otherwise. The
average RBC density flux Φ(l) going through the cross-section is

Φ(l) = 1
N

N∑
i=1

∫ 2π

0
dθ

∫ d/2

0
rdrφ(r, θ, l, ti)v(r, θ, l, ti) · n ,

where v is the fluid velocity, n is the cross-section normal vector and N is the number of simulation time steps in the average
(0.5 s of real time simulation sampled every 0.0215 s, N = 23, in our case).

We define χ = 0.01 as the average fraction of RBC density flux crossing the CFL. Now we are able to numerically determine
the local CFL width W (l, θ): consider a 2D-cone centered and contained in the cross-section with orientation θ and size
∆θ = π/2. The width W (l, θ) is the distance such that

χ = 4
ΦN

N∑
i=1

∫ θ+∆θ/2

θ−∆θ/2
dθ′
∫ d/2

d/2−W
rdrφ(r, θ′, l, ti)v(r, θ′, l, ti) · n .

Since we are only interested in the spatial evolution of the CFL, the specific value of χ used in the definition is arbitrary.
The choice of χ will change the width of the CFL after symmetry recovery, but it will not affect the local characterisation of
the CFL spatial evolution after a bifurcation. For example, for any value of χ, the CFL recovery distance can be calculated as
the shortest distance l for which the CFL width W do not depend on coordinate θ.

Hybrid model of oxygen transport in vascularised tissue.

Choice of vessel diameters and branching angles in vascular networks. In the branched networks used, we fix the diameter of the inlet
vessel so that dinlet = 100 µm. The diameters of the two child vessels (dα and dβ) are assumed to be equal and determined
from the diameter of the parent vessel (dP ) via Murray’s law (11) so that:

d3
P = d3

α + d3
β ≡ 2d3

α,

in which case
dα = dP

2 1
3
.

Since the network is symmetric about its central axis, vessels on the converging side have the same diameters as those of the
same generation on the diverging side (see Supplementary Figure S4a). For all simulations the networks have 6 generations
of vessels. The length L of a vessel segment in a given network is related to its diameter d via L = λd, where the positive
constant λ is network-specific.
For complete specification of the network geometry, in two-dimensional Cartesian geometry, it remains to embed the network
in a spatial domain. This is achieved by specifying either the branching angles, or (equivalently) the lengths of the projections
of the vessels on the y axis. Denoting by Lvert1 the length of the projection of a vessel of generation 1, the lengths of the
projections of vessels of generation i > 1 are given by Lverti = 1

2L
vert
i−1 . As a result, the vertical size of the domain will not exceed

4Lvert1 for any number of generations. Finally, we require Lvert1 < L1 = length of vessels of generation 1. In our simulations, we
fix Lvert1 = 0.9L1 to ensure adequate spatial extent in the y-direction.

Poiseuille’s law and the Fahraeus-Lindquist effect. We simulate flow in the branched networks by following the approach of Pries et
al. (12). For blood vessels of length L and diameter d, we assume Poiseuille’s law

Q = π

128
∆pd4

Lµ
, [10]

where Q is the vessel flow rate, ∆p is the pressure drop along the vessel and µ is the effective viscosity of blood (13). Following
(14) we assume that the blood viscosity depends on vessel diameter and haematocrit via the empirical relationship:

µ = µp

[
1 + (µ45 − 1) (1−H)C − 1

(1− 0.45)C − 1

(
d

d− 1.1

)2 ][ d

d− 1.1

]2

,

3 of 26



where µp is the plasma viscosity, H is the vessel discharge haematocrit,

µ45 = 6e−0.085d + 3.2− 2.44e−0.06d0.645

and
C =

(
0.8 + e−0.075d)(−1 + 1

1 + 10−11d12

)
+ 1

1 + 10−11d12 .

Introducing signed flow rates Q̃i for the sake of brevity, we impose conservation of blood and haematocrit at each network
bifurcation, so that ∑

i

Q̃i = 0, [11]

and ∑
i

Q̃iHi = 0. [12]

In Eq. (11) and Eq. (12) we sum over the three vessels that meet at that bifurcation. At diverging bifurcations, we impose
a HS rule: we use (1) from the main text when CFL memory effects are neglected and (2) from the main text when they
are included. Denoting by NB the number of network bifurcations and NV the number of vessels, we have NB unknown
pressures P , NV unknown flow rates Q and NV − 1 unknown haematocrit levels (the inlet haematocrit being prescribed) -
altogether NB + 2NV − 1 unknowns. At the same time, we impose Poiseuille’s law (Eq. (10)) for every vessel (NV times),
conservation of blood (Eq. (11)) and haematocrit (Eq. (12)) at every bifurcation node (NB times), and an HS rule at all
diverging bifurcations (NB/2 times), yielding a total of NV + 5NB/2 algebraic equations. Since every bifurcation connects 3
vessels, we have NV = (3NB + 2)/2, where every vessel is counted twice, except for the inlet and outlet vessels (+2 in the
numerator). From this, it follows that the number of equations (NV + 5NB/2) equals the number of unknowns (NB + 2NV − 1).

Oxygen distribution in tissue. In this section, we determine the oxygen concentration c in the tissue. Following (15), we assume
that the dominant processes governing its distribution are delivery from the vessel network (via one-way coupling with Eq. (12)
and the haematocrit models (1) or (2), i.e. c depends on Hl but not vice versa), diffusive transport through the tissue,
and consumption by cells in the tissue. We focus on the long time behaviour and, therefore, adopt a quasi-steady state
approximation (16)

D∇2c︸ ︷︷ ︸
diffusive transport
through the tissue

+πdlγ

(
βref
Href

Hl − c
)
δnetwork︸ ︷︷ ︸

delivery from the
blood vessels

− κc︸︷︷︸
consumption by

the tissue

= 0 . [13]

In Eq. (13), the positive constants D, γ and κ represent the diffusion coefficient for oxygen in the tissue, the vessel permeability
to oxygen, and the rate at which it is consumed by cells in the tissue. The vessel network is represented by a collection of
Dirac point sources δnetwork where

δnetwork(x) =

{
1 if vessel is located at x
0 otherwise

and for any x satisfying δnetwork(x) = 1, dl and Hl are the diameter and haematocrit of the vessel at that location (where the
latter has been calculated as described in the previous section). The constant βref represents the oxygen concentration of a
reference vessel containing haematocrit Href (here we fix Href = 0.45, the inlet haematocrit) and we suppose that the oxygen
concentration of a vessel with haematocrit Hl is βrefHl/Href . In Eq. (13) we assume that the oxygen is supplied by vessels to
the tissue at a rate which is proportional to their circumference πdl, the vessel permeability γ, and βrefHl/Href − c. Finally,
we have βref = cstpprefαeff , where cstp denotes an ideal gas concentration at standard temperature and pressure, pref denotes
the reference partial pressure at the inlet vessel, and αeff denotes the volumetric oxygen solubility (17). A summary of the
parameter values used to solve Eq. (13) is presented in Supplementary Table S8.

Derivation of, and justification for, the HS model with CFL memory.

Parameter dependencies in HS model without memory from (18). The dependencies of the parameters A, B and X0 (see (1) from the
main text) on the diameters of the parent and child vessels (dP , dα and dβ , respectively), and the discharge haematocrit HP in
the parent vessel were first introduced in (12, 19) and later adjusted in (18) to achieve a better approximation under extreme
combinations of dα, dβ , dP and HP . We will use the functional forms from (18), which read

A = −13.29
[(
d2
α/d

2
β − 1

)
/
(
d2
α/d

2
β + 1

)](
1−HP

)
/dP , [14]

B = 1 + 6.98
(

1−HP
dP

)
[15]

4 of 26



and
X0 = 0.964(1−HP )/dP . [16]

These functional forms assume that dP is dimensionless and given by dP = d̂P
1µm , where d̂P is the dimensional diameter. We

maintain this convention throughout this section.

HS model with memory.

Simplifying assumptions. Before we explain how we extend the model from (18) to incorporate memory effects, we comment
on its main simplifying assumptions. At present, our model does not include any information on local flow rate. Furthermore,
the current model does not account for the angle defined by the planes containing the current and previous bifurcation in the
network. These simplifying assumptions could easily be relaxed.

Rewriting of the model. In this section, we rewrite the HS model with memory effects ((2) from the main text) in terms of
discharge haematocrit levels H and flow rates Q experienced by the vessels belonging to a given bifurcation ((3) from the main
text). The definitions of FQE,f and FQB,f can be written as:

FQE,f = QfHf
QPHP

, FQB,f = Qf
QP

.

Substituting these expressions into (2) from the main text gives:

logit
(
QfHf
QPHP

)
= Af +B logit

(
Qf/QP −X0,f

1−X0,u −X0,f

)
.

Recalling that logit(x) = ln (x/(1− x)), we have

ln
(

QfHf
QPHP −QfHf

)
= Af +B ln

(
Qf −X0,fQP

QP −Qf −X0,uQP

)
.

Appealing to conservation of blood (overall)
QP = Qf +Qu

and RBCs (in particular)
QPHP = QfHf +QuHu [17]

at diverging bifurcations, we arrive at

ln
(
QfHf
QuHu

)
= Af +B ln

(
Qf −X0,fQP
Qu −X0,uQP

)
.

This equation can also be written as

ln
(
Hf
Hu

)
= Af +B ln

(
Qf −X0,fQP
Qu −X0,uQP

)
− ln

(
Qf
Qu

)
,

which yields
Hf
Hu

= eAf
(
Qf −X0,fQP
Qu −X0,uQP

)B
Qu
Qf

.

Choice of parameter values and CFL recovery function. Here we introduce the functional forms for Af , X0,f and X0,u, using
empirical data to justify our choices. Guided by the dependence of A on the network branching history described in (19) (see
Figure 7 therein), we propose

Af = A+Ashiftf(l; dP ), [18]

where A is given in Eq. (14), the positive constant Ashift corresponds to the maximum CFL disruption effect, and the function
f(l; dP ) describes how the recovery of the CFL depends on the distance l to the previous bifurcation and the diameter dP of
the parent vessel∗.
For parameter A, we only have access to the scattered data with respect to the regressor from (12, 19) (as opposed to the
regressor from (18)), which reads

A = −6.96 ln
(
dα
dβ

)
/dP . [19]

Using the extreme values of A in these data (see Supplementary Figure S8c), we estimate Ashift = 0.5. Note that in branching
networks with every pair of child vessels having equal radii, both (12) and (18) yield A = 0. Thus, for our networks, the choice
of A does not affect Af at all (see Eq. (18)).

∗Consistency of the model requires thatAu = A− Ashiftf(l; dP ).
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For simplicity, we model the CFL recovery using an exponential function

f(l; dP ) = e
− l
ωdP , [20]

where ω controls the temporal dynamics of CFL recovery. From (20), we note that the CFL width is (approximately) 90%
recovered at a distance l90 = 10dP from the previous bifurcation (see also Figure 3g). Accordingly, we choose ω so that

0.1 = e−
10
ω =⇒ ω = 10

ln (10) ≈ 4.

Guided by the dependence of X0,f on flow history described in (19), we propose

X0,f = X0 (1− f(l; dP )) . [21]

Assuming, as a first approximation, that X0,f +X0,u is constant and independent of the distance to the previous bifurcation
(see Figure 3g), we define

X0,u = X0 (1 + f(l; dP )) . [22]

Validation of the HS model with memory. We validate the HS model with memory by comparing its predictions with results from
the RBC simulations in the double-t geometry. We assume that all vessels have the same diameter (d = 33 µm), and that
the flow rate splits evenly at both bifurcations. If we assume further that the CFL is fully established at the network inlet
vessel, Hinlet = 20%, then (1) from the main text supplies H1 = H2 = Hinlet = 20%. We use conservation of RBCs Eq. (17)
and the new HS model (Eq. (3) from the main text) to estimate haematocrit values in the unfavourable and favourable child
branches after the second bifurcation (channels 3 and 4, respectively) for varying inter-bifurcation distances δ. The results are
summarised in Supplementary Table S9. For δ = 4d, the new HS model predicts haematocrits within 5% relative error of the
values calculated from RBC simulations (Table 2). Given the uncertainty in determining discharge haematocrit in the RBC
simulations and given that the new model neglects effects due to asymmetric streamline splitting (21), we conclude that our
new model provides a good, leading-order approximation to the effects of CFL disruption on HS.

Finally, we compare the CFL evolution dynamics calculated from the RBC simulations (for θ = 0 and θ = π) with those
predicted from the proposed evolution of X0,f and X0,u (Eq. (21) and Eq. (22)). In the absence of a known functional form
relating the CFL width W and the minimum flow fraction X0, we define

X0,f/u =
Wf/u

dP
. [23]

Eq. (23) is based on the diagram in Supplementary Figure S8a and the assumptions of a cross-sectionally uniform velocity
profile within a one-dimensional vessel cross-section. Combining Eq. (16), Eq. (23), Eq. (21) and Eq. (22), we conclude

Wf/u = dPX0,f/u = dPX0 (1∓ f(l, dP )) = 0.964× (1−HP )
(

1∓ e−
l

4×dP

)
. [24]

We remark that for a well-established CFL (i.e. l→∞), Eq. (24) predicts (noting that channel 1 serves as the parent vessel for
the second bifurcation and estimating HP = 0.2 from Supplementary Table S6) a CFL width of about 0.77 µm, whereas our
RBC simulation predicts a value of approximately 1.8 µm (see Supplementary Figure S8b). We postulate that this discrepancy
is caused by our oversimplification of the relationship between the CFL width and the minimum flow fraction (Eq. (23)).
Nevertheless, we can adjust Eq. (24) so that it is consistent with the established CFL width of 1.8 µm by writing

Wf/u = 1.8×
(

1∓ e−
l

4×dP

)
. [25]

In this case the CFL evolution (for θ = 0 and θ = π) follows a trend similar to that observed in our RBC simulations
(Supplementary Figure S8b). In particular, our assumption that l90 = 10dP is in good agreement with our simulation results
(see dashed line in Supplementary Figure S8b).

Explanation of higher mean oxygen values for small λ. We observed that CFL disruption effects increase the mean oxygen
concentration in the chosen network (Supplementary Figure S6). Here, we provide an explanation of this phenomenon.

We define
∆αH = Hα −HP , ∆βH = Hβ −HP , [26]

where P is the parent branch and α and β are the child branches of any diverging bifurcation. Conservation of blood and
RBCs at this bifurcation then yields

Qα +Qβ = QP [27]

Qα (HP + ∆αH) +Qβ (HP + ∆βH) = QPHP . [28]

Combining Eq. (28) and Eq. (27) supplies
Qα
Qβ

= −∆βH

∆αH
. [29]
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We deduce that, at diverging bifurcations, the haematocrit level in the child branch with higher flow rate deviates less (in
absolute value) from the haematocrit in the parent vessel than the branch with lower flow rate.

We note further that all paths connecting the inlet and outlet vessels in the direction of blood flow in a given network are
topologically and geometrically equivalent. Therefore, heterogeneity in haematocrit splitting arises solely from CFL disruption
effects. If haematocrit is elevated in one of the child branches, its impedance will increase, and, as a result, it will receive a
lower flow rate.

Combining these two effects, we see that, in the chosen networks, haemoconcentration in any child branch is more significant
than haemodilution in its sibling. As a consequence, and given that the strength of the oxygen source term in Eq. (13) is a
linear function of H, we observe higher mean oxygen levels when the effects of CFL disruption are taken into account (especially
for small λ). Future work will investigate this effect by making source term a function of RBC mass flux (i.e. QH) or relaxing
the assumption that the RBCs have infinite oxygen carrying capacity.
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Table S1. Average vessel lengths and diameters reported in a variety of tissues under physiological conditions.

Animal (tissue) Vessel type L̄(µm) d̄(µm) λ = L̄/d̄ Reference

Wistar Kyoto Rat (mesentery)
Arteriole 337.0 13.2 25.5 (22, 23)
Capillary 424.0 8.7 48.7 (22, 23)
Venule 334.0 20.6 16.2 (22, 23)

Myotis Bat (wing)
Arteriole 206.0 7.0 29.4 (24)
Capillary 74.0 3.7 20.0 (25)
Venule 200.0 21.0 9.5 (25)

Cat (sartorius muscle)
Arteriole 96.0 7.4 13.0 (26)
Venule 68.0 6.8 10.0 (27)

Golden Hamster (retractor
muscle)

Arteriole 101.2 5.7 17.8 (28)
Venule 57.7 3.6 16.0 (28)

Human Capillary 350.0 5.0 70.0 (29)
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Fig. S1. Realistic capillary network reconstructed from MC38 tumour vascular network.
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Fig. S2. CFL channel 1 double-t geometry perpendicular to bifurcation planes.
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Start:
input λ

(2 ≤ λ ≤ 20)

Generate synthetic
vessel network

Solve haematocrit
and flow problems
using HS model
without memory

Solve haematocrit
and flow problems
using HS model
with memory

Embed vessel
network into
tissue domain

Define spatial
domain and

discretise it using
a regular grid

Solve reaction-
diffusion equation

to determine
tissue oxygen
distribution

Compare output
from the two
HS models

End

Vessel network: blood flow and haematocrit

Tissue oxygenation

Fig. S3. Flow chart summarising the main components of our hybrid model for tissue oxygen perfusion, as implemented within Microvessel Chaste (see (15)).
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(a) A typical forking vessel network (b) Vessel flow rates (in m3/s)

(c) Distribution of haematocrit across vessel network (model with memory effects)
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(d) Propagation of memory effects

Fig. S4. (a) A typical symmetric forking network with 6 generations of vessels. (b) Flow rates almost halve between consecutive vessel generations. However, small differences
in flow rates between child vessels arise due to non-uniform haematocrit splitting (HS), as can be observed in the inset (note that the range of the colour bar has been adjusted
to represent only the selected vessels). (c) Differences in the predicted haematocrit levels of child vessels (within a single vessel generation) become more pronounced as the
generation number increases. (d) For the new HS model, the haematocrit distribution becomes more disperse as the number of bifurcations included in the network increases
(the red horizontal line represents the predicted haematocrit when memory effects are neglected and haematocrit is distributed uniformly across the network). Each circle
corresponds to a single vessel and different colours correspond to different vessel generations.
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(a) λ = 4, model without memory effects (b) λ = 4, model with memory effects

Fig. S5. For λ = 4.0, the model with memory effects yields more pronounced oxygen heterogeneity (i.e. more dispersed oxygen distribution) in the region of interest bounded
by red rectangles in (a) and (b) (note that the spatial scales are in microns).
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(a) Boxplots showing tissue oxygen concentration distribution as a function of λ
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(b) Mean oxygen concentration as a function of λ
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(c) Standard deviation (oxygen) as a function of λ

Fig. S6. Summary statistics illustrating how for a vessel network with 6 generations its λ value and the HS model affect tissue oxygenation. (a) Boxplots showing how the
tissue oxygen distribution changes as λ varies for the two different HS rules. (b) Mean oxygen concentration increases as λ decreases (and the vessel density increases). (c)
Standard deviation in the tissue oxygen concentration increases with λ when memory effects are neglected ((1) from the main text). When memory effects are considered ((2)
from the main text), the standard deviation increases for small λ values. The mean and standard deviation for the two models converge for large λ values. Model parameter
values as per Supplementary Table S8.
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Table S3. λ values measured in MC38 tumours following DC101 treatment over time.

Day Mouse 1 Mouse 2 Mouse 3 Mouse 4 Mouse 5
0 4.532 4.065 4.141 4.122 4.054
1 5.301 4.098 4.336 4.432 3.878
2 6.222 4.429 4.396 5 4.756
3 5.382 4.465 3.89 5.353 5.068
4 4.395 4.418 3.273 6.342 4.237

16 of 26



Length

0 1 2 3 4 5
0.9

1.0

1.1

1.2

1.3

1.4
Ctrl

DC101

Time (days)

N
o

rm
al

iz
ed

av
er

ag
e

le
n

g
th

b
et

w
ee

n
b

if
u

rc
at

io
n

s

**

**
**

Diameter

0 1 2 3 4 5
0.9

1.0

1.1

1.2

1.3

1.4

Ctrl

DC101

Time (days)

N
o

rm
al

iz
ed

d
ia

m
et

er

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.4

Time (days)

N
o

rm
al

iz
ed

fr
ac

ti
o

n
o

f
ve

ss
el

s
l<

40
µ

m

Ctrl

DC101

** **
**

1.2

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Time (days)

F
ra

ct
io

n
o

f
ve

ss
el

s

Ctrl d<20 µm

DC101 d<20 µm
Ctrl d<50 µm

DC101 d<50 µm

Fig. S7. Vascular phenotypes in MC38 tumours over time following DC101 treatment compared with control (n=5). * p < 0.05, ** p < 0.01.
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Table S4. Timecourse of Pearson’s r-values calculated for different mice at different days of measurement implanted with the MC38 cell line.
Day 0 corresponds to the day of the first measurement, when the tumour reached a specified size (4mm in diameter; see the main text). The
corresponding values of L̄, d̄ and λ are reported in the main text (see Table 1). The missing datum for tumour 3 on Day 3 is due to the laser
on the microscope failing during imaging.

Day 1 2 3 4 5 6
0 0.05 -0.06 -0.07 0.10 -0.13 0.00
1 0.03 -0.05 -0.07 -0.07 -0.13 -0.00
2 -0.08 -0.07 -0.06 -0.17 -0.19 0.02
3 -0.09 -0.11 - -0.14 -0.13 -0.02
4 -0.14 -0.09 -0.08 -0.17 -0.12 -0.07
5 - -0.04 - - -0.07 -0.11
6 - -0.08 - - - -
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Table S5. Timecourse of Pearson’s r-values for mice implanted with the B16F10 and LLC cell lines. Day 0 corresponds to the day of the first
measurement, when the tumour reached a specified size (4mm in diameter; see the main text). The corresponding values of L̄, d̄ and λ are
reported in the main text (see Table 1).

B16F10 LLC
Day 1 2 3

0 -0.08 -0.08 -0.06 0.03
1 -0.05 -0.06 -0.09 0.02
2 -0.05 -0.12 -0.06 -
3 -0.03 -0.11 -0.06 -
4 - - -0.06 -
5 - - -0.05 -
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Table S6. Parameters in RBC simulations in synthetic capillary networks

Parameter Description Value Reference
d Cylindrical channel diameter 33 µm Current study
L′ Inlet/outlet channel length 25d (20)
δ Distance between branching points 4d, 25d (20), current study

v̄inlet Inlet mean velocity 600 µm/s (36)
Hinlet Inlet discharge haematocrit 20% (36)
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Table S7. Parameters used in RBC simulation algorithm. The number of faces is chosen in such a way that the average edge length of
a triangular element matches the grid spacing of the fluid lattice. The value of the capillary number is representative of typical flows in
the microcirculation. The adopted value of the Föppl-von Kármán number matches the intrinsic property of healthy RBC membranes. The
remaining moduli are chosen in such a way that the local area, total surface area and volume of the RBCs are constrained within a few percent
while simulations remain numerically stable.

Parameter Description Value Unit Comment
Nf Number of faces 500 - See mesh convergence analysis in (6)
rRBC RBC diameter 8 µm 6.2–8.2 µm physiological range
η Plasma viscosity 1 mPa s Approximated by water
Ca Capillary number 0.1 - Ca = ηγ̇rRBC

κs
, γ̇ = v̄inlet

d
(see Suppl. Table S6,

(20))
Γ Föppl-von Kármán no. 400 - Γ = κsrRBC

2

κB

κα Dilation modulus 0.5 - Strong volume and area conservation
κA Surface area modulus 1 - Strong volume and area conservation
κV Volume modulus 1 - Strong volume and area conservation
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Table S8. Parameters used to simulate tissue oxygen.

Parameter Description Value Unit Reference
D Diffusivity 0.00145 cm2 min−1 (37)
κ Consumption rate 13.0 min−1 (37)
γ Vessel permeability 6.0 cm min−1 (37)
cstp Ideal gas concentration 1

0.0224 mol m−3 (38)
pref Reference partial pressure 20 mmHg (37)
αeff Volumetric solubility 3.1 × 10−5 mmHg−1 (17)
Hinlet Inlet haematocrit 0.45 - (39)
dinlet Diameter of inlet vessel 100 µm Estimated from (13)
Ashift Maximum CFL disruption effect 0.5 - Estimated here
ω Temporal dynamics of CFL recovery 4 - Estimated here
µp Plasma viscosity 10−3 Poiseuille Similar to (37)
pin Inlet pressure 3.32 × 103 Pa Similar to (37)
pout Outlet pressure 2.09 × 103 Pa Similar to (37)
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Fig. S8. (a) A schematic diagram presenting the geometric intuition behind (blood) flow and haematocrit separation illustrate why two distinct minimum-flow fractions are needed
to characterise the favourable and the unfavourable 2 Synthetic vascular networksbranches: ‖AB‖ = X0,u, ‖DE‖ = X0,f , ‖AC‖ = FQB,u and ‖CE‖ = FQB,f .
Blood flow separation at the two consecutive bifurcations is shown in dotted green, streamlines are sketched with yellow curved arrows, and the CFL recovery on the favourable
(unfavourable) side of the parent vessel after the first bifurcation is sketched in red (blue). Whenever FQB,f < X0,f (FQB,u < X0,u), the favourable (unfavourable)
branch only draws blood from the CFL and it thus receives pure plasma. (b) Model of CFL recovery as described by Eq. (25) shows similar trends to and is in satisfactory
agreement with the CFL width data from RBC simulations in Figure 3g (given the simplifying assumptions). The established CFL width of 1.8 µm chosen by inspection for
this particular dataset. (c) Dispersion of values for A (reproduced using Figure 6 from (19)) is used with the regression from (12) to estimate the value of Ashift ≈ 0.5 in
Eq. (18), based on deviation from the regression. We assume the CFL disruption to be the primarily cause of this deviation, and thus its maximum (absolute) value should
correspond to l = 0 in Eq. (20) (i.e. f = 1 in Eq. (18)).
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Table S9. Haematocrits predicted by the model with CFL memory effects

Distance Hinlet Hu Hf
δ = 4d 20.0 17.7 22.3
δ = 11d 20.0 19.6 20.4
δ = 18d 20.0 19.9 20.1
δ = 25d 20.0 20.0 20.0
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