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Evaluating snail-trail frameworks for leader-follower behavior with agent-based modeling
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Branched networks constitute a ubiquitous structure in biology, arising in plants, lungs, and the circulatory
system; however, the mechanisms behind their creation are not well understood. A commonly used model for net-
work morphogenesis proposes that sprouts develop through interactions between leader (tip) cells and follower
(stalk) cells. In this description, tip cells emerge from existing structures, travel up chemoattractant gradients,
and form new networks by guiding the movement of stalk cells. Such dynamics have been mathematically
represented by continuum “snail-trail” models in which the tip cell flux contributes to the stalk cell proliferation
rate. Although snail-trail models constitute a classical depiction of leader-follower behavior, their accuracy has
yet to be evaluated in a rigorous quantitative setting. Here, we extend the snail-trail modeling framework to two
spatial dimensions by introducing a novel multiplicative factor to the stalk cell rate equation, which corrects
for neglected network creation in directions other than that of the migrating front. Our derivation of this factor
demonstrates that snail-trail models are valid descriptions of cell dynamics when chemotaxis dominates cell
movement. We confirm that our snail-trail model accurately predicts the dynamics of tip and stalk cells in an
existing agent-based model (ABM) for network formation [Pillay et al., Phys. Rev. E 95, 012410 (2017)]. We
also derive conditions for which it is appropriate to use a reduced, one-dimensional snail-trail model to analyze
ABM results. Our analysis identifies key metrics for cell migration that may be used to anticipate when simple
snail-trail models will accurately describe experimentally observed cell dynamics in network formation.
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I. INTRODUCTION

Branching networks are a near-omnipresent biological
structure, appearing in plant roots [1,2], lungs [3,4], kid-
neys [5,6], and the circulatory network [7–11]. The geometry
of such patterns highlights their biological importance, as
branched networks improve the efficiency of nutrient transport
by maximizing the surface area across which molecules are
exchanged [12]. Furthermore, changes in network morphol-
ogy may lead to, or are a sign of, severe disruptions in healthy
tissues and organs. In angiogenesis (the formation of new
blood vessels from pre-existing ones), for instance, patho-
logic network formation has been associated with blindness,
retinopathy, and delayed wound healing; additionally, it is
stimulated to occur by cancerous tumors to supply nutrients
for their sustained growth [9,13–19]. Due to the widespread
nature of branching networks and their crucial importance
in maintaining homeostasis, increasing research has been
devoted to understanding the molecular, physical, and me-
chanical factors behind their morphogenesis [8,12]. Complete
knowledge of this process, however, remains elusive because
of its inherent multiscale nature: although network formation
is most readily observed at the level of tissue, the growth
of new sprouts depends on the collective migration of cells,
which are themselves regulated by molecules and genes.

One model for network morphogenesis in general systems
proposes that sprout formation is guided by two cell types:
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leader (tip) cells and follower (stalk) cells. In this description,
external chemical and/or mechanical signals cause tip cells to
move from existing structures; they also guide the direction
in which tip cells migrate. Stalk cells, meanwhile, provide
structural support for the new network and are assumed to
proliferate along the path of tip cells. In angiogenesis, for
example, tip cells are known to migrate toward increasing
concentrations of vascular endothelial growth factor (VEGF)
and other known chemoattractants that are generically called
tumor angiogenic factors (TAFs) [7,9,17,19–21], while stalk
cells form a lumen in the new network through which blood
can flow [7,17,22–25].

Leader-follower models for network morphogenesis also
include mechanisms by which new branches and loops form.
New sprouts, for instance, can be initiated when tip cells di-
vide or when new tip cells emerge along the growing network,
while closed loops are created when a tip cell merges with
another tip or stalk cell (a process called anastomosis).

Many mathematical representations of leader-follower
models have been proposed to describe network morphogen-
esis at various levels of detail [26–29]. Discrete models, for
instance, track the progression of individual cells and can
provide insight into in vitro and in vivo observations of the
resulting network geometry. Such discrete models may also be
coupled with continuum differential equations for quantities
at the subcellular scale to create so-called “hybrid” models
[27–30]. Individual-based modeling approaches can either
be on-lattice, in which case cell positions are restricted to
certain spatial locations [31–38], or off-lattice, where cell
dynamics are described by stochastic differential equations
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[39–42]. The development and simulation of discrete models
is aided by specialized software, such as Microvessel Chaste
and CompuCell3D (to name but two), which support many of
the approaches listed above and efficiently generate solutions
[43,44].

Other mathematical models for leader-follower behavior
treat tip and stalk cell densities as continuous variables and
track their evolution in space and/or time via differential
equations [45–49]. Although many such continuum models
for angiogenesis describe the evolution of spatially averaged
populations (and, hence, cannot resolve individual network
structure), they are still useful as they tend to be more
amenable to mathematical analysis.

A broad class of continuum leader-follower models phe-
nomenologically assumes that the rate of sprout creation
increases proportionally to the net tip cell flux (this represents
the “snail-trail” assumption that stalk cells proliferate along
the path of moving tip cells). Such snail-trail models for
angiogenesis were originally proposed to model branching
patterns in fungal growth [50,51], but have since been ex-
tended to explain network morphogenesis from in vivo assays
of angiogenesis [46–48,52] and plant roots [53].

The earliest snail-trail models were formulated in one spa-
tial dimension (1D), but have since been constructed in two
spatial dimensions (2D) to examine the spatial variation of
cell densities in arbitrary geometries [54,55]. Since the net tip
cell flux becomes a vector quantity in higher dimensions, a
common modeling choice in 2D is to use the magnitude of this
vector to calculate the sprout density rate of change [33,35].
In other words, if J denotes the net tip cell flux vector, then
the rate of increase in network density, ρ(x, t ), is

∂ρ

∂t
= ‖J‖2 = √

J · J =
√

(Jx )2 + (Jy)2, (1)

where ‖ · ‖2 denotes the L2 norm, and Jx and Jy denote the x
and y components of the net tip cell flux vector, respectively.

Although snail-trail models represent a simple and ana-
lytically tractable approach for describing tip and stalk cell
dynamics during network formation, they rely on phenomeno-
logical arguments for their construction. As a result, the
conditions under which snail-trail models will accurately de-
scribe experimentally observed cell dynamics remain unclear.
To our knowledge, the validation of snail-trail models has
largely focused on achieving qualitative agreement with ex-
periments; there has been little work to evaluate snail-trail
models in a more rigorous theoretical setting. Additionally,
many snail-trail models have investigated vessel growth in 1D,
but it remains unclear when such spatially reduced systems are
good approximations to 2D results.

A. Article outline

In this article, we develop a 2D snail-trail model for tip
and stalk cell dynamics and extend its underlying framework
by introducing a novel multiplicative factor in the differen-
tial equation describing sprout density. We propose that this
multiplicative factor must be included to correct Eq. (1) be-
cause the tip cell net flux term neglects sprout formation in
directions other than that of the moving solution front. We

derive a formula for the multiplicative factor, which suggests
that snail-trail models are valid approximations of tip and stalk
cell dynamics when movement is dominated by chemotaxis.
Hence, we identify some of the assumptions that are implicitly
invoked when snail-trail models are used to analyze network
formation. We confirm the accuracy of our formula by com-
paring numerical solutions of the 2D snail-trail model with
ensemble averages of an existing agent-based model (ABM)
for network formation [32]. We conclude with a discussion of
when our 2D snail-trail model can be reduced to a 1D system,
and identify conditions for which it is appropriate to use 1D
snail-trail models to analyze experimental data.

II. SNAIL-TRAIL MODEL DEVELOPMENT IN 2D

Our 2D snail-trail model tracks the densities of tip and
stalk cells within the unit square (x, y) ∈ [0, 1] × [0, 1] and
time interval t ∈ [t0,∞), where t0 � 0 (all quantities have
been nondimensionalized). We assume that there are suffi-
cient cell numbers to justify a continuous approximation,
such that in Cartesian coordinates we may use continuous
functions n(x, y, t ) and e(x, y, t ) to describe the tip and stalk
cell densities, respectively. Additionally, we assume that the
system contains a generic chemoattractant (a TAF) whose
concentration is denoted by c(x, y, t ). In general, the value
of c is governed by a differential equation that may include
terms corresponding to diffusion and/or uptake by tip and
stalk cells [46,56,57]. However, in this article we are most
interested in determining appropriate equations for describing
cell movement and proliferation. For this reason, we simplify
our model by assuming that the TAF field is at steady state,
such that it is independent of t and hence may be written as a
function c(x, y).

Our basis for modeling the tip cell density is the continuity
equation

∂n

∂t︸︷︷︸
tip cell rate of change

+ ∇ · J︸︷︷︸
net movement of tip cells

= F (n, e, c),︸ ︷︷ ︸
tip cell production/elimination

(2)

where J is the net tip cell flux vector and the function F
accounts for tip cell production and elimination. Following
previous assumptions in snail-trail models [46,47,54,55], we
consider cell movement as a biased random walk, in which
the bias is toward increasing TAF gradients; this simplistic
method of accounting for such types of motion is common
within the modeling community [39,40,58,59]. Thus, the net
flux of tip cells is given by

J = −D∇n︸ ︷︷ ︸
random motion

+χ (c)n∇c︸ ︷︷ ︸
chemotaxis

,

where ∇ is the gradient operator, D is a positive random mo-
tion coefficient, and χ (c) is a positive function that measures
the chemotactic sensitivity of cells to the TAF. We assume for
simplicity that χ (c) = χ is constant, although it is possible to
use other functional forms that account for cell desensitization
to TAF in high concentrations (for examples of such functions,
we refer to Ref. [60]).
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We represent the creation of new sprouts by an increase of
tip cells. Observations of network morphogenesis in several
angiogenesis assays indicate that sprout branching depends
on the TAF concentration [61–64], thus we assume that tip
cells are produced at a rate proportional to the TAF concen-
tration. The particular form of the branching term we employ
was originally developed in a previous snail-trail model for
angiogenesis by Byrne and Chaplain [47], who used it to
explain in vivo observations such as the brush-border effect
[65]. We consider two dominant sources of tip cell elimina-
tion: tip-to-tip and tip-to-sprout anastomosis, and assume that
these processes occur at rates proportional to the product of
the relevant cell densities. This means that the net rate of tip
cell production is given by

F (n, e, c) = λnc︸︷︷︸
branching

− βene︸︷︷︸
tip-to-sprout anastomosis

− βnn2︸︷︷︸
tip-to-tip anastomosis

,

where λ, βe, and βn are positive parameters.
In accordance with the snail-trail framework, we consider

the rate of blood vessel production to be proportional to the
magnitude of the net tip cell flux. We thus follow the formula-
tion given by Eq. (1). However, since we are interested in cell,
rather than sprout, density, we divide this rate by h, a constant
that represents the length of a typical stalk cell. Additionally,
in the stalk cell density rate equation we introduce a corrective
factor κ (x, y), which is new to the 2D snail-trail framework
(motivation for this factor is found below). The complete
nondimensional system is therefore given by

∂n

∂t
= D∇2n − χ∇ · (n∇c) + λnc − βene − βnn2, (3)

∂e

∂t
= κ (x, y)

h
‖χn∇c − D∇n‖2. (4)

The snail-trail model given by Eqs. (3) and (4) is closed with
no-flux boundary conditions

(χn∇c − D∇n) · a = 0, (5)

where a is the outward unit normal vector, and initial condi-
tions

n(x, y, t0) = G(x, y), e(x, y, t0) = H (x, y), (6)

where G(x, y) and H (x, y) are nonnegative functions. Bound-
ary conditions are not required for the stalk cell density
because its rate equation is a first-order ordinary differential
equation (ODE) with respect to time t . The TAF concentration
c(x, y) is prescribed in simulations, since its value is indepen-
dent of time.

The multiplicative factor κ (x, y) has been included in
Eq. (4) because the net tip cell flux term, used to calculate
the stalk cell density rate of change, neglects sprout growth in
directions other than that of the invading front. To see this, we
may imagine decomposing the 2D tip cell density into four
subpopulations: nx+ , nx− , ny+ , ny− , each corresponding to the
density of tip cells moving in the positive x direction within
a single time step, the negative x direction within a single
time step, and so on. Figure 1(a) presents a sketch of these
quantities for a given point. New sprouts (or, equivalently,
vessels) will develop along each of these directions, and will
therefore contribute to the total vessel density created within
a given time step. The net tip cell flux term, however, ig-
nores some of these contributions by calculating the net vessel

FIG. 1. The net flux vector Jnet underestimates the total
sprout/vessel density rate of change. (a) From a given point (black
circle), one may measure the total flux of tip cells moving in any
cardinal direction; each of these quantities should be considered in
snail-trail models when calculating the vessel density proliferation
rate. (b) The vector Jnet, however, only considers the flow of cells in
the resulting net direction, which is always less than or equal to the
total quantity of material that moves within a given time period.

density produced in a direction defined by (nx+ − nx− ) and
(ny+ − ny− ), which is represented in Fig. 1(b). As a result, the
magnitude of the net tip cell flux vector tends to underestimate
the total vessel production rate, unless a corrective factor is
included.

While this multiplicative factor is new to 2D snail-trail
models, similar corrections have been introduced in 1D sys-
tems of this type [32,46]. However, the authors in those studies
used an ad hoc approach to determine its value, which was as-
sumed to be constant. In the next section, we present a general
argument for determining how κ varies with spatial position.
We demonstrate in Sec. V that our method for determining κ

results in the 2D snail-trail model being able to approximate
the ensemble average behavior of an ABM for angiogenesis
better than other approaches.

We remark that κ corrects for underestimated vessel pro-
duction from the net tip cell flux, not from other activities such
as branching or anastomosis. Hence, our derivation of κ will
not depend on branching or anastomosis, and so we neglect
these processes in Sec. III.

III. DERIVATION OF A FUNCTIONAL FORM FOR THE
SNAIL-TRAIL MULTIPLICATIVE FACTOR

We have argued that κ corrects for neglected vessel pro-
duction in directions other than that of the migrating front.
Thus, if Jnet measures the average net tip cell flux within a
time step �t and spatial interval h, then κ‖Jnet‖2 is equal to
the (true) average vessel density that is produced within this
interval (note that we have absorbed any dependence of h and
�t into κ). To derive a function for κ , we examine how the
above statement translates into a discrete setting.

We consider a general on-lattice framework to represent the
discrete movement of tip and stalk cells following a snail-trail
assumption. In this ABM, we describe tip cell movement as a
biased random walk toward increasing concentrations of TAF.
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The ABM is assumed to have N lattice sites that are equally
spaced with step size h, where h has the same interpretation as
in Eq. (4) (i.e., it represents the length of a typical cell). We as-
sume, for sake of simplicity, that a tip cell length is equivalent
to that of a stalk cell; at the end of this section we discuss how
the following results change when this assumption is relaxed.
Just as for the continuous snail-trail model, we assume that the
TAF concentration c(x, y) is prescribed and is independent of
time t .

Within a time step �t , tip cells are chosen to move with a
constant probability Pm. Once chosen to move, the direction in
which the tip cell travels is selected according to the following
probabilities: if we denote the probability of moving left as
Px− , right as Px+ , up as Py+ , and down as Py− , then these values
are defined at (xi, y j ) ∈ (0, 1)2 as

Px± = 1 ± gx(xi, y j )

4
,

Py± = 1 ± gy(xi, y j )

4
,

(7)

where for 0 < i, j < (N − 1),

gx(xi, y j ) := k[c(xi + h, y j ) − c(xi − h, y j )],

gy(xi, y j ) := k[c(xi, y j + h) − c(xi, y j − h)]. (8)

For example, if gx = 1/2 and gy = −1/4, then Px− = 1/8,
Px+ = 3/8, Py+ = 3/16, and Py− = 5/16 (i.e., the tip cell is
more likely to move in the right and downward directions). It
can be readily verified that the four probabilities in Eq. (7) sum
to 1. The parameter value k in Eq. (8) ensures no numerator
in Eq. (7) can become negative (so that |gx(x, y)| � 1 and
|gy(x, y)| � 1); the value of k does not vary with respect to
location.

We incorporate a discrete version of the snail-trail assump-
tion by having stalk cells proliferate in the space left empty by
a moving tip cell. In other words, any new vessel production
within a time step �t is equal to the number of times tip cells
move, since stalk cells will proliferate to occupy the resulting
empty space.

This leads us to immediately identify a discrete analogue
of ‖Jnet‖2: it is simply the expected net number of jumps that
tip cells make from lattice site (xi, y j ) in the x and y directions
(we use expected values here because of the stochastic nature
of the discrete model). We may then interpret the value of κ

as the total amount of new vessel density produced for every
unit of net tip cell movement.

We now use the rules of the ABM to compute
the expected number of jumps that tip cells make in
any direction. We define XR, XL, YU , YD to be ran-
dom variables that, respectively, measure the total num-
ber of rightward/leftward/upward/downward jumps that
originate from lattice point (xi, y j ). Since cells may
only move in one of these four directions, we model
these random variables using multinomial distributions.
We also define the random variables Xnet = XR − XL

and Ynet = YU − YD, which measure the net number of
rightward/upward jumps made at lattice site (xi, y j ),
respectively. By the argument above, the direction of the
net tip cell flux vector is defined by Jx := E[Xnet] and Jy :=
E[Ynet]. Its magnitude, ‖Jnet‖2, is given as

√
(Jx )2 + (Jy)2.

Since we have reasoned that κ‖Jnet‖2 is the total vessel
density produced (or, equivalently, total jumps that occur)
from a given lattice site within the time step �t and spatial
interval h, it follows that when the value of ‖Jnet‖2 is normal-
ized to 1, κ becomes equal to the total number of jumps from
lattice site (xi, y j ). We exploit this information to calculate
the expected values of our random variables: for example, the
probability of executing m rightward jumps becomes

P(XR = m) =
(

κ

m

)
(Px+ )m(1 − Px+ )κ−m, (9)

where
(
κ

m

)
is the binomial coefficient. Similar equations hold

for XL, YU , and YD. The expected values of XR, XL, YU , and YD

are thus given by

E[XR] = κPx+ , E[XL] = κPx− ,

E[YU ] = κPy+ , E[YD] = κPy− ,
(10)

when ‖Jnet‖2 is normalized to 1, so that

E[Xnet] = E[XR] − E[XL] = κ (Px+ − Px− ),

E[Ynet] = E[YU ] − E[YD] = κ (Py+ − Py− ).

Since Eqs. (9) and (10) are applicable when ‖Jnet‖2 = 1, we
use Eq. (7) to deduce that

‖Jnet‖2 =
√

(Jx )2 + (Jy)2

=
√
E[Xnet]2 + E[Ynet]2

= κ

2

√
(gx )2 + (gy)2 = 1,

with gx and gy defined by Eq. (8). Hence,

κ = 2√
(gx )2 + (gy)2

. (11)

From this equation, it is clear that κ is nonnegative.
We may apply Taylor’s theorem to simplify Eq. (11): as-

suming that the average cell length is sufficiently small so that
0 < h � 1, we may write gx as

gx(x, y) = k[c(x + h, y) − c(x − h, y)]

= k
[
2h

∂c

∂x
+ O(h3)

]
≈ 2kh

∂c

∂x
(x, y).

A similar formula holds for gy. Substitution of these expres-
sions into Eq. (11) yields

κ (x, y) ≈ 1

kh‖∇c(x, y)‖2
, (12)

hence κ (x, y) is inversely proportional to the magnitude of the
local TAF gradient. We remark that κ is a function of space
because the TAF gradient may depend on the variables x and
y. Although we do not consider cases in which the TAF field
is time-dependent, it is straightforward to extend our analysis
to such cases.

It is possible to further transform Eq. (12) so that κ (x, y)
is in terms of the continuum parameters D and χ . This
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simplification follows from the relationship between bi-
ased random walk models and advection-diffusion equations
[32,66]. Namely, if Pm denotes the probability that a tip cell
moves within a time step �t , then the relationship between
the discrete and continuum parameters is

D = lim
h→0,�t→0

Pmh2

4�t
, χ = lim

h→0,�t→0

Pmkh2

�t
, (13)

under the assumption that the above limits exist, are nonzero,
and are finite. Substituting Eq. (13) into Eq. (12) yields

κ (x, y) = 4D

hχ‖∇c(x, y)‖2
= μh

χ‖∇c(x, y)‖2
, (14)

where we have defined μ := Pm/�t .
Equation (14) predicts that κ → ∞ when χ‖∇c‖2 → 0.

Since both χ and ∇c appear in the snail-trail model as terms
describing the directed movement of tip cells due to chemo-
taxis, it follows that our equation for κ (x, y) is not applicable
when chemotaxis is not the dominant form of motion for tip
cells. This breakdown in our analysis occurs because κ is
attempting to correct for a near-zero stalk cell production rate
that would occur in its absence. When there is no chemotaxis
in the snail-trail model, tip cells move randomly with no
well-defined direction and ‖Jnet‖2 ≈ 0. If we ignore the con-
tribution of κ , then Eq. (1) predicts that there would be almost
no vessel production. However, in the ABM we find that when
tip cells move randomly, they travel a large number of short
distances on average but still produce a nonzero number of
stalk cells. Thus, κ must take on large values to ensure that
the continuum model yields a nonzero vessel production rate
and matches the ABM results.

We therefore view Eq. (14) as a “leading-order” approxi-
mation for κ that is accurate when ‖∇c‖2 is sufficiently large,
so that chemotaxis dominates tip cell movement.

We conclude this section by discussing how our analysis is
affected when tip cells and stalk cells do not have the same
length h. Indeed, in certain biologically relevant scenarios tip
cells can extend filopodia and, as a result, may become more
elongated than stalk cells [62]. We can account for different
cell lengths in our modeling framework by defining the length
of the ABM lattice to be equal to that of a tip cell (hTC), and
denoting the length of a stalk cell as the separate quantity
hEC. Since we have only employed the ABM lattice length to
derive Eq. (14), our expression for κ (x, y) is unchanged (the
value of h in that equation, however, should be written as hTC

for clarity). Although this result appears counter-intuitive, we
note that by defining an ABM lattice length as hTC, we have
also made the assumption that the length of a new vessel is
equal to hTC. Thus, we would expect the vessel density rate of
change to be unaffected when the tip and stalk cell lengths are
different.

The stalk cell density rate of change given by Eq. (4), how-
ever, changes when hTC 
= hEC. To see this, we may imagine
a scenario in which a tip cell is as long as γ stalk cells, such
that hTC = γ hEC. Since we determined above that κ (x, y) =
μhTC/(χ‖∇c‖2), this means that the quantity κ (x, y)/hEC that
appears in Eq. (4) reduces to μγ /(χ‖∇c‖2). Hence, the stalk
cell density rate of change is multiplied by γ when tip and
stalk cells are of different lengths. This result makes sense
because changing the stalk cell length should only affect the

density of stalk cells (not sprouts) that proliferate along the
path of moving tip cells.

IV. MULTIPLICATIVE FACTORS ARE NECESSARY
IN THE 2D SNAIL-TRAIL STALK CELL EQUATION

In this section, we confirm that the multiplicative factor
κ (x, y) must be included in the 2D snail-trail model by com-
paring its numerical solutions to those of a 2D ABM for
angiogenesis previously developed by Pillay et al. [32]. We
use this particular ABM (henceforth denoted as the P–ABM)
because it is a discrete, cell-based representation of the verbal
description that the classical snail-trail formulation purports
to model. In other words, tip and stalk cell movement in
the P–ABM follow the same rules as those in the discrete
model presented in Sec. III; the P–ABM is a more detailed
description of network formation, however, because it directly
models phenomena such as sprout branching and anastomosis
that were ignored in the previous section. Full details on the
P–ABM are found in Appendix A.

Figure 2 presents the ensemble average of 1000 P–ABM
tip and stalk cell solutions subject to the TAF field c(x, y) = x
at two time points, using the initial conditions and parameter
values outlined in Appendix A. Although we observe evidence
of stochastic noise in the average P–ABM tip cell distributions
at the two time points presented in Figs. 2(a) and 2(c), both
densities are roughly constant in the y direction for this choice
of initial conditions and TAF field. Comparison of the two
graphs reveals that tip cells in the P–ABM travel to the right
and spread out over larger spatial areas as time increases. Ad-
ditionally, the maximum number of tip cells found on average
in a particular lattice site decreases with time.

Figures 2(b) and 2(d) present the corresponding P–ABM
stalk cell distributions. We observe that the average stalk cell
solution for the P–ABM travels toward the right-hand bound-
ary, up the TAF gradient. Furthermore, the average number
of stalk cells found in lattice sites appears to decrease along
the x direction. Unlike the tip cell solution, however, the stalk
cell density does not appear to be constant in the y direction:
near the top and bottom edges of the lattice, for instance, the
stalk cell density appears to be greater than its value at other
points in the domain interior. This is likely an edge effect due
to the boundary conditions of the P–ABM: tip cells attempting
to exit the domain are reflected back, but still produce stalk
cells during this movement attempt. Hence, the total number
of tip cells (and stalk cells) will be greater near the edges of
the lattice than at other points in the domain interior. Further
investigations reveal that a similar edge effect occurs at the
left-hand boundary of the domain (results not shown).

Since such edge effects will likely lead to differences be-
tween the P–ABM distribution and the 2D snail-trail model
solutions, we have decided to reduce their influence by ini-
tializing the 2D snail-trail model with P–ABM data at time
t0 = 0.2, rather than t0 = 0, to avoid simulating the snail-trail
PDE too close to the boundary at x = 0. Hence, solutions to
the 2D snail-trail model were calculated for the time interval
t ∈ [0.2, 2], rather than t ∈ [0, 2].

The values of D, χ , λ, and βn in the continuous snail-trail
model were determined from the P–ABM parameter values
(see Ref. [32] for details). Previous investigations of discrete
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FIG. 2. Heat maps of the average P–ABM (a),(c) tip cell and (b),(d) stalk cell solution over 1000 realizations at times (a),(b) t = 0.2 and
(c),(d) t = 2. Color bars indicate the average number of cells that were located at that lattice point. The P–ABM parameter values and initial
conditions are listed in Appendix A.

and continuum models [32,66,67] have shown that the mean-
field approximation used to construct the 2D snail-trail model
can break down when anastomosis occurs. We correct for this
potential breakdown by following the procedure outlined by
Pillay et al. [32], where the value of βe in Figs. 3–5 is chosen
to minimize the squared difference between 2D snail-trail and
P–ABM solutions at times t = 0.2, 0.4, ..., 2 (see Appendix B
for details on the numerical methods). Since we have assumed
that we do not need a corrective factor in this section, we set
κ (x, y) = 1.

Figure 3 presents tip and stalk cell solutions from the 2D
snail-trail model at time t = 2, using the parameter regime
listed in Table I. We observe in Fig. 3(a) that the PDE tip
cell solution appears to be approximately uniform in the y
direction and resembles that of the P–ABM. However, the dif-

ferences between the two solutions are larger than one would
expect from visual inspection: the L2 norm of the difference
between P–ABM and 2D snail-trail results across all lattice
sites is approximately equal to 0.10 when t = 2, which is
about 69% of the L2 norm of P–ABM results at that time point.

TABLE I. Continuum parameter values used to simulate the 2D
snail-trail model given by Eqs. (3)–(5) in Figs. 3–5. Parameter values
were determined from P–ABM parameters based on expressions
given by Pillay et al. [32].

D χ λ βn h βe

10−3 0.4 0.16 160 200−1 (see figure caption)
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FIG. 3. Heat maps of the 2D snail-trail (a) tip and (b) stalk cell solution, subject to the TAF field c(x, y) = x, at t = 2. Color bars indicate
the cell density at t = 2. Continuum parameters are listed in Table I, with κ = 1. The parameter βe was fitted to the P–ABM results using the
numerical methods described in Appendix B (βe = 4.65 × 10−12, 95% CI: [0, 0.123]). The snail-trail model was initialized at t = 0.2 using
the average P–ABM distribution at that time point (see Fig. 2).

Figure 3(b) presents the corresponding 2D snail-trail stalk
cell solution at time t = 2. Although we observe that it de-
creases along the x direction, just as the P–ABM stalk cell
solution, comparison of this graph with Fig. 2(d) reveals
discrepancies between the two solutions. For instance, in
Fig. 3(b) the PDE stalk cell density appears to be constant
in the y direction, whereas the P–ABM average stalk cell

density is greater near the top and bottom boundaries. At
t = 2, the L2 norm of the difference between the P–ABM
and snail-trail stalk cell solutions across all lattice sites is 8.2,
which is about 26% of the L2 norm of the P–ABM results
at that time point. Therefore the snail-trail model does not
accurately capture the stalk cell density when there is no
corrective factor.

FIG. 4. Solutions of the (a) tip cell and (b) stalk cell densities given by the P–ABM and 2D snail-trail model, column averaged in the y
direction, at t = 0.2, 0.4, ..., 2, with κ (x, y) = 1. Key: P–ABM distribution (solid black lines); column-averaged 2D snail-trail solution (red
dashed lines). For colors, we refer to the online article. Initial conditions and parameter values: as in Figs. 2 and 9.
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FIG. 5. Solutions of the (a) tip and (b) stalk cell densities given by the P–ABM and 2D snail-trail model, column averaged in the y direction,
at t = 0.2, 0.4, ..., 2, with D = 10−3, χ = 0.4, βn = 160, λ = 0.16, and κ (x, y) = 2. The parameter βe was fitted to the P–ABM results using
the numerical methods described in Appendix B (βe = 4.77, 95% CI: [4.73, 4.82]). Key: P–ABM distribution (solid black lines); 2D snail-trail
solution (red dashed lines). For colors, we refer to the online article. The PDE was initialized using P–ABM data at t = 0.2 and simulated on
the interval t ∈ [0.2, 2].

To better visualize the extent of differences between the
discrete and continuum solutions, we numerically integrated
the 2D results of each model in the y direction (see Ap-
pendix B for details). The resulting column-averaged data are
presented in Fig. 4. We observe in Fig. 4(a) that the column-
averaged snail-trail tip cell solutions appear to have the same
bell curve profile as the P–ABM solutions, and that their
leading edges travel with roughly identical speeds (the speeds
are within 3% of each other). However, the snail-trail model
tip cell solution tends to overestimate that of the P–ABM.
We conclude that while the snail-trail model captures many
aspects of the P–ABM tip cell distribution when κ = 1, there
are observable discrepancies between the two models.

Figure 4(b) presents the column-averaged P–ABM and 2D
snail-trail stalk cell densities. We observe that the snail-trail
solution underestimates that of the P–ABM for all of the
time points shown here. This underestimation persists even
when we exclude possible edge effects by column averag-
ing the 2D results over the smaller interval y ∈ [0.05, 0.95]
(Supplemental Material Fig. 1 [68]). This suggests that the

discrepancies between the snail-trail and P–ABM are largely
generated within the domain interior, rather than near the
boundaries.

We have also found that even when branching and anasto-
mosis events are neglected in the P–ABM and 2D snail-trail
model (so that λ = βe = βn = 0), the column-averaged snail-
trail stalk cell solution is always less than that of the P–ABM
(Supplemental Material Fig. 2 [68]). In fact, the snail-trail
stalk cell density is almost one-half the value of the P–ABM
results for this parameter regime.

These results demonstrate that when there is no corrective
factor, the 2D snail-trail model underestimates the total stalk
cell density and is not an accurate description of results from
the P–ABM. We conclude that the stalk cell evolution should
include a multiplicative factor κ , not necessarily equal to 1, to
approximate the P–ABM stalk cell distribution well. Further-
more, the snail-trail model’s underestimation of the P–ABM
stalk cell density occurs even when branching or anastomosis
are neglected, which is consistent with arguments from Secs.
II and III.

TABLE II. TAF fields, gradient magnitudes, and values of κ for the figures presented in Secs. V and VI. In all cases, D = 10−3, χ = 0.4,
and h = 200−1. Except for Case 1, the other parameter values used in the snail-trail model were λ = βe = βn = 0. Results for Case 3 are
presented in Supplemental Material Figs. 4 and 5 [68].

Case c(x, y) ‖∇c‖2 κ (x, y)

1 x 1 2
2 1 − (x − 1

2 )2 − (y − 1
2 )2 2[(x − 1

2 )2 + (y − 1
2 )2]1/2 [(x − 1

2 )2 + (y − 1
2 )2]−1/2

3 xy (y2 + x2)1/2 2(y2 + x2)−1/2

062417-8



EVALUATING SNAIL-TRAIL FRAMEWORKS FOR … PHYSICAL REVIEW E 102, 062417 (2020)

FIG. 6. Results for the (a) P–ABM tip cell, (b) P–ABM stalk cell, (c) snail-trail tip cell, and (d) snail-trail stalk cell densities at t = 2,
subject to the TAF field c(x, y) = 1 − (x − 0.5)2 − (y − 0.5)2. Parameter values: see Table II. The P–ABM used the same initial condition
described in Appendix A, and its solution at t = 0.2 was used to initialize the snail-trail PDE.

V. VALIDATION OF THE SNAIL-TRAIL MULTIPLICATIVE
FACTOR BY NUMERICAL SIMULATION

Our results and earlier analysis suggest that including a
multiplicative factor given by Eq. (14) in the 2D snail-trail
stalk cell evolution equation will cause the continuum model
to more accurately capture the P–ABM solutions, provided tip
cell movement is dominated by chemotaxis. In this section,
we test this hypothesis by examining 2D snail-trail solutions
for different TAF fields. The scenarios that we consider are
presented in Table II.

We first examined the same case from Sec. IV, in which
c(x, y) = x (Case 1 in Table II). Using Eq. (14), we calcu-
late κ (x, y) = 2. Although the 2D snail-trail solution profiles
(Supplemental Material Fig. 3 [68]) resemble those from

Fig. 3, further investigation reveals that, for both tip and
stalk cell densities, the snail-trail model with κ = 2 is a more
accurate estimate of the average P–ABM distribution.

To see this, we present the column-averaged tip and stalk
cell solutions in Fig. 5. We observe in Fig. 5(a) that the snail-
trail tip cell solution with κ = 2 is a better approximation to
the P–ABM results than when κ = 1 (the maximum pointwise
difference between the two solutions is never more than 30%
of the maximum tip cell density for the time points shown;
furthermore, the total tip cell mass of the continuum and
discrete models are within 4% of each other). Comparison
of this graph with Fig. 4(a) further reveals that the snail-
trail model with κ = 2 overestimates the P–ABM solution
to a lesser extent than when κ = 1. Figure 5(b) presents
the column-averaged stalk cell distributions and shows that
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FIG. 7. Results for the (a) tip, and (b) stalk cell densities from the P–ABM and 2D snail-trail model subject to the TAF field c(x, y) =
1 − (x − 0.5)2 − (y − 0.5)2, column averaged in the y direction, at times t = 0.2, 0.4, ..., 2. Initial conditions and parameter values: as in
Fig. 6. Key: P–ABM distribution (solid black lines), snail-trail solution (dashed red lines). For colors, we refer to the online article.

the discrepancy between the column-averaged P–ABM and
snail-trail solutions is also smaller than it was when κ = 1.
These observations indicate that our formula for κ improves
the agreement between tip and stalk cell solutions to the 2D
snail-trail model and P–ABM.

In the aforementioned example, the chemotactic gradient
varies in only one spatial dimension. However, our results can
be extended to 2D chemotactic gradients. We have verified
this for the TAF fields c(x, y) = xy and c(x, y) = 1 − (x −
0.5)2 − (y − 0.5)2. For such simulations, we neglect branch-
ing and anastomosis because we have determined that neither
process will affect the value of the multiplicative factor (in
other words, for the remaining results presented in this sec-
tion, λ = βe = βn = 0).

Figures 6 and 7 presents results for the TAF field c(x, y) =
1 − (x − 0.5)2 − (y − 0.5)2 (Case 2 in Table II), which attains
a maximum value at the domain center. The corresponding 2D
P–ABM and snail-trail results at t = 2 are presented in Fig. 6.
We observe in Fig. 6(a) that tip cells in the P–ABM have
traveled from the left-hand boundary and have clustered near
the point (x, y) = (0.5, 0.5), which is the location of the max-
imum TAF concentration. This tip cell behavior is expected,
since the TAF gradient points toward the center of the domain.
We also see in Fig. 6(b) that the density of stalk cells is much
greater near the center of the domain than elsewhere. This is
because the magnitude of the TAF gradient becomes small
near (x, y) = (0.5, 0.5): tip cells in the P–ABM thus become
more likely to move via random motion in this area, which in
turn produces many stalk cells.

Figures 6(c) and 6(d) present the corresponding 2D snail-
trail solutions for this TAF field. We observe that the snail-trail
tip cell solution in Fig. 6(c) resembles that of the P–ABM,
although there are some differences between the two sets of
solutions due to stochastic effects (the L2 norm of the dif-
ference between the tip cell solutions is within 11% of the

L2 norm of the P–ABM distribution). Figure 6(d) reveals that
the snail-trail model stalk cell solution profile also generally
resembles that of the P–ABM (the L2 norms of the difference
between the two solutions is also within 11% of the L2 norm
of the P–ABM distribution). The most evident difference be-
tween the continuum and discrete stalk cell results occurs near
the point (x, y) = (0.5, 0.5), where a “spike” of stalk cells
arises because the value of κ (x, y) blows up there.

This overestimation of the P–ABM stalk cell density can
be perceived even when both sets of 2D solutions are column
averaged in the y direction (results are presented in Fig. 7).
We find that the maximum difference between the column-
averaged tip cell solutions is less than 5% of the maximum
tip cell density for the time points shown in Fig. 7(a). Fur-
thermore, the total cell masses computed by the discrete and
continuum models are within 1% of each other. Both of these
results indicate that the snail-trail model accurately estimates
the P–ABM tip cell solution. However, there is greater dis-
crepancy between the two models’ column-averaged stalk
cell solutions in Fig. 7(b). Although the total stalk cell mass
given by the discrete and continuum models are very similar
to each other (with approximately 1% difference), the maxi-
mum pointwise difference between the two solutions shown
in the figure is on the order of 15% of the maximum stalk
cell density. Such differences arise because our equation for
κ begins to blow up to infinity and overestimates the stalk
cell density rate of change as the solution travels closer to
x = 0.5. This extra stalk cell production also explains why
the column-averaged snail-trail stalk cell solution appears to
travel a farther distance than that of the P–ABM in Fig. 7(b).

The numerical results thus corroborate our hypothesis
that Eq. (14), which defines the multiplicative factor κ as a
function of space, causes the snail-trail model solutions to
approximate P–ABM results well (except in regions where the
TAF gradient is close to zero).
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We conclude this section by testing whether it is possible to
obtain similar agreement between the discrete and continuum
models by taking κ to be constant, in contrast to the more
general formula given by Eq. (14). This test is inspired by
previous investigators who employed this assumption in 1D
snail-trail models and used ad hoc approaches to estimate κ

[32,46]. To determine if agreement between the two models
can be attained when κ is constant, we numerically solved
the 2D snail-trail PDE with a value of κ that minimized the
squared difference between its results and those from the
P–ABM for the three TAF fields listed in Table II (numeri-
cal methods are listed in Appendix B). When the magnitude
of the TAF gradient is constant, the optimal value of κ is
within 1% of the value predicted by Eq. (14) (results are
presented in Supplemental Material Fig. 6 [68]). For more
general TAF fields whose gradients vary in space, however
(such as Cases 2 and 3 in Table II), we find that the dis-
crepancies between snail-trail and P–ABM results are greater
when κ is taken to be a constant value than in cases where
its value is determined by Eq. (14) (results for the TAF field
c(x, y) = 1 − (x − 0.5)2 − (y − 0.5)2 are presented in Sup-
plemental Material Fig. 7 [68]). We conclude that, for general
TAF fields whose gradients vary in space, the multiplicative
factor that causes the snail-trail model to best approximate
P–ABM solutions is not necessarily constant, in contrast to
previous ad hoc approaches for estimating this factor.

VI. DERIVATION OF THE 1D SNAIL-TRAIL MODEL

While we have shown that the 2D snail-trail model pre-
sented in Sec. II can be in good agreement with the P–ABM,
the relationship between our continuum model and other 1D
snail-trail models in the literature remains unclear. Such 1D
systems ostensibly describe the dynamics of tip and stalk cell
densities that have been column averaged in the direction
perpendicular to that of the moving tip cells [46,47], but it
is unknown what assumptions are required to ensure that this
interpretation is appropriate. To address these open questions,
we formally reduce our 2D snail-trail system to one spatial
variable by deriving the dynamics that govern its column-
averaged solutions and compare them to existing 1D snail-trail
models.

To do this, we define the new column-averaged dependent
variables

N (x, t ) =
∫ 1

0
n(x, y, t )dy,

E (x, t ) =
∫ 1

0
e(x, y, t )dy,

C(x) =
∫ 1

0
c(x, y)dy.

Integrating Eqs. (3) and (4) with respect to y, and applying the
boundary conditions given by Eq. (5), leads to the equation

Nt =
∫ 1

0
Dnxx − χ (ncx )xdy + λ

∫ 1

0
ncdy

−βe

∫ 1

0
nedy − βn

∫ 1

0
n2dy, (15)

Et = 1

h

∫ 1

0
κ (x, y)‖D∇n − χn∇c‖2dy. (16)

We remark that subscript notation has been used to indicate
partial derivatives in Eqs. (15) and (16). For general TAF
fields and tip/stalk cell solutions, the above system cannot be
reduced further. However, under the following assumptions it
is possibly to simplify both equations in terms of one spatial
variable. We first make a mean-field approximation in the tip
cell evolution equation, in which it is assumed∫ 1

0
ncdy ≈

[ ∫ 1

0
ndy

]
×

[ ∫ 1

0
cdy

]
= NC,

∫ 1

0
nedy ≈

[ ∫ 1

0
ndy

]
×

[∫ 1

0
edy

]
= NE ,

∫ 1

0
n2dy ≈

[ ∫ 1

0
ndy

]
×

[ ∫ 1

0
ndy

]
= N2.

(17)

Next, we assume that the quantities n, nx, nxx, cx, and cxx are
independent of y. Combining this assumption with the mean-
field approximation reduces the first integral in Eq. (15) to
DNxx − χ (NCx )x.

The stalk cell evolution equation can also be simplified to
one spatial variable under the following assumptions: We con-
sider the y component of the tip cell net flux (Dny − χncy) to
be negligible, and we assume that a mean-field approximation
is valid, such that the stalk cell evolution equation reduces to

Et ≈ 1

h

∫ 1

0
κ (x, y)dy ×

∫ 1

0
|Dnx − χncx|dy. (18)

If the TAF field varies in the y direction, then the first integral
may diverge: for example it is undefined for the TAF field
c(x, y) = 1 − (x − 0.5)2 − (y − 0.5)2. We therefore redefine
the column-averaged multiplicative factor, κ̃ (x), in terms of
the column-averaged TAF field C(x) using a similar formula
to Eq. (14):

κ̃ (x) ≈ 4D

hχ |Cx| . (19)

For the 2D TAF fields c(x, y) = x, c(x, y) = 0.5(x + y) and
c(x, y) = 1 − (x − 0.5)2 − (y − 0.5)2, we have found that us-
ing Eq. (19) causes the 1D snail-trail model to become a good
approximation of column-averaged 2D snail-trail solutions in
regions where the TAF gradient is nonzero (see Supplemental
Material Figs. 8–10 [68]).

If we also assume that the sign of (Dnx − χncx ) does not
change in the domain, then we may bring the second integral
in Eq. (18) into the absolute value function. Since we have
already assumed that a mean-field approximation is valid and
that n, nx, and cx do not vary in the y direction, this means that
the second integral simplifies to |DNx − χNCx|.

So long as the above assumptions hold, the 1D version of
Eqs. (3)–(5) is

∂N

∂t
= D

∂2N

∂x2
− χ

∂

∂x

(
N

∂C

∂x

)
+ λNC − βeNE − βnN2,

(20)
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FIG. 8. Solutions for the (a) tip and (b) stalk cell densities given by the 1D snail-trail model and the P–ABM at t = 0.2, 0.4, ..., 2. The
P–ABM is subject to the TAF field c(x, y) = xy, and its results have been column averaged in the y direction; the 1D snail-trail model is
subject to the column-averaged TAF field [C(x) = 0.5x], such that κ̃ (x) = 4. Key: column-averaged P–ABM distribution (solid black lines),
1D snail-trail solution (dashed red lines). Parameter values: as in Table II. The P–ABM uses the same initial condition outlined in Appendix A,
while the 1D snail-trail model was initialized with the column-averaged P–ABM results at t = 0.2. For colors, we refer to the online article.

∂E

∂t
= κ̃ (x)

h

∣∣∣D∂N

∂x
− χN

∂C

∂x

∣∣∣, (21)

D
∂N

∂x
− χN

∂C

∂x
= 0 at x = 0, 1, (22)

where κ̃ (x) is defined by Eq. (19).
When c(x, y) = x, we find that κ̃ (x) = 2 and the 1D snail-

trail model is equivalent to the one used by Pillay et al. [32].
Additionally, the snail-trail model from Byrne and Chaplain
[47] may be recovered if one sets βn = 0 and κ̃ (x) = 1, in-
cludes an additional term in Eq. (20) to account for tip cell
production due to branching from stalk cells, and introduces
a term in Eq. (21) to account for stalk cell elimination due to
vessel regression. We conclude that Eqs. (20)–(22) are consis-
tent with existing 1D snail-trail models under the assumptions
listed above. It follows that the assumptions made in deriving
Eqs. (20)–(22) also apply to existing 1D snail-trail models of
angiogenesis.

It is evident from our derivation that numerous conditions
must be satisfied to ensure that the 1D system given by
Eqs. (20)–(22) is in good agreement with column-averaged
2D snail-trail solutions. In spite of this, we have found that
there are certain TAF fields, such as c(x, y) = C(x) = x,
for which this does occur, and for which the 1D snail-trail
solutions are accurate approximations to column-averaged P–
ABM data (Supplemental Material Figs. 8 and 9 [68]).

For 2D TAF fields whose gradients vary significantly with
respect to space, however, many of the above assumptions are
likely to break down and the 1D snail-trail model will not
capture column-averaged P–ABM data well. In the case where
c(x, y) = xy, for instance, we violate the assumptions that cx

is independent of y and that the y component of net tip cell
flux is negligible compared to its x component.

Figure 8 presents column-averaged P–ABM results sub-
ject to the TAF field c(x, y) = xy, along with 1D snail-trail
model solutions generated using the column-averaged TAF
field C(x) = 0.5x (Case 3 in Table II). We observe that the
snail-trail tip and stalk cell densities are poor approximations
to the P–ABM results for the time points shown: for example,
the P–ABM tip and stalk cells appear to travel with a faster
speed than the 1D snail-trail solutions. This is due to the
difference between the 2D TAF field and its column-averaged
version. Since tip cells in the snail-trail model and P–ABM
move faster in larger TAF gradients, and the x component of
the 2D TAF gradient is equal to y, tip cells in the 2D P–ABM
are more likely to travel right when they are near the top
boundary of the domain. We confirmed this by visualizing
the P–ABM tip cell solutions in 2D (Supplemental Material
Fig. 4 [68]). The column-averaged TAF field [C(x) = 0.5x],
however, ignores any spatial variation of the TAF with respect
to y, hence the 1D snail-trail model ignores these possible
differences in tip cell speeds. We conclude that when the
difference between the 2D TAF field and its column-averaged
version is sufficiently large, the 1D snail-trail model will be a
poor approximation to column-averaged P–ABM results.

VII. DISCUSSION AND CONCLUSION

In this article, we have studied a simple, phenomenological
continuum framework for 2D network formation that con-
tains a core snail-trail assumption, in which follower stalk
cells proliferate along the path of leader tip cells. By in-
vestigating cell dynamics within a domain that contains a
generic chemoattractant at steady state, we reasoned that a
multiplicative factor must be introduced in the stalk cell rate
equation to account for the subtleties of multidirectional cell
movement. Our derivation of this factor, which is based on
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physical principles, demonstrates that snail-trail models are
valid descriptions of tip and stalk cell dynamics when their
movement is dominated by chemotaxis. Numerical solutions
to the revised snail-trail model are in good agreement with en-
semble average distributions from an existing discrete model,
which also utilizes the snail-trail assumption [32]. We have
thus identified a crucial, but heretofore implicit, condition that
must be satisfied for the snail-trail modeling framework to
accurately describe leader-follower behavior.

Similar implicit assumptions were identified during our
derivation of the 1D column-averaged version of our snail-
trail model, which is equivalent to several existing descrip-
tions of network formation [32,46,47]. Namely, we found
that this 1D model is an appropriate description of (column-
averaged) P–ABM results when a mean-field approximation
is valid and when the differences between the 2D TAF field
and its column-averaged counterpart are sufficiently small.
Our numerical results indicate that when such assumptions
are violated, the 1D snail-trail model (unlike the 2D snail-trail
model) cannot describe the discrete model’s solutions well.

Our analysis suggests that certain metrics for cell migra-
tion, such as the average cell displacement, could indicate
when cell movement is dominated by chemotaxis and, hence,
when snail-trail models would likely be accurate descrip-
tions of biological experiments for network formation. In
future work, we aim to explore the success of these met-
rics in anticipating how well snail-trail models describe such
data.

Before engaging in this research, however, several pos-
sible extensions should be made to the current snail-
trail model so as to improve its applicability to ex-
periments. For instance, we assumed in this article that
all sources of cell motion (besides chemotaxis) could
be modeled as an isotropic random motion term in the
PDE system and P–ABM. Although this is a common
modeling choice, there are certain cells whose motion can-
not be described in this fashion [69]; other types of cell
movement terms should therefore be considered and evaluated
experimentally, within the particular biological context being
studied (e.g., in angiogenesis), before using the equations used
here. Furthermore, we analyzed tip and stalk cell dynamics in
an idealized condition where the TAF concentration was at
steady state. In more biologically relevant scenarios, however,
the TAF field is unlikely to match the profiles investigated in
Table II and its dynamics will likely be more complex: for
example, cells may degrade the chemoattractant and create
cell-induced gradients [57]. It may therefore be necessary to
include such dynamics in the snail-trail modeling framework
when it is used to analyze experimental results.

Another improvement to the snail-trail modeling frame-
work is to determine how the corrective factor’s expression
changes in response to different boundary conditions. Since
our focus in this article was to evaluate the accuracy of the
snail-trail model within the domain interior, we did not re-
solve the “edge effects” in Secs. IV and V that contributed to
differences between the P–ABM and 2D snail-trail solutions.
Understanding how to correct for such boundary conditions,
however, will be required if snail-trail models are used to
investigate experimental data, and we will address this lack
of insight in future work.

Although the corrective factor derived in this article is
new to the 2D snail-trail system discussed in Sec. II, similar
expressions have appeared in other mathematical descriptions
of network morphogenesis that employ different modeling
frameworks. For example, a term nearly identical to Eq. (14)
appears in a hybrid ABM for angiogenesis, even though that
particular model does not use the net tip cell flux to calculate
capillary densities [70,71]. This similarity does not arise by
chance: indeed, we show in Appendix C that one can rederive
Eq. (14) by employing the procedure outlined by Vilanova
et al. [71]. The equivalence between the two expressions
results from a shared physical assumption underlying both
modeling frameworks: that new sprouts proliferate along the
path of moving tip cells. Since each corrective factor serves to
account for the total sprout density created by this mechanism,
it is therefore expected that they will be identical. Hence,
our work has identified how a core physical assumption of
trail-following behavior translates into a corrective factor is
conserved across distinct modeling frameworks, and we ex-
pect this factor to appear in other mathematical descriptions of
biological processes that also include a snail-trail assumption.

This raises an interesting question of whether it is possible
to identify other core physical mechanisms from mathematical
descriptions for network formation, for instance by investi-
gating the relationship between phenomenological snail-trail
models and other continuum systems for network formation
that have been based on first principles. Such “coarse-grained”
models have garnered increasing attention in recent years,
as they are derived directly from discrete models and de-
scribe their average solution in time and/or space [35,49,72].
Coarse-grained systems can be used to (indirectly) analyze
their underlying discrete models in a tractable manner: for
example, they may determine if solutions are sensitive to
certain parameters. However, coarse-grained systems tend to
be highly nonlinear, with the level of complexity depending
on the rules of the discrete model [49,66,73,74]. For exam-
ple, one may derive a coarse-grained PDE system from the
P–ABM (which we call the P–PDE). The P–PDE contains
more nonlinear terms than the snail-trail model and has a very
different stalk cell evolution equation. Nevertheless, Pillay
et al. identified in [32] certain parameter regimes for which
solutions to the P–PDE were indistinguishable from those of
a 1D snail-trail model that we showed is equivalent to the one
derived in Sec. VI. In future work, we aim to use the results
in this article to explain this observation and determine other
regions of parameter space for which solutions to the two
continuum models are indistinguishable from each other.
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APPENDIX A: REVIEW OF THE P–ABM

In this section, we review the rules for the discrete model
originally described in Pillay et al. [32] for the reader’s
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TABLE III. TAF field and parameter values used in P–ABM simulations. All values are dimensionless.

c(x, y) N h k Pm Pp �t tfinal

(See figure caption) 201 200−1 100 1 10−3 or 0 1/160 2

reference. For a more detailed discussion of the P–ABM and
its implementation, we refer to the original article.

The domain of the P–ABM is the unit square (x, y) ∈
[0, 1]2. The lattice is equally spaced with N points in both
the x and y directions with a spatial step size h, such that
(N − 1)h = 1. We denote lattice sites with indices i, j, where
0 � i, j � (N − 1) and (xi, y j ) = (ih, jh). We assume that
initially there is a blood vessel located at x = 0 and that there
is a TAF field at steady state, such that it may be represented
as a continuous function c(x, y).

We distinguish two cell types: tip cells and stalk cells.
Tip cells can move and branch within the lattice, whereas
stalk cells are created as a result of tip cell movement and
tip-to-tip anastomosis. At each time step, tip cells, chosen
uniformly at random with replacement, move with probability
Pm. When a tip cell moves, its direction is chosen based on the
probabilities listed in Eqs. (7) and (8) of Sec. III.

Every time a tip cell moves from location (xi, y j ), a stalk
cell is created at (xi, y j ). No-flux boundary conditions are
applied along the edges of the lattice, such that if a tip cell
attempts to move out of the lattice, then it is reflected back to
its original position and a stalk cell is placed at the lattice site.

If a tip cell moves into a site occupied by at least one
tip cell, then tip-to-tip anastomosis occurs with probability
1: All tip cells at this site are converted into a single stalk
cell (i.e., TC + A · TC → EC, where A � 1). We remark
that the branching rules of our model allow for multiple
tip cells to occupy a single lattice site (see below). If a tip
cell instead encounters a stalk cell (tip-to-sprout anastomo-
sis), then the tip cell is annihilated. Additionally, tip-to-tip
anastomosis takes precedence over tip-to-sprout anastomosis.
Following Pillay et al. [32], tip cells cannot anastomose with
a stalk cell from the same sprout (i.e., self-loop formation is
impossible), provided the tip cell has been at that site within

FIG. 9. Network given by a single realization of the P–ABM, subject to the TAF field c(x, y) = x, at (a) t = 0.5, (b) t = 1, (c) t = 1.5,
and (d) t = 2. Tip cells are dark blue squares, while stalk cells are in light red squares. Initial and boundary conditions: See Appendix A text.
Parameter values: See Table III. For colors, we refer to the online article.

062417-14



EVALUATING SNAIL-TRAIL FRAMEWORKS FOR … PHYSICAL REVIEW E 102, 062417 (2020)

10 prior movement steps. This constraint prevents tip cell
extinction.

Branching is implemented in the following manner: tip
cells proliferate with probability Pb, which is assumed to be
proportional to the TAF concentration at (xi, y j ):

Pb = Ppc(xi, y j ), (A1)

where Pp is a nonnegative constant chosen with the restriction
that Pb � 1.

In the P–ABM, branching only occurs in the y direction.
Thus, if a tip cell at (xi, y j ) is chosen to branch, then this cell
is removed and two daughter tip cells are created at (xi, y j±1).
We note that no stalk cells are created when a tip cell branches.
When a tip cell branches, its daughter cells are unable to
branch during that time step. In practice, a tip cell may deposit
a daughter cell in a site that is already occupied by another
cell, which (combined with our self-loop restriction) means
that more than one cell may simultaneously occupy a lattice
site.

At time t = 0, the domain is devoid of stalk cells while
tip cells are placed at alternating sites along the left edge of
the lattice, so tip cells are located initially at (x, y) = (0, 2h),
(0, 4h),... [0, (N − 1)h]. This initial condition is inspired by
earlier investigations which showed that intercellular signal-
ing creates a “salt-and-pepper” patterning of tip and stalk
cells, in which tip cells are separated by no more than two
stalk cells, before they migrate toward the TAF source [75].

One thousand realizations of the P–ABM were simulated
using the parameter values indicated in Table III. For a review
of the algorithm used to find realizations of the P–ABM, we
refer to Appendix B.

Figure 9 shows a network of tip and stalk cells created by a
typical realization of the P–ABM using the initial conditions,
parameter values, and boundary conditions listed above at
several time points. We observe multiple anastomosis events
(especially near the left boundary of the lattice) and few
branching events in this network. Figure 2 in Sec. IV shows
the average tip and stalk cell distributions generated by the
P–ABM at t = 0.2 and t = 2, using the same parameter values
and TAF field.

APPENDIX B: NUMERICAL METHODS

The algorithm used to generate a solution of the P–ABM is
given in Pillay et al. [32] and reproduced here for reference:

Choose �t , the time step, and tfinal, the time at which to
terminate the P–ABM solution. Set t = 0.

While t < tfinal and tip cells have not reached i = N − 1
(the right edge of the lattice):

(1) Choose NTC tip cells at random with replacement,
where NTC is the current number of tip cells.

Loop 1: For 1 to NTC

(a) Choose a random number r1 ∈ [0, 1].
(b) If r1 � Pm, then the tip cell moves:

(i) Choose a random number r2 ∈ [0, 1].
(ii) The tip cell moves according to the probabilities

Px± , Py± in Eqs. (7) and (8) of Sec. III, and a stalk cell is
left behind.

(iii) If tip-to-tip anastomosis can occur and the tar-
get site is occupied by one (or more) tip cells, then all
tip cells at the lattice site are removed and a stalk cell is
placed there.

(iv) Otherwise, if tip-to-sprout anastomosis can oc-
cur, then the target site is occupied by a stalk cell, and
the stalk cell does not belong to the same sprout as the
tip cell, then the tip cell is removed.

(v) Otherwise, the tip cell remains at the target site.
End Loop 1
(2) Choose NTC tip cells at random with replacement,

where NTC is the number of tip cells after completing Loop
1.

Loop 2: For 1 to NTC :
(a) Choose a random number r3 ∈ [0, 1].
(b) If branching can occur and r3 � Pb, then the tip cell

is removed and two cells are placed at adjacent lattice sites
in the y direction.
End Loop 2
(3) Adjust time t = t + �t .
End While loop
The 2D PDE models given by Eqs. (3)–(5) were solved

using the finite element method, implemented with the
DOLFIN/FENICS library in Python [76–78]. The PDEs
were solved on the unit square for t ∈ [0.2, 2] using 200 ×
200 second-degree continuous Lagrange finite elements. A
Crank-Nicolson scheme with a time step of 0.001 was used
to approximate the time derivative. The SCIPY library’s
NearestNDInterpolator function was used to set up a
suitable initial condition on the mesh from the P–ABM solu-
tion at t = 0.2. Column-averaged snail-trail solutions in the
y dimension were obtained using MATLAB’s trapz func-
tion, which implements a numerical trapezoidal integration
scheme.

Nonlinear least squares parameter fitting for βe and κ was
conducted using the least_squares function in the SCIPY

library’s optimization package, which implements a trust-
region-reflexive algorithm [79]. Confidence intervals of 95%
were computed using the nlparci function in MATLAB.

Relevant codes can be found at Ref. [80].

APPENDIX C: AN ALTERNATIVE DERIVATION OF THE
SNAIL-TRAIL CORRECTIVE FACTOR

In this Appendix, we demonstrate that it is possible to
derive Eq. (14), our expression for κ (x, y), using a procedure
given by Travasso et al. [70] and Vilanova et al. [71]. In those
articles, the modeling framework is not a snail-trail system
given by Eqs. (3) and (4), but instead a hybrid ABM that
utilizes a discrete model for tip cell movement and a continu-
ous model for capillary density. Despite such differences, this
hybrid ABM contains a nondimensional value that couples the
discrete and continuum models and is very similar to Eq. (14).
By deriving our formula for κ (x, y) using the logic outlined
in Refs. [70,71], we aim to show that the two factors are
equivalent and, hence, that both terms arise from a common
physical mechanism.
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In Refs. [70,71], the coupling factor is calculated as “the
ratio of the [vessel] material produced within the tip cell
to the [area] of material swept as the cell migrates” [71].
In other words, the coupling factor in the hybrid ABM is
given as

factor = area of vessel produced within time �t

area swept out by tip cells within time �t
= A1

A2
.

(C1)
We may physically interpret Eq. (C1) as the tip cell “smear-
ing” vessel density along the tunnel it creates within a given
time step. In other words, the coupling factor arises as a result
of the snail-trail assumption that new vessels proliferate along
the path of moving tip cells. We remark that Eq. (14), our
formula for κ (x, y), also arises from this physical assumption.

We now calculate κ (x, y) using Eq. (C1) and the discrete
model described in Sec. III. We recall that new vessel produc-
tion in the discrete model is equal to the number of times that
tip cells move from a lattice site. Since tip cells move with
probability Pm in time �t and the area of a tip cell is given by
h2, the total new vessel area produced by a tip cell, on average,
is equal to A1 = h2Pm.

The area per lattice length that a tip cell sweeps out when it
moves is also equal to h2Pm. To calculate the total area swept
out by the cell, however, this quantity must also be multiplied
by the average distance that the tip cell travels. Following our
logic from Sec. III, this latter value can be calculated as the
expected net distance that a tip cell makes within a single
jump, which is given by√

E[Xnet]2 + E[Ynet]2 =
√

(Px+ − Px− )2 + (Py+ − Py− )2

= 1
2

√
(gx )2 + (gy)2,

where Px± , Py± , gx, and gy are the same values as in Eqs. (7)
and (8). By applying Taylor’s theorem and neglecting terms of
O(h3) or smaller, we find that the expected distance that a sin-
gle tip cell travels is approximately kh‖∇c‖2, hence the total
area swept out by the tip cell within time �t is approximately
A2 = h3kPm‖∇c‖2.

It is straightforward to derive Eq. (14) after substituting the
above expressions for A1 and A2 into Eq. (C1) and defining
μ := Pm/�t and χ := Pmkh2/�t .
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