A multiscale model of complex endothelial cell dynamics in early angiogenesis

Daria Stepanova^{1,2}*, Helen M. Byrne³, Philip K. Maini³, Tomás Alarcón^{4,1,2,5}

* dstepanova@crm.cat

¹ Centre de Recerca Matemàtica, Bellaterra (Barcelona), Spain

² Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain

³ Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK

⁴ Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

⁵ Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain

Para- meter	Units	Description	Value used in simulations	Ref.
R_s	μm	Interaction radius.	15	estim., [1,2]
b_N	$molec \ \cdot \ time^{-1}$	Baseline Notch receptor expression.	500	[3,4]
b_D	$molec \ \cdot \ time^{-1}$	Baseline Delta ligand expression.	800	[3, 4]
b_{R2}	$molec \cdot time^{-1}$	Baseline VEGFR2 expression.	800	[4]
I_0	molec	Activation threshold for NICD.	100	[4]
$R2_{0}^{*}$	molec	Activation threshold for activated VEGFR2.	200	[4]
$\lambda_{I,N}$	dimensionless	Weight factor characterising fold change of the production rate of Notch receptor depending on the NICD concentration.	4.0	[3,4]
$\lambda_{R2^*,D}$	dimensionless	Weight factor characterising fold change of the production rate of Delta ligand depending on the activated VEGFR2 concentration.	2.0	[4]
$\lambda_{I,R2}$	dimensionless	Weight factor characterising fold change of the production rate of VEGFR2 depending on the NICD concentration.	0.0	[4]
n_N	dimensionless	Cooperativity parameter for Hill function for NICD-dependent Notch up-regulation.	2	[5]
n_D	dimensionless	Cooperativity parameter for Hill function for activated VEGF-dependent Delta up- regulation.	1	[5]
n_{R2}	dimensionless	Cooperativity parameter for Hill function for NICD-dependent VEGFR2 repression.	1	[5]
V	molec	External VEGF.	2500 (Fig 3E); 0 - 2500 (Fig 3F); {0, 2500, 25000} (in the rest of the simulations)	[3,4]
D_{ext}	molec	External Delta ligand.	0-3000 (Fig 3E and 3F); calculated from adjacent cells (in the rest of the simulations)	[3,4]
N _{ext}	molec	External Notch receptor.	1000 (Fig 3E and 3F); calculated from adjacent cells (in the rest of the simulations)	[3,4]
k_t	$molec^{-1} \cdot time^{-1}$	Trans-binding rate for Notch receptor and Delta ligand.	5.0e - 5	[5]
k_c	$\left molec^{-1} \cdot time^{-1} \right $	Cis-interaction rate for Notch receptor and Delta ligand.	6.0e - 4	[5]
k_v	$molec^{-1} \cdot time^{-1}$	Binding rate for VEGFR2 and external VEGF.	5.0e - 5	[4]
η	dimensionless	Endocytic regulation of Notch signalling.	0.5	estim., [6]
γ	$time^{-1}$	Degradation rate of proteins.	0.1	[4]
γ_e	$time^{-1}$	Degradation rate of activated receptors.	0.5	[4]

S1 Table. Baseline parameter values for the VEGF-Delta-Notch subcellular model. Description and reference values used in simulations of the subcellular VEGF-Delta-Notch signalling.

References

- 1. Du Y, Herath SC, Wang Qg, Wang Da, Asada HH, Chen PC. Three-dimensional characterization of mechanical interactions between endothelial cells and extracellular matrix during angiogenic sprouting. Scientific Reports. 2016;6:21362.
- 2. Ubezio B, Blanco RA, Geudens I, Stanchi F, Mathivet T, Jones ML, et al. Synchronization of endothelial Dll4-Notch dynamics switch blood vessels from branching to expansion. Elife. 2016;5:e12167.
- 3. Boareto M, Jolly MK, Lu M, Onuchic JN, Clementi C, Ben-Jacob E. Jagged–Delta asymmetry in Notch signaling can give rise to a Sender/Receiver hybrid phenotype. Proceedings of the National Academy of Sciences. 2015;112(5):E402–E409.
- 4. Boareto M, Jolly MK, Ben-Jacob E, Onuchic JN. Jagged mediates differences in normal and tumor angiogenesis by affecting tip-stalk fate decision. Proceedings of the National Academy of Sciences. 2015;112(29):E3836–E3844.
- 5. Sprinzak D, Lakhanpal A, LeBon L, Garcia-Ojalvo J, Elowitz MB. Mutual inactivation of Notch receptors and ligands facilitates developmental patterning. PLoS Computational Biology. 2011;7(6):e1002069.
- Fortini ME, Bilder D. Endocytic regulation of Notch signaling. Current Opinion in Genetics & Development. 2009;19(4):323–328.