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ABSTRACT
◥

Adaptive therapy seeks to exploit intratumoral competition to
avoid, or at least delay, the emergence of therapy resistance in cancer.
Motivated by promising results in prostate cancer, there is growing
interest in extending this approach to other neoplasms. As such, it is
urgent to understand the characteristics of a cancer that determine
whether or not it will respond well to adaptive therapy. A plausible
candidate for such a selection criterion is the fitness cost of resis-
tance. In this article, we study a general, but simple, mathematical
model to investigate whether the presence of a cost is necessary for
adaptive therapy to extend the time to progression beyond that of a
standard-of-care continuous therapy. Tumor cells were divided into
sensitive and resistant populations and we model their competition
using a system of two ordinary differential equations based on the
Lotka–Volterra model. For tumors close to their environmental
carrying capacity, a cost was not required. However, for tumors

growing far from carrying capacity, a cost may be required to see
meaningful gains. Notably, it is important to consider cell turnover
in the tumor, and we discuss its role in modulating the impact of a
resistance cost. To conclude, we present evidence for the predicted
cost–turnover interplay in data from67patientswith prostate cancer
undergoing intermittent androgen deprivation therapy. Our work
helps to clarify under which circumstances adaptive therapy may be
beneficial and suggests that turnover may play an unexpectedly
important role in the decision-making process.

Significance: Tumor cell turnover modulates the speed of selec-
tion against drug resistance by amplifying the effects of competition
and resistance costs; as such, turnover is an important factor in
resistance management via adaptive therapy.

See related commentary by Strobl et al., p. 811

Introduction
The evolution of drug resistance is one of the biggest challenges in

cancer therapy. In one of the first articles on chemotherapy, Farber and
colleagues (1) already reported not only unprecedented remissions in
children suffering from acute leukemia, but also that these remissions
were temporary. For many patients this pattern still holds true today,
and applies to both chemo- as well as targeted therapies.

Research aiming to combat drug resistance has traditionally focused
on developing drugs that target either the resistance mechanism or kill
the cell through a different route. As an alternative to this molecular
approach, a number of authors have proposed that resistance could be
delayed, if not averted, through changes in drug scheduling (2–6).

Current treatment schedules are designed to maximize cell killing by
treating at the maximum tolerated dose (MTD) as frequently as
toxicity permits. However, if drug-resistant cells are present a priori
or develop during therapy, such aggressive treatment releases these
cells from the competition for space and resources and facilitates their
growth, a process known as “competitive release” (3, 4, 7). Inspired by
approaches used in the management of invasive species and agricul-
tural pests, Gatenby and colleagues (4, 7) proposed “adaptive therapy,”
which aims not to eradicate the tumor, but to control it. Therapy is
applied to reduce tumor burden to a tolerable level but is subsequently
modulated or withdrawn to maintain a pool of drug-sensitive cancer
cells. Over the past 10 years, studies have shown that adaptive therapy
can extend time to progression (TTP) in vivo in ovarian (7) and breast
cancer (8), and most recently in melanoma (9). Moreover, the interim
analysis of the first human trial of adaptive therapy, applied to the
treatment of metastatic castrate-resistant prostate cancer with andro-
gen deprivation therapy, reported an increase in TTP of at least
10 months and a reduction in cumulative drug usage of 53% (10).

The success of adaptive therapy in prostate cancer has spurred
interest in extending the protocol to other cancers, such as thyroid
cancer andmelanoma (clinicaltrials.gov identifiers NCT03630120 and
NCT03543969, respectively). As such, it is urgent to understand the
characteristics of a cancer that determine whether it will respond well
to adaptive therapy, or not. Bacevic and colleagues (11) showed
through in vitro experiments and an agent-based computationalmodel
that it is important that cells are spatially constrained, as otherwise the
competition is too weak to effectively control the growth of resistant
cells. Furthermore, through ordinary differential equation (ODE)
modeling they found that the fitness of the resistant population, when
the population is rare, is a key determinant of the benefit derived from
adaptive therapy (11). These results were corroborated byGallaher and
colleagues (12), who compared two adaptive therapy strategies with
MTD using an agent-based model, which modeled resistance as a
continuous trait. They further found that the rate of spatial mixing
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through migration and the rate of acquisition of resistance through
mutation were key factors in determining the benefit from adaptive
therapy, and that adaptive therapy strategy was most effective.
Using a nonspatial game theory model, West and colleagues (13)
showed that the stronger the selection against resistance in the

absence of drug, the longer adaptive therapy can be expected to
extend TTP. Taking a more general approach, Hansen and collea-
gues (6, 14) demonstrated that the decision of whether to treat
aggressively or not, depends on the dominant mechanism of
resistant cell production (clonal expansion vs. de novo acquisition),

Figure 1.

Resistance costs in theory and in practice. A–C, The three main experimental designs used to test for a cost of resistance (all done in drug-free conditions).
A, Monoculture experiments test for changes in growth rate, size, migration rate, etc. of the resistant strain in isolation. B, Competition experiments compare the
abundance of sensitive and resistant cells in coculture over time.C,Reversal experiments examine the rate atwhich drug resistance is lost, if the drug iswithdrawn. To
do so, the resistant population is cultured in a drug-free environment, and its drug response is tested at regular time intervals. D–G, In vitro spheroid experiments
comparing the growth of doxorubicin-sensitive and -resistant MCF7 cells in monoculture. Sensitive and resistant cells were GFP and RFP tagged, respectively. D, In
normal medium, resistant cells grow faster than sensitive cells, showing that resistance does not necessarily have to be costly (n ¼ 3/group; t test of relative size
change from baseline at day 14: t3,3¼ 4.0, P¼ 0.02). E, Representative images of the initial (day 0) and final timepoints (day 14) fromD, illustrating how the resistant
spheroids expand more than the sensitive spheroids in normal glucose conditions. F, Under glucose starvation, this advantage is lost (n¼ 3/group; t test of relative
size change from baseline at day 14: t3,3 ¼ �0.5, P ¼ 0.66). This shows that the environmental context has to be considered when studying fitness costs.
G, Representative images of the initial (day 0) and final timepoints (day 14) from G, showing how resistant spheroids are more affected when glucose is withdrawn
(decrease in size and formation of a large corona of debris around the spheroid). E andG, The fluorescence signal overlaid on the brightfield image. For experimental
details see Supplementary Section S1 in the Supplementary Data.
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and the initial resistant cell number. By making the simplifying
assumption that progression can be predicted purely from the
governing equation of the resistant population, they derive an
explicit form of the decision boundary for a simple ODE mod-
el (6, 14). Most recently, Smalley and colleagues (9) showed that
adaptive therapy can be beneficial even in the light of phenotypic
plasticity, but for that to achieve optimal results, personalization of
the treatment schedule is required.

However, a factor that is still poorly understood is the so-called
“cost of resistance.” This refers to the idea that while a resistance
adaptation confers a fitness advantage under drug exposure, it may
come at a fitness cost in a treatment-free environment (4, 15). Resis-
tance costs have beenwidely studied in agricultural pests and antibiotic
resistance (16) andmay bemeasured in different ways (Fig. 1A–C). An
example in the cancer literature can be found in work by Gallaher and
colleagues (12), who report that doxorubicin-resistant MCF7Dox
breast cancer cells replicate 50% slower compared with their sensitive
counterparts, and that in competition experiments, the sensitive cells
outcompete the resistant cells in the absence of the drug. This is likely
because these cells use P-glycoprotein–related efflux pumps to resist
treatment, for which they have to divert energy away from prolifer-
ation towards the running of the pumps (12, 17). Similar observations
have been made in colorectal, lung, and other cancers in response to
chemo- (18, 19) aswell as targeted therapies (9, 11, 20). In their original
work on adaptive therapy, Gatenby and colleagues (4, 7) used the
cost of resistance to motivate adaptive therapy, and most theoretical
studies since have made this assumption (11–13).

However, not all resistance mechanisms come at a cost, and the
magnitude of any cost depends on a cell’s genetic and environmental
context (9, 18, 20). Despite using identical experimental protocols,
Jensen and colleagues (18), for example, found that some of their
colorectal cancer cell lines exhibited a cost, while others did not, and
some even showed increased fitness. Similar findings were made by
Smalley and colleagues (9) for melanoma. Moreover, when we repeat-
ed the experiments by Gallaher and colleagues (12) in 3D spheroids,
we found that drug-resistant MCF7 cells grew faster than their sensitive
counterparts (Fig. 1D and E). However, when we reduced the glucose
concentration in the culture medium, this advantage was lost (Fig. 1F
and G; see also Supplementary Fig. S1A and S1B). Finally, it is not clear
that the presence of a cost guarantees a quick return to sensitivity if drug
is withdrawn. For example, while Smalley and colleagues (9) found that
one melanoma cell line returned to sensitivity within 6 weeks after drug
withdrawal, another remained resistant for months, an observation also
made elsewhere (11, 18, 21). Given this wide range of possibilities for
how a resistant population might, or might not, differ from their
sensitive counterparts, it is important to clarify the relationship between
resistance costs and the success of adaptive therapy.

In this article we use a simple mathematical model to address this
question. We divide the tumor into drug-sensitive and drug-resistant
cells and model their growth with two ODEs. We compare the TTP
under standard-of-care continuous therapy with that of the adaptive
therapy algorithm used in the clinical trial by Zhang and col-
leagues (10), first in the absence, and subsequently in the presence,
of a cost. We will show how increased tumor density and small
levels of preexisting resistance maximize the benefit of adaptive
relative to continuous therapy, as these conditions maximize the
effect of competition between sensitive and resistant cell popula-
tions. Subsequently, we will demonstrate that turnover is a key
factor to consider, not only to understand the impact of a resistance
cost, but also to assess the ability to control a tumor with adaptive
therapy, more generally. To conclude, we present an analysis of

intermittent androgen deprivation therapy in prostate cancer,
which provides evidence for our modeling results, and illustrates
how our insights can help to improve our understanding of resis-
tance management in a specific disease setting.

Materials and Methods
Mathematical model

Tumors are heterogeneous populations of cells with differential
responses to drug, indicating a degree of preexisting resistance in most
tumors (22–24). To model this heterogeneity, we assumed two com-
peting cell types: drug-sensitive cells, S(t), and fully resistant cells, R(t),
modeled via the following equations:

dS
dt

¼ rS 1� Sþ R
K

� �
1� 2dD

DMax
DðtÞ

� �
S� dTS; ðAÞ

dR
dt

¼ rR 1� Rþ S
K

� �
R� dTR; ðBÞ

N tð Þ ¼ S tð Þ þ R tð Þ; ðCÞ
with initial conditions:

N 0ð Þ ¼ N0; S 0ð Þ¼ S0; and R 0ð Þ ¼ R0;

whereN0¼ S0þ R0. The model is derived on the basis of the following
assumptions (Fig. 2):

(i) In isolation, each population grows logistically with proliferation
rates, rS and rR, where the fraction of dividing cells decays linearly
from 1 to 0 as the population approaches its environmental
carrying capacity, K. Furthermore, cells die at a density-
independent rate, dT, where for simplicity, we assumed that this
turnover rate is the same for both populations.

(ii) Cells compete for resources and space according to the Lotka–
Volterra competitionmodel. This means that the presence of the
competitor reduces a population’s growth rate in a fashion that is
linearly proportional to the competitor’s population density. For
simplicity, we assumed that inter- and intraspecies competition
coefficients are identical, and equal to one.

(iii) Only actively dividing cells are killed by the drug. Many che-
motherapies induce DNA damage or inhibit the cell division
machinery, which induces apoptosis only in cells that attempt to
divide. We adopted the classical Norton–Simon model (25),
which assumes that cell killing increases linearly with the drug
dose, D(t), so that at MTD, a fraction, dD, of dividing cells is

Figure 2.

Themathematicalmodel. Drug-sensitive (S) and -resistant (R) cells proliferate at
rates, rS and rR, respectively, and die at rate dT. Proliferating sensitive cells die at
a rate dD when exposed to drug, D. Finally, both populations compete for
resources, where K denotes the total (shared) environmental carrying capacity.
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killed. The factor of 2 in the drug response accounts for the fact
that if a cell dies during mitosis, not only the potential daughter
cells, but also the mother cell is lost.

(iv) Progression is primarily driven by preexisting resistant cells, and
resistance acquisition during treatment is negligible. Viossat and
Noble (26) have recently shown that inclusion of genetic muta-
tion does not significantly impact the benefits of adaptive
therapy in simplemodels such as ours. Incorporating phenotypic
cell plasticity, which may occur at a much higher rate (e.g.,
ref. 27), will be subject to future research.

(v) To illustrate our key results, the main text of the article will
assume that the resistance cost manifests itself solely in the
growth rate, rR, as this is the way a cost is typically modeled (e.g.,
refs. 11, 12, 23). For a discussion of other types of cost, see
Supplementary Fig. S2A–S2E and Supplementary Section S2 of
the Supplementary Data.

We considered two treatment schedules:

(i) Continuous therapy at the MTD, DMax: D(t) ¼ DMax 8t.
(ii) Adaptive therapy, which withdraws treatment once a 50%

decrease from the initial tumor size is achieved, and reinstates
it once the original tumor size (N0) is reached:

D tð Þ ¼ DMax; until N tð Þ < 50% N0

0; until N tð Þ ¼ N0

�
ðDÞ:

To facilitate numerical simulation of the model, we nondimensio-
nalize Eqs. A–C using rS as a time scale, and K as a scale for the cell
densities (Table 1). For details of the nondimensionalization, the
numerical methods, and a steady-state analysis, see Supplementary
Sections S3 and S4; Supplementary Table S1; and Supplementary

Fig. S3A–S3C of the Supplementary Data, respectively. For complete-
ness, we also considered amodel inwhich birth is constant, but death is
density dependent, which we found yields similar results (Supple-
mentary Section S5 and Supplementary Fig. S4A–S4D of the Supple-
mentary Data). The code associated with our analyses is available at:
https://github.com/MathOnco/AT_costOfResistance_LVModel.

Parameterizing the model
Given the key role that prostate cancer has played in the

development of adaptive therapy, we parametrized our model
according to this disease. As such, we adopted the proliferation
rate for sensitive cells given in (rS ¼ 0.027/day; ref. 10) as our time
scale and the drug kill parameter, d̂D ¼ 1.5 from (28). For the other
parameters, we performed parameter sweeps within their biologi-
cally realistic ranges. All parameters, their definitions, and their
ranges are summarized in Table 1.

Analysis of patient data
To test our predictions, we fitted our model to publicly available,

longitudinal response data from patients with prostate cancer
undergoing intermittent androgen deprivation therapy (29). The
data were downloaded from http://www.nicholasbruchovsky.com/
clinicalResearch.html. Patients who developed a metastasis were
excluded, to avoid potentially confounding effects from a
change in the number of lesions, yielding data from a total of 67
patients. The model was fitted to each patient by minimizing the
root mean squared difference between the normalized prostate
specific antigen (PSA) measurements, ŷ(t)/ŷ(0), where ŷ(t) is the
PSA measurement at time t, and the normalized predicted cell

density, n(t)/n0. The values for rS and d̂D were fixed as in Table 1,

and the remaining four parameters (r̂R, d̂T , n0, and fR) were allowed

Table 1. Mathematical model parameters and their ranges.

Parameter Description Value Reference

t Time in days

sðtÞ :¼ SðtÞ
K

Sensitive cell density (normalized) 0.0–1.0

rðtÞ :¼ RðtÞ
K

Resistant cell density (normalized) 0.0–1.0

nðtÞ :¼ SðtÞ þ RðtÞ
K Total tumor cell density (normalized) 0.0–1.0

d(t) ¼ D(t)/DMax Drug dose (normalized) 0.0–1.0

rS Sensitive cell proliferation rate and model time scale 0.027 d�1 Adopted from ref. 10.

r̂R :¼ rR
rS

Resistant cell proliferation rate (normalized) 0.5–1.0 Lower limit: (12); upper limit: assumption of no cost

K Environmental carrying capacity and scale for cell
densities

n/a Defined implicitly via n0

d̂T :¼ dT
rS

Cell turnover rate (normalized) 0.0–0.5 Lower limit: assumption of no turnover; upper limit:
see Supplementary Section S6

d̂D :¼ 2dD Drug-induced cell killing (see text for further
explanation)

1.5 Adopted from ref. 28

DMax MTD n/a Implicitly defined via d̂D .

n0 :¼ N0
K

Initial tumor cell density (normalized) 0.1–0.75 Parameter sweep; values within this range reported by
ref. 33

fR :¼ R0
N0

Initial resistant cell fraction 0.001–0.1 Parameter sweep; values within this range reported in
ref. 24
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to vary freely between the following bounds: r̂R 2 [0,1], d̂T 2 [0,1], n0
2 [0.1,1], and fR 2 [1 � 10�5,0.25]. Fitting was done using the
Levenberg–Marquardt algorithm, and repeated 25 times for each
patient starting from different initial parameter combinations, with the
best fit according to the Akaike information criterion taken forward for
analysis. For 15patients no satisfactoryfit could be obtained (r2< 50% or
failure to capture later stage cycles), and these were excluded from all
further analyses. Classification of patients into relapsing and nonrelap-
singwas taken from the annotationprovided in the data, where relapse is
defined as a series of three sequential increases of serum PSA > 4 mg/L
despite castrate levels of serum testosterone. An overview of all fits is
shown in Supplementary Fig. S5. Fitting was done using the lmfit
package in Python (30).

Results
In advanced cancers, curative approaches rarely show durable

complete response. Instead, treatment success is often defined by
how long therapy can prevent the tumor from progressing beyond a
certain size (i.e., TTP). Herein, we compare the model-predicted
TTP for both adaptive (TTPAT) and continuous therapy (TTPCT),
respectively, using RECIST criteria (20% increase in tumor size
from the pretreatment baseline). We show that time gained by
adaptive therapy depends on the following tumor characteristics:
initial tumor density (n0; see Fig. 3), initial levels of preexisting
resistance (fR; see Fig. 3), cost of resistance (rR < rS; see Fig. 4), and
the density-independent cell turnover rate (dT; see Fig. 4). While we
focus here on prostate cancer, our theoretical insights apply more
broadly. For application of our work to breast cancer, see Supple-
mentary Fig. S6A and S6B.

Adaptive therapy extends TTP even without a resistance cost
In the absence of a resistance cost, adaptive therapy still results in

significant improvements in TTP over continuous therapy. To
illustrate this, in Fig. 3A we show representative simulations of
adaptive therapy for different values of tumor density (plots, left to
right) and preexisting resistance (top to bottom). Each subpanel
shows sensitive (red lines), resistant (green), and total (blue)
populations over time under adaptive therapy dosing. Treatment
administration is illustrated by black bars at the top of the graphs.
This shows that TTPAT (vertical blue dashed lines) exceeds TTPCT
(vertical yellow line) under a range of conditions, and for the
combination of low resistance and high tumor density (top,
right). Figure 3B quantifies time gained (TTPAT � TTPCT) for a
range of tumor density and resistance values. For our parameter
sweep, we found that adaptive therapy can extend TTP by between 3
and 104 days when the initial resistance fraction is fR ¼ 1%, and by
between 19 and 211 days when fR ¼ 0.1%. Finally, we note that in
the worst case scenario (fR ¼ 10%), adaptive therapy becomes
indistinguishable from continuous therapy, so that while there is
no benefit, the patient has also not progressed faster than under
standard of care (Fig. 3A and B, bottom rows).

Adaptive therapy treatment vacations provide a benefit only if
intratumoral competition is strong

Moreover, we found that each of the two characteristics of the
tumor’s initial composition has a distinct impact on the treatment
dynamics. As we increase the initial abundance of resistant cells from
0.1% to 10%, we decrease the number of completed adaptive therapy
cycles (Fig. 3A). In the most extreme case, at 10% initial resistance,

treatment could not decrease the tumor burden sufficiently to trigger
any treatment withdrawal in the three tumors. In contrast, increasing
the initial tumor density, which biologically corresponds to greater
competition for resources, does not alter the adaptive therapy cycle
number, but does increase the benefit delivered by each cycle. For
example, even though all tumors with 1% initial resistance complete
one adaptive therapy cycle, a meaningful benefit in TTP is only
achieved in the case when the tumor is 75% saturated (Fig. 3A). The
reason for this is that the competition exerted by sensitive cells only has
significant impact on the growth of the resistant cells if the tumor is
close to K. In summary, for adaptive therapy to provide a benefit, the
tumor burden must undergo a sufficient decline to allow for treatment
withdrawal (small fR), and competition within the tumor must be
sufficiently strong to noticeably slow the expansion of the resistant
population (proximity to K).

Adaptive therapy extends TTP by minimizing the resistant
population growth rate

How can we explain the benefit of adaptive over continuous therapy
in the absence of a cost of resistance? We applied the framework by
Hansen and colleagues (6) to derive the following explanation. Pro-
gression is primarily driven by the expansion of the resistant population,
as drug-sensitive cells are easily depleted by additional treatment. Thus,
the more a treatment strategy can inhibit the resistant population
growth rate, dR/dt, while also maintaining control of the tumor size
overall, the longer is the TTP. To illustrate this, we plotted dr/dt
(the nondimensional form of dR/dt) as a function of the tumor
composition in Fig. 3C. In this representation, a tumor lesion is
seen as a point in a 2-D space, where its x-position represents the
current relative density of sensitive cells, s(t), and its y-position is
the current density of resistant cells, r(t). Each point is colored
according to the resistant population growth rate. This represen-
tation clearly illustrates how high tumor densities (see inset gray
arrow) are generally associated with lower resistant growth rates.
Rewriting Eq. B as:

dR
dt

S;R; tð Þ ¼ rR � dTð ÞR|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Growth

� rRR
K

R|ffl{zffl}
Intraspecific competition

� rRS
K

R|ffl{zffl}
Interspecific competition

ðEÞ

shows that this slow down occurs due to intra- and interspecific
competition. Importantly, while a cost in rR modulates the strength
of growth inhibition through competition, it is not required (as also
illustrated in Fig. 3C).

During therapy, the composition of a tumor changes, so that
treatment corresponds to a trajectory through the S � R space.
In Fig. 3C we show trajectories of continuous (yellow) and adaptive
therapy (blue) for two tumors corresponding to tumors 1 and 4
in Fig. 3A. As can be seen, continuous therapy trajectories tend to
traverse regions of high resistant growth (dark green shading). In
contrast, these same regions are avoided under adaptive therapy
regimens, especially for tumor 4. Again, we can formalize this
using Eq. B: if SCT(t) and SAT(t) denote the density of sensitive cells
after t subsequent days of treatment under continuous and adaptive
therapy, respectively, then we have that, SCT(t) ≤ SAT(t) because
continuous therapy does not provide sensitive cells with
an opportunity to recover. Assuming that the tumor is still far
from progression (R << S) so that the resistant cells primarily
compete with sensitive cells, the resistant population growth rate is
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Figure 3.

Adaptive therapy can extend TTP compared with continuous therapy even in the absence of a cost of resistance. For simplicity, we are assuming no

turnover here (d̂T ¼ 0). A, Simulations of adaptive therapy for a cohort of tumors with different initial compositions. Vertical dashed lines indicate the TTP of
continuous (yellow) and adaptive therapy (blue), respectively. B, Gain in TTP by adaptive compared with continuous therapy as a function of initial proximity
to the carrying capacity and abundance of resistance. C, dr/dt as a function of s and r, together with treatment trajectories for tumors 1 [(n0,fR) ¼ (25%,0.1%)]
and 4 [(n0,fR) ¼ (75%,0.1%)] from A. Crosses indicate progression. This shows how adaptive therapy extends TTP by decreasing dr/dt via competition, and
demonstrates that for certain tumors adaptive therapy can extend TTP even if no cost of resistance is present. AT, adaptive therapy.
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Figure 4.

The impact of a resistance cost on adaptive therapy depends on cellular turnover.A, In the absence of turnover (d̂T ¼0), a cost enhances adaptive therapy onlywhen
resistance is rare and tumors are close to carrying capacity. Simulations of tumors 1–4 from Fig. 3Awith andwithout a 30% cost of resistance [r̂R ¼ 70%; tumors 1 and
4 given in Fig. 3; tumor 2: (n0,fR)¼ (25%,10%); and tumor 3: (n0,fR)¼ (25%,10%)].B, Parameter sweep of the benefit of adaptive therapy (TTPAT� TTPCT) for different
levels of costs for tumors 1–4, corroborating the results inA. Note that the curves for tumors 3 and4 overlap.C, Simulation of a competition experiment (no drug; n0¼
10%, fR¼ 50%) showing that the impact of a cost on the selection against resistance is modulated by cellular turnover. D, Impact of turnover on adaptive therapy for
tumor 1 for different values of cost. Turnover increases the benefit of adaptive therapy and amplifies the effect of a cost. E, Simulations of the treatment dynamics for
four combinations of cost and turnover corresponding to the four case studies highlighted in B. F, Parameter sweep as in B, but with a turnover of 25%. Turnover
increases TTP gained by adaptive therapy both in the presence and absence of a resistance cost for a range of different tumor compositions [tumors 1 and 2 as
in Fig. 3A; tumor 3� : (n0,fR)¼ (50%,10%); and tumor 4� : (n0,fR)¼ (50%,0.1%); above a cost of 30%, tumors 3� and 4� become indefinitely controllable and so no TTP
can be obtained]. AT, adaptive therapy.
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greater for continuous ðdRdt jCTÞ than for adaptive therapy ðdRdt jATÞ:
dR
dt jCT � ðrR � dTÞR� rRSCT

K R � ðrR � dTÞR� rRSAT
K R � dR

dt jAT .
This implies that adaptive therapy can provide a benefit even in the

absence of a cost of resistance. This benefit increases with increased
tumor density as SAT/K can bemaintained large for longer. In addition,
this implies that the longest control in this model can be achieved by
maintaining the tumor burden as close to its original size as possible, to
maximize the effects of interspecific competition. To demonstrate this,
we simulate adaptive treatment in which drug is withdrawn after a
greater than, and a smaller than, 50% burden reduction (Supplemen-
tary Fig. S7A and S7B). This suggests that, assuming the larger burden
is tolerable, the longest TTP can be achieved by the algorithm with the
smallest burden reduction.

In the absence of turnover, cost of resistance increases time
gained by adaptive therapy only when resistant cells are
initially rare

Next, we examined the role of resistance cost. Figure 4A and B
compares low density tumors (tumor 1 and 2, repeated from Fig. 3)
with high density tumors (tumor 3 and 4). As expected, TTPAT (blue
line) increases with a cost of resistance in all four cases (Fig. 4A).
However, an increase of the benefit of adaptive over continuous
therapy is only seen when tumors are close to K and resistant cells
are rare, as in tumors 1 and 4. In contrast, in highly resistant tumors, a
cost of resistance increases the TTP in roughly equal terms for
continuous and adaptive therapy. This effect is consistent for a wide
range of resistance cost values (Fig. 4B).

Turnover mediates the impact of a cost of resistance
So far, we have assumed that the turnover of tumor cells is negligible.

However, tumors are subject to resource starvation and immune
predation, resulting in continuous tumor turnover (see Supplementary
Section S6 for further discussion). In Fig. 4C, we show how such
turnover modulates the impact of a resistance cost on the competition
between sensitive and resistant cells in the absence of drug. Increasing
the cost of resistance (dashed lines) leads to lower levels of resistance
in untreated populations. Importantly, while a cost reduces the
number of resistant cells, these cells never go extinct in the absence
of turnover (Fig. 4C). In contrast, if we introduce intrinsic cellular
turnover (d T̂ > 0), resistant cells go extinct over time (Fig. 4C).
Selection against resistance depends not only on the cost of resistance,
but also the turnover rate.

How does this insight affect adaptive therapy? In Fig. 4D we
show TTPAT as a function of turnover and cost for tumor 1. If
turnover is low, then a large cost of resistance results only in small
gains for adaptive therapy, as seen by comparing cases i and ii
in Fig. 4D and E. In contrast, if turnover is high, then adaptive
therapy provides significant benefits even if the resistance cost is
small, or completely absent (case i vs. iii, Fig. 4D and E). We also
observe in case iv that, once turnover increases beyond a threshold
of (1 � 1.2n0)r̂R, the tumor becomes indefinitely controllable in the
model, so that continuous and adaptive therapies maintain the
tumor below the size for progression forever (see Supplementary
Section S7 for further discussion).

Next, we examined how this result generalizes as we change the
initial tumor density and resistance fraction. We repeated the cost–
gain relationship analysis from Fig. 4B with a turnover rate of d T̂ ¼
25%. As tumors 3 and 4 are indefinitely controllable in this parameter
regime (see Supplementary Fig. S8A–S8C), we replaced them by
tumors with a slightly lower initial density (n0 ¼ 50%), denoted by

tumors 3� and 4�, respectively.We found that all, but the less dense and
highly resistant tumor (tumor 2), benefited from adaptive therapy even
in the absence of a resistance cost (Fig. 4F). Interestingly, tumor 3� did
not benefit from adaptive therapy in the absence of turnover (Fig. 3A;
bottom row, center), but with turnover, adaptive therapy becomes
superior to continuous therapy. Moreover, in all cases, a cost of
resistance increased the time gained with adaptive therapy. To test
the robustness of our findings to the model assumptions, we refor-
mulated our model from a density-dependent birth to a density-
dependent death model, which assumes that cells proliferate at a
constant rate and die at a rate proportional to the cell density. This
further corroborates our main result that turnover increases the effect
of competition between sensitive and resistant cells (Supplementary
Section S5; Supplementary Fig. S4A–S4D).

The balance between cost and turnover predicts relapse in
patients undergoing intermittent androgendeprivation therapy

Our theoretical analyses indicate that the success of resistance
management depends on an interaction between resistance costs and
cellular turnover. To test this hypothesis, we fitted our model to
publicly available, longitudinal tumor burden data from 67 patients
undergoing intermittent androgen deprivation treatment for recur-
rent, locally advanced prostate cancer (29). After an initial 36-week
lead-in period, treatment of these patients was withdrawn whenever
PSA levels were below 4 mg/L and was reinstated when PSA levels
exceeded 10 mg/L, resulting in treatment cycles similar to adaptive
therapy (29). Using themonthly serum PSAmeasurement as a marker
of tumor burden, we fitted the values for cost, turnover, n0, and fR for
each patient, fixing all other parameters as before (Table 1). We found
that even though ourmodel was constructed as a conceptual tool, it can
recapitulate individual patient dynamics for amajority of patients, and
that it can describe patients who continuously respond, as well as those
who eventually relapse (Fig. 5A; for an overview of all patients see
Supplementary Fig. S5).

Next, we examined what role turnover and cost play in the response
dynamics. Analysis of the fitted parameters shows a value of cost and
turnover far from 0 in most patients (Supplementary Fig. S9). In fact,
setting turnover or cost, or both, to 0 significantly decreases the
goodness-of-fit relative to the available degrees-of-freedom, demon-
strating the importance of both in understanding treatment dynamics
(Fig. 5B). Moreover, we found that estimates for turnover and cost
show a strong negative correlation, with most patients clustering
closely along a line in parameter space (Pearson correlation coefficient,
0.77; Fig. 5C). This trade-off, which is not imposed, but emerges from
the fitting, supports our hypothesis of the importance of turnover.
First, no patient fell into the region in which both turnover and cost,
and so response, were small, presumably because such patients would
not have achieved PSA level normalization in the lead-in phase
required for study inclusion (compare with Fig. 4D). Similarly, no
patients were seen in the bottom right corner, where our model
predicts long-term tumor control, consistent with the fact that all
patients in the studywere refractory after initial therapy. Subsequently,
we investigated whether differences in turnover or cost are predictive
of whether a patient will relapse. While there was no difference in
either variable in isolation (Supplementary Fig. S9; P value in Mann–
Whitney U tests > 5%), we observed that patients with a relapse tend to
have smaller values of cost than patients with a similar level of turnover
in whomno relapse occurs (Fig. 5C). Consistent with this observation,
we found that the difference in the sum of cost and turnover between
patients with and without relapse was statistically significant (Mann–
WhitneyU test; U¼ 82;P< 1%). To illustrate this, we show three sets of
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Figure 5.

The role of cost and turnover in patients undergoing intermittent androgen deprivation therapy (data from Bruchovsky and colleagues; ref. 29).
A, Representative fits showing that the model can recapitulate treatment dynamics of both patients who continue to respond to treatment, as well as
those who eventually relapse. B, Removing turnover or cost as a variable in the model significantly decreases the goodness-of-fit across the patient cohort,
indicating both variables are important in explaining response. Stars denote P values of less than 1% in paired Student t tests. C, Plot of the estimates for
turnover and cost (each point represents one patient) showing a defined spread consistent with our predictions from Fig. 4D and the study inclusion criteria.
Patients below or above this line would likely not have met the study inclusion criteria due to insufficient response in the lead-in phase or due to lack of relapse
after primary therapy. Moreover, patients with relapse tend to fall into the bottom half space (note the inverted y-axis), indicating that patients with relapse
are defined not by small absolute values of cost, but by values that are small relative to the estimated turnover. D, Examples of patient fits along three
transects through the space in C, showing how turnover and cost separate patients with different cycle dynamics, and patients with and without relapse. Note
that even though patients 56 and 16 are marked as nonrelapsing, it is not known whether they responded in the final therapy cycle. E, Three strategies to

improve tumor control by increasing competition, illustrated on patient 99 from A (parameters: n0¼ 10%, fR¼ 1.25� 10�3%, r̂R ¼ 79%, and d̂T ¼ 44%). Baseline:
adaptive therapy (AT) with drug withdrawal after a 99% tumor burden reduction, mimicking the Bruchovsky protocol (29). Strategy 1: adaptive therapy with
drug withdrawal at 50%. Strategy 2: secondary drug to reduce K (here by 50%). Strategy 3: secondary drug to increase turnover (here by 20%).
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examples in Fig. 5D. This also shows how different regions in
turnover–cost space correspond to different types of patient dynamics,
with patients with lower estimates for turnover tending to have shorter
drug-off periods, than patients with high values of turnover (transect
1 vs. 3). To sum up, this analysis demonstrates that turnover and cost
are important in describing patient response to intermittent androgen
deprivation treatment, and that it is their combination that has to be
considered to understand outcome.

Improving adaptive therapy by amplifying competition
We deduce that there are three ways in which one may amplify

intratumoral competition and improve tumor control with adaptive
therapy (Fig. 5E). First, one can lower the threshold for treatment
withdrawal, so that treatment is withdrawn earlier andmore frequent-
ly, assuming the increased tumor burden is acceptable. Second, one can
target the environmental carrying capacity, for example, by admin-
istering an antiangiogenic drug to reduce the supply of nutrients.
Finally, one can increase cell death of both sensitive and resistant cells
to reduce the growth of resistant cells and the strength of selection
against them if a cost is present. This may be done, for example, by
adding low-dose chemotherapy. In Fig. 5E we illustrate each strategy
on patient 99 who relapsed during intermittent androgen deprivation
treatment. Interestingly, while it was strategy 1 that optimized the gain
of adaptive relative to continuous therapy, it was strategy 3 that
maximized absolute TTP. This suggests that depending on the clinical
aim, different strategies, or combinations of these, may be optimal.

Discussion
With four clinical trials of adaptive therapy already ongoing

(clinicaltrials.gov identifiers: NCT02415621, NCT03511196,
NCT03543969, and NCT03630120) and more in preparation (31), it
is important to develop criteria to identify which patientsmight benefit
from adaptive therapy over standard MTD approaches. Intuitively, it
appears that the presence of afitness cost of resistancemight serve as an
inclusion criterion. However, a cost does not guarantee resistance
control (11, 12). Moreover, Zhang and colleagues (10) did not report a
resistance cost in vitro, yet found that adaptive therapy extendsmedian
TTP by over 10 months in patients.

The aim of this article was to consolidate these findings and to
develop an understanding of the circumstances under which a resis-
tance cost is required, and under which circumstances it is not. To do
so, we developed a simple two-population Lotka–Volterra competition
model and treated it according to the adaptive therapy algorithm from
Zhang and colleagues (10). We have shown that the time gained in
adaptive therapy compared with continuous therapy depends on four
key factors: (i) the initial fraction of resistant cells (fR), (ii) the
proximity of the tumor to environmental carrying capacity (n0), (iii)
the resistant cell proliferation rate (rR), and (iv) the rate of cellular
turnover (dT). While the importance of the first two factors has been
recognized previously (6, 11, 12), it is unclear how they interact with
the latter two. First, we show that a resistance cost is not necessary for
adaptive therapy to extend TTP. If the tumor is close to carrying
capacity, and resistance is rare, then adaptive therapy can achieve
significant gains even in the absence of a cost. We demonstrate how to
use the work by Hansen and colleagues (6) to explain this result
mathematically and how it may be visualized for a nonmathematical
audience using phase plane techniques. Viossat and Noble (26) have
recently applied this approach to a broad class of tumormodels, andwe
recommend their article for a detailed discussion of how some of our
results may be generalized. Finally, it is worth pointing out that

resistance costs may also manifest themselves in other ways. For
example, in the 3D spheroids in Fig. 1, there are significantly more
debris around the resistant spheroids than around their sensitive
counterparts (see also Supplementary Fig. S1; Supplementary Section
S1.4), suggesting a potentially higher turnover in resistant compared
with sensitive cells. Our analysis easily extends to costs in the turnover
rate and carrying capacity (Supplementary Section S2).

Given its pivotal role, an important question to ask is: what is a
tumor’s carrying capacity? Carrying capacity is defined as the popu-
lation size, or density, at which growth saturates (32). As such, it is a
multifaceted concept that may be defined at different spatial scales and
that may vary over time and space. For example, one can define a
systemic carrying capacity for the whole body, or local carrying
capacities for individual tumor lesions. Moreover, because of spatial
heterogeneity in resource supply, or available space, different lesions,
or even different regions within the same tumor, may have different
carrying capacities. Importantly, while tumors, especially solid tumors,
are likely far away from their fatal, systemic carrying capacity, theymay
be close to their tissue- or subtissue-level capacity (33).

Furthermore, carrying capacity is a dynamic quantity that changes
over time. It is determined by space and resource availability, which
will change as the tumor recruits vasculature and stromal support or
gains the ability to invade surrounding tissue. Moreover, it is deter-
mined by the ratio of birth to death in the tumor. Working with the
popular r � K form of the logistic growth equation, this fact is easily
overlooked, and results in the misleading perception that r and K are
independent. A key contribution of this article is to highlight that not
only environmental constraints, but also the cells’ proliferation and
death rates, determine the impact of intratumoral competition. The
shorter a cell’s life span, the fewer opportunities it will have to divide,
and the greater will be the impact of interference through intra- and
interspecific competition. Changes in the proliferation or death rate,
due to mutation, immune predation, or treatment, will alter the
tumor’s carrying capacity and so the competition between tumor
cells. The relationship between r and K has been an area of intense
debate in ecology, centered in particular around the so-called r � K
selection hypothesis (32). Realization of their interdependence has
been an important step in consolidating ecological and evolutionary
theory (34–36), and may similarly help to improve our understanding
of tumor evolution, and treatment response.

An important implication of this dynamic view of carrying capacity
is that tissue turnover plays a role in adaptive therapy (Fig. 6).
Specifically, our modeling indicates that higher turnover facilitates
the control of drug resistance, and that if a resistance cost is present, its
benefit depends not on its absolute value, but on its value relative to the
turnover rate. We tested this hypothesis by fitting our model to
response data from patients with prostate cancer undergoing

Figure 6.

The interplay between cost of resistance and turnover in adaptive therapy.
Sensitive cells slow the growth of resistant cells through competition, but are
killed by treatment. A cost of resistance reduces the resistant growth rate.
Turnover amplifies the impact of both a cost of resistance and the strength of
competition.
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intermittent androgen deprivation therapy. This shows that both cost
and turnover are required to explain the treatment dynamics, as their
removal significantly reduces goodness-of-fit, even when a penalty for
the additional degrees-of-freedom is applied. Interestingly, and con-
trary to our expectations, we did not find a difference in turnover when
we tested for differences between patients who relapse and those who
do not. Possibly, this is because tumors with higher turnover may also
harbor more resistance as these tumors will have passed throughmore
generations before detection (37), although we did not detect such a
correlation ourselves. However, when we examined both cost and
turnover together, we saw that patients who relapse tend to be defined
by a smaller combination of cost and turnover than patients without a
relapse. While these results should be viewed with some caution, as
neither cost nor turnover were measured directly, they are consistent
with our hypothesis, and show how our insights may help to under-
stand treatment response.

One reason why it was difficult to test our hypothesis more directly
is that relatively little is known about turnover rates in human tumors.
Most available data were collected between the 1960s and 1990s based
on a method pioneered by Steel (38). This method compares the
potential doubling time expected from the fraction of dividing cells as
identified by chemical labeling with the actual observed volumetric
doubling time. Interestingly, most of these studies found that tumors
grew significantly slower than expected, suggesting that the rate of cell
death closely matches that of cell production (see Supplementary
Section S6 and Supplementary Table S2 for further discussion;
refs, 38–40). Yet all of these measurements were indirect. In light of
our findings, we advocate thatmore focus should be put on quantifying
the turnover rates in tumors. Not only could the information on
turnover rates help to identify suitable candidates for adaptive therapy,
but it could also be important in interpreting data from experimental
model systems. For example, while in vitro, no resistance cost may be
observed, tumor control may still be possible in vivo or in patients as
turnover, via greater nutrient deprivation, and immune suppression
will intensify competition, and amplify even small fitness differences.

We made a number of simplifications in our model. First, similar to
previous studies (6, 11), we assumed that the tumor is not curable.
However, as can be seen in Fig. 4E, including a resistance cost and
greater turnover also result in fewer cells at the nadir during contin-
uous therapy. This implies that the tumors in which adaptive therapy
will bemost effective are those in which continuous therapy justmisses
being curative, an observation also made elsewhere (3, 12). Thus, the
very long gains predicted under adaptive therapy have to be viewed
with some skepticism, because in a proportion of these patients,
continuous therapy would have potentially cured the tumor. That
being said, adaptive therapy is intended for advanced settings, inwhich
the available treatment is rarely curative, which suggests that such cases
will be rare (4, 41). Moreover, it seems plausible that if one finds that
adaptive therapy controls the tumor verywell, one could then decide to
switch to a curative approach. In fact, adaptive therapy has been shown
to have stabilizing effects on tumor vasculature (8), which suggests that
a curative approachmay be evenmore effective after an initial period of
adaptive therapy.

Second, we made the simplifying assumption that resistance is
preexisting and that progression is driven solely by clonal expansion
of this subpopulation. However, there is mounting evidence that
acquisition of resistance is a multistep process in which genotype-
and environment-mediated cell plasticity (e.g., via growth factors;
ref. 27 or extracellular matrix stiffness; ref. 42) play a key role. While
previous research, for example, in melanoma (9), has shown that
adaptive therapy can still succeed despite this plasticity, it does pose

additional challenges for resistance management (6, 14, 26). Growth
factor–driven interactions can result in spatial, nonlinear evolutionary
games between subpopulations, whose dynamics may change with
environmental conditions (20). Future research should examine adap-
tive therapy in the context of this plasticity in more detail.

A further important caveat of our study is that we did not account
for the potential health risks associated with the increased tumor
burden under adaptive therapy. As a result, ourmodel predicts that the
longest TTP can be achieved by keeping the tumor as close to its initial
size as possible. This is true formost studies in this area (7, 9, 11, 13, 28).
However, a higher tumor level increases the potential for de novo
resistance acquisition and metastasis, and under certain circum-
stances, these costs may outweigh the benefits of adaptive thera-
py (6, 26, 43). Investigating the risks of adaptive therapy is an
important direction of future research.

To facilitate analysis, we neglected the impact of space in this article.
However, previous work (11, 12) has demonstrated that the tumor’s
spatial architecture is an important factor in adaptive therapy. If
resistant cells can be “trapped” by surrounding sensitive cells, the
tumor may be controlled for a long time (11, 12), as resistant cells are
close to their local carrying capacity. This may negate the need for a
resistant cost for small values of initial burden, and would define
carrying capacity in a local fashion. At the same time, by creating gaps
in the layer of surrounding cells, turnover may facilitate escape of
trapped resistant cells, so that the benefit derived from high turnover
may be smaller than expected from the ODE model. In addition, it
would allow us to examine the impact of microenvironmental factors,
such as the stiffness of the extracellular matrix, acidity of the micro-
environment, or presence of stromal support, which are known to
affect drug resistance (42). We have already started to test how our
current predictions translate to a spatial model, and have made a
preprint of our results available on bioRxiv (44).

To conclude, we want to highlight interesting parallels to the pest
and antibiotic resistance management literature, which have investi-
gated resistance costs since the mid-20th century (see ref. 45 for an
early review of resistance costs in insecticides). First, also in these fields
it is a controversial issue (16, 46–48). For example, Bergelson and
colleagues (46) found that of 88 studies examining the cost question in
plants, 44 showed a cost, 40 found no difference, and four even
observed a benefit to resistance. This is because the fitness effect of
a resistance adaptation depends on the resistance mechanism, the
genetic, and the environmental context (15, 16, 46). Thus, in devel-
oping adaptive therapy we should neither assume the presence of costs
nor that they are uniform throughout space and time. Importantly,
resistance management can be successful despite this uncertainty. For
example, the resistance management scheme for the insecticide-
producing Bacillus thuringiensis crop has been successful despite
inconclusive evidence regarding the presence of resistance
costs (47, 48). The reason for this success lies in integration of multiple
treatment modalities (49, 50). As such, we advocate multidrug
approaches in which one, or several drugs, are given adaptively. Initial
theoretical work on multidrug adaptive therapy has already been
carried out (28, 51, 52), and we have illustrated here how by targeting
the resource availability or turnover in a tumor with secondary drugs
one can greatly enhance tumor control. We also note that while
abiraterone was given adaptively in the initial prostate cancer adaptive
therapy trial (NCT02415621), patients were concurrently receiving a
continuous dose of Lupron, which suppresses systemic testosterone
production and reduces the cancer’s supply of growth factors. A
follow-up study is now giving both abiraterone and Lupron in an
adaptive fashion (NCT03511196). Going forward, it will be important
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to extend this work to developmultimodal strategies that exploit a cost
of resistance, yet are robust if this cost disappears due to environmental
or genetic compensation.With better understanding of tumor growth,
resistance costs, and turnover rates, adaptive therapy can be more
carefully tailored to patients who stand to benefit from it the most.
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