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Abstract
Background: Understanding changes in infectiousness during SARS-COV-2 infections is critical to

assess the effectiveness of public health measures such as contact tracing.
Methods: Here, we develop a novel mechanistic approach to infer the infectiousness profile of

SARS-COV-2-infected individuals using data from known infector–infectee pairs. We compare

estimates of key epidemiological quantities generated using our mechanistic method with

analogous estimates generated using previous approaches.
Results: The mechanistic method provides an improved fit to data from SARS-CoV-2 infector–

infectee pairs compared to commonly used approaches. Our best-fitting model indicates a high

proportion of presymptomatic transmissions, with many transmissions occurring shortly before the

infector develops symptoms.
Conclusions: High infectiousness immediately prior to symptom onset highlights the importance of

continued contact tracing until effective vaccines have been distributed widely, even if contacts

from a short time window before symptom onset alone are traced.
Funding: Engineering and Physical Sciences Research Council (EPSRC).

Introduction
The precise proportion of SARS-CoV-2 transmissions arising from non-symptomatic (either presymp-

tomatic or asymptomatic) infectors, as well as from unreported infected hosts with only mild symp-

toms, remains uncertain (Buitrago-Garcia et al., 2020; Casey et al., 2020). Statistical models can be

used to assess the relative contributions of presymptomatic and symptomatic transmission using

data from infector–infectee transmission pairs (Ferretti et al., 2020a; Ferretti et al., 2020b;

Zhang, 2020; Liu et al., 2020; Tindale et al., 2020). The distributions of three important epidemio-

logical time periods – the generation time (the difference between the infection times of the infector

and infectee) (Ferretti et al., 2020a; Ferretti et al., 2020b; Deng et al., 2020; Ganyani et al.,

2020), the time from onset of symptoms to transmission (TOST) (Ferretti et al., 2020b; He et al.,

2020; Ashcroft et al., 2020), and the serial interval (the difference between the symptom onset

times of the infector and infectee) (Ferretti et al., 2020b; Du et al., 2020) – can also be inferred

(Figure 1A). The generation time and TOST distributions indicate the average infectiousness of a

host at each time since infection and time since symptom onset, respectively (He et al., 2020;

Fraser, 2007). These distributions are important for assessing the effectiveness of public health

measures such as isolation (Ashcroft et al., 2021; Wells et al., 2021) and contact tracing

(Ferretti et al., 2020a; Fraser et al., 2004; Davis et al., 2020). Estimates of the SARS-CoV-2 gener-

ation time have typically involved an assumption that a host’s infectiousness is independent of their
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symptom status (Ferretti et al., 2020a; Deng et al., 2020; Ganyani et al., 2020; Knight and Mis-

hra, 2020; Lehtinen et al., 2021; Figure 1B, left). However, such an assumption is unjustified

(Lehtinen et al., 2021; Bacallado et al., 2020) and can lead to a poor fit to data (Ferretti et al.,

2020b).

Here, we develop a mechanistic approach for inferring key epidemiological time periods using

data from infector–infectee pairs (Figure 1B, right). This approach was motivated by compartmental

epidemic models with Gamma distributed stage durations (Lloyd, 2009; Wearing et al., 2005) and

changes in infectiousness during infection (Hethcote et al., 1991; Christofferson et al., 2014;

Hart et al., 2019; Hart et al., 2020; Gatto et al., 2020; Aleta et al., 2020). Our method provides

an improved fit to data from SARS-CoV-2 transmission pairs compared to previous approaches,

namely, (1) a model assuming that transmission and symptoms are independent (Ferretti et al.,

2020a; Deng et al., 2020; Ganyani et al., 2020; Knight and Mishra, 2020) and (2) a previous statis-

tical method in which this assumption is relaxed (Ferretti et al., 2020b). Under our best-fitting

model, the proportion of presymptomatic transmissions is high, with many transmissions occurring in

a short time window prior to symptom onset. We consider the implications of these results for con-

tact tracing and isolation strategies.

Results
We considered four different models of infectiousness (see Materials and methods):

i. The ’variable infectiousness model’. Our mechanistic approach (Figure 1B, right panel, solid
line) with the relative infectiousness levels for presymptomatic (P) and symptomatic (I) infec-
tious hosts estimated from the data.

ii. The ‘constant infectiousness model’. Our mechanistic approach (Figure 1B, right panel,
dashed line), with identical infectiousness levels for presymptomatic (P) and symptomatic (I)
infectious hosts.

iii. The ‘Ferretti model’. The best-fitting statistical model from Ferretti et al., 2020b, in which
the presymptomatic portion of an individual’s infectiousness profile is scaled (horizontally)
depending on the duration of their incubation period.

eLife digest The risk of a person with COVID-19 spreading the SARS-CoV-2 virus that causes it

to others varies over the course of their infection. Transmission depends both on how much virus is

in the infected person’s airway and their behaviors, such as whether they wear a mask and how

many people they have contact with. Learning more about when people are most infectious would

help public health officials stop the spread of the virus. For example, officials can then introduce

policies that ensure that people are isolated when they are most infectious.

The majority of studies assessing when people with COVID-19 are most infectious so far have

assumed that transmission is not linked to when symptoms appear. But that may not be true. After

people develop symptoms, they may be more likely to stay home, avoid others, or take other

measures that prevent transmission.

Using computer modeling and data from previous studies of individuals who infected others with

SARS-CoV-2, Hart et al. show that about 65% of virus transmission occurs before symptoms

develop. In fact, the computational experiments show the risk of transmission is highest immediately

before symptoms develop. This highlights the importance of identifying people exposed to

someone infected with the virus and isolating potential recipients before they develop symptoms.

This information may help public health officials develop more effective strategies to prevent the

spread of SARS-CoV-2. It may also help scientists develop more accurate models to predict the

spread of the virus. However, the computational experiments used data on infections early in the

pandemic that may not reflect the current situation. Changes in public health policy, the behavior of

individuals and the appearance of new strains of SARS-CoV-2, all affect the timing of transmission.

As more recent data become available, Hart et al. plan to explore how characteristics of

transmission have changed as the pandemic has progressed.
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Figure 1. Schematic illustrating epidemiological time intervals in data from infector–infectee transmission pairs and approaches for inference from

transmission pair data. (A) Transmission pair data generally comprise symptom onset dates for known infector–infectee pairs. These data may be

supplemented with partial information about infection times, consisting of a range of possible exposure dates for infectors and/or infectees

(Ferretti et al., 2020a). While the serial interval for each pair can be calculated directly from the data (with some uncertainty, given the unknown

precise times of symptom appearance on the onset dates [Thompson et al., 2019]), other time intervals, including the generation time and TOST, are

unobserved (these are shown in grey). (B) In standard approaches (left panel) for inferring infectiousness profiles from transmission pair data, the

infectiousness of a host at a given time since infection is assumed to be independent of their incubation period. In our approach (right panel), we link a

host’s infectiousness with when they develop symptoms. We assume that individuals are not infectious during the latent (E) period and that

infectiousness may either vary between the presymptomatic infectious (P) and symptomatic infectious (I) periods (solid line – this corresponds to our

Figure 1 continued on next page
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iv. The ‘independent transmission and symptoms model’. The standard approach
(Ferretti et al., 2020a; Ganyani et al., 2020; Figure 1B, left panel) in which infectiousness is
assumed independent of symptoms.

We fitted each model to data from 191 SARS-CoV-2 transmission pairs (Ferretti et al., 2020b;

Figure 2—source data 1) obtained by combining data from five studies (Ferretti et al., 2020a;

He et al., 2020; Xia et al., 2020; Cheng et al., 2020; Zhang et al., 2020). To account for uncer-

tainty in the precise times of symptom appearance within the day of onset for the infector and

infectee (Thompson, 2020), we used data augmentation Markov chain Monte Carlo (MCMC). Point

estimates and credible intervals for model parameters are given in Supplementary file 1. The Ferre-

tti model and independent transmission and symptoms model were also fitted to the same data in

Ferretti et al., 2020b (the parameter estimates obtained in Ferretti et al., 2020b lie within the

credible intervals shown in Supplementary file 1), but estimates of epidemiological quantities

obtained using those models were not compared directly in that study.

For each model, we calculated the generation time (Figure 2A), TOST (Figure 2B), and serial

interval (Figure 2C) distributions using point estimates for the fitted parameters

(Supplementary file 1). The empirical serial interval distribution is also plotted in Figure 2C, to give

an approximate visual indication of the goodness of fit of the different models. However, since the

Figure 1 continued

‘variable infectiousness model’), for example due to changing behaviour in response to symptoms (Manfredi and D’Onofrio, 2013), or be identical in

these two time periods (dashed line – this corresponds to our ‘constant infectiousness model’).

0 5 10 15

Generation time (days)

0

0.05

0.1

0.15

0.2

D
e
n
s
it
y

Variable infectiousness

Constant infectiousness

Ferretti

Independent transmission

and symptoms

-10 -5 0 5 10

Time from onset of symptoms

 to transmission (days)

0

0.05

0.1

0.15

0.2

0.25

0.3

D
e
n
s
it
y

!" #"

-5 0 5 10 15 20

Serial interval (days)

0

0.05

0.1

0.15

D
e
n
s
it
y

$"

Figure 2. Distributions of epidemiological time intervals. Distributions of epidemiological time intervals estimated by fitting different models to data

from 191 SARS-CoV-2 transmission pairs (Figure 2—source data 1). (A) Generation time, indicating the relative expected infectiousness of a host at

each time since infection. (B) Time from onset of symptoms to transmission (TOST), indicating the relative expected infectiousness of a host at each

time since symptom onset. (C) Serial interval, indicating the periods between infectors and infectees developing symptoms. In (C), the empirical serial

interval distribution from the transmission pair data (Figure 2—source data 1) is shown as grey bars. In addition, discretised versions of the serial

interval distributions, calculated using the method in Cori et al., 2013, are shown in Figure 2—figure supplement 1. In all panels, lines represent:

variable infectiousness model (blue), constant infectiousness model (red), Ferretti model (orange dashed), and independent transmission and symptoms

model (purple dashed). We assumed a specified incubation period distribution (Lauer et al., 2020) when fitting the different models to data (see

Materials and methods); equivalent panels using an alternative incubation period distribution (Linton et al., 2020) are shown in Figure 2—figure

supplement 2.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Transmission pair data.

Figure supplement 1. Discretised serial interval distributions.

Figure supplement 2. Robustness to the assumed incubation period distribution.
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data contained intervals of possible exposure times in addition to symptom onset dates, this only

gives a partial picture of the goodness of fit. Therefore, we also calculated the Akaike information

criterion (AIC) for each model. When calculating AIC values, we considered maximum likelihood

parameter estimates with symptom onsets occurring in the middle of the onset dates, to avoid com-

paring models based on likelihoods calculated using augmented data. The best fit to the data was

obtained using the variable infectiousness model (DAIC = 0). The constant infectiousness model

gave the next best fit (DAIC = 1.3), followed by the Ferretti model (DAIC = 5.1). Finally, the model

with the standard assumption of independent transmission and symptoms fitted least well

(DAIC = 38.9).

The predicted variability in the generation time between individuals was lower for the indepen-

dent transmission and symptoms model compared to the other three models (Figure 2A). On the

other hand, the TOST distribution was most concentrated around the time of symptom onset for the

best-fitting variable infectiousness model, and least concentrated for the independent transmission

and symptoms model (Figure 2B). In the best-fitting model, a decrease in infectiousness was

inferred following symptom onset, likely due to behavioural factors that reduce the transmission risk

following symptom appearance (Manfredi and D’Onofrio, 2013).

Using the full posterior distributions of model parameters obtained when fitting the models to

data, we calculated posterior estimates of the proportion of transmissions occurring before symptom

onset (for hosts who developed symptoms) for each model (Figure 3A). The median (95% credible

interval) proportion of presymptomatic transmissions was 0.65 (0.53–0.77), 0.56 (0.50–0.62), 0.55

(0.48–0.62), and 0.49 (0.43–0.56) under the variable infectiousness model, constant infectiousness

model, Ferretti model, and independent transmission and symptoms model, respectively. The cen-

tral estimate of 65% of transmissions occurring prior to symptom onset using the best-fitting model

is higher than estimated in most previous studies in which the generation time and/or TOST were
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Figure 3. The contribution of non-symptomatic infectious individuals to transmission. (A) Violin plots indicating posterior distributions for the

proportion of transmissions occurring prior to symptom onset for individuals who develop symptoms (i.e., neglecting transmissions from individuals

who remain asymptomatic throughout infection) for the different models. (B) Posterior distributions for the total proportion of non-symptomatic

transmissions, accounting for transmissions from asymptomatic infectious individuals (Figure 3—figure supplement 1), for the different models.

Equivalent panels assuming an alternative incubation period distribution (Linton et al., 2020) are shown in Figure 3—figure supplement 2.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The contribution of asymptomatic cases to transmission.

Figure supplement 2. Robustness to the assumed incubation period distribution.
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estimated (Ferretti et al., 2020a; Ferretti et al., 2020b; He et al., 2020; Ashcroft et al., 2020). In

the wider literature, we note significant variation in estimates of the contribution of presymptomatic

transmission (obtained under a range of different modelling assumptions), including estimates

exceeding 65% (Casey et al., 2020; Tindale et al., 2020; Ganyani et al., 2020).

We also combined the estimates in Figure 3A with the results of a previous study (Buitrago-

Garcia et al., 2020) in which the extent of asymptomatic transmission (i.e., transmissions from indi-

viduals who never display symptoms) was characterised (Figure 3—figure supplement 1), to obtain

estimates for the total proportion of non-symptomatic (either presymptomatic or asymptomatic)

transmissions for the different models (Figure 3B). The non-symptomatic proportion was highest for

the variable infectiousness model and lowest for the independent transmission and symptoms

model.

Finally, we explored the implications of these results for isolation and contact tracing (Figure 4),

under the simplifying assumptions of perfect isolation (i.e., isolation prevents transmission

completely) and perfect contact tracing (i.e., all contacts are traced successfully during periods of

contact tracing). Imperfect isolation and contact tracing are considered in Figure 4—figure supple-

ment 1. Considering a scenario in which a case (referred to here as the ‘index case’) is detected fol-

lowing symptom onset, we first calculated how many transmissions from the index case are

expected to be prevented for different time delays between the index case developing symptoms

and being isolated (Figure 4A), compared to a scenario in which the index case is never isolated.

We then considered tracing the contacts of that index case, inferring the proportion of presymptom-

atic contacts identified for different contact elicitation windows (Figure 4B). As an example, a con-

tact elicitation window of 2 days means that all contacts of the index case that occurred in the

2 days prior to the index case developing symptoms are traced (in addition to contacts that occurred

after the index case developed symptoms). Finally, we considered isolation of infected contacts of
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Figure 4. Implications for isolation and contact tracing. (A) Effect of the timing of isolation of symptomatic index cases: the proportion of transmissions

prevented through isolation, for different time periods between symptom onset and isolation. (B) Effect of the contact elicitation window: the

proportion of presymptomatic infectious contacts found for different times up to which contacts are traced before the symptom onset time of the index

host. (C) Effect of the timing of isolation of infected contacts: the proportion of onward transmissions generated by the contacts prevented by isolation

of those contacts, for different time periods between exposure to the index host and isolation of the contacts. In all panels, lines represent predictions

obtained using point estimate parameters for the variable infectiousness model (blue), constant infectiousness model (red), Ferretti model (orange

dashed), and independent transmission and symptoms model (purple dashed). Here, isolation and contact tracing are assumed to be 100% effective;

equivalent panels in which the effectiveness is less than 100% are shown in Figure 4—figure supplement 1. Equivalent panels assuming an alternative

incubation period distribution (Linton et al., 2020) are shown in Figure 4—figure supplement 2.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Robustness to effectiveness of contact tracing and isolation.

Figure supplement 2. Robustness to the assumed incubation period distribution.
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the index case. We calculated the expected proportion of transmissions generated by those contacts

prevented for different time periods between the index case transmitting the virus to the contact

and the contact being isolated (Figure 4C).

Under the best-fitting variable infectiousness model, 23% (17–31%) of all transmissions that would

be generated by a symptomatic host are prevented if the host is isolated one day after symptom

onset (Figure 4A, blue). This compares to a higher estimate of 38% (32–44%) with the standard

independent transmission and symptoms assumption (Figure 4A, purple dashed) and intermediate

estimates for the constant infectiousness (Figure 4A, red) and Ferretti (Figure 4A, orange dashed)

models. The limited impact of isolation of symptomatic hosts alone under the variable infectiousness

model, which is due to the high predicted proportion of presymptomatic transmissions (Figure 3A),

highlights the need to also conduct contact tracing.

The variable infectiousness model indicates that 69% (57–81%) of presymptomatic infectious con-

tacts are identified if a contact elicitation window of (up to) 2 days before the index host develops

symptoms is used (as in the UK [UK Government, 2021] and USA [Centres for Disease Control

and Prevention, 2021]), compared to only 49% (44–53%) for the independent transmission and

symptoms model (Figure 4B). If the contact elicitation window is extended to 4 days, then 93% (88–

97%) of presymptomatic infectious contacts are identified under the variable infectiousness model.

However, while choosing a longer contact elicitation window ensures more infected contacts are

identified, it also requires more contacts to be traced, many of whom are likely to be uninfected.

This effect is enhanced by the fact that index cases are expected to be less infectious at longer time

periods prior to symptom onset (Figure 2B).

For practical assessments of contact tracing and isolation effectiveness, it may be necessary to

consider the combined effects of different delays at each stage of the contact tracing and isolation

process. For example, if there is a delay of 2 days between an index case infecting a contact and the

index case showing symptoms, and a further delay of 2 days between the index case showing symp-

toms and the contact being traced and isolated, then this corresponds to a total delay of 4 days

between the contact being infected and isolated (assuming that the contact elicitation window is at

least 2 days, so that the contact is traced). Under the variable infectiousness model, 71% of onward

transmissions from the contact would then be expected to be prevented after this delay

(Figure 4C). In contrast, for an infectious contact that occurred 4 days before the index host devel-

oped symptoms (so that the total delay between the contact being infected and isolated is 6 days,

assuming that the contact elicitation window is at least 4 days so the contact is traced), only 41% of

the contact’s onward infections would be expected to be prevented (Figure 4C).

Discussion
Here, we have considered a range of approaches for estimating epidemiological time periods using

data from SARS-CoV-2 infector–infectee transmission pairs. Our mechanistic framework provides an

improved fit to data compared to a model predicated on the assumption that infectiousness is inde-

pendent of symptoms. Despite neglecting potential relationships between viral shedding and symp-

toms, as well as behavioural changes in response to symptoms (Manfredi and D’Onofrio, 2013),

that assumption underlies most previous studies in which the SARS-COV-2 generation time distribu-

tion has been estimated (Ferretti et al., 2020a; Deng et al., 2020; Ganyani et al., 2020;

Knight and Mishra, 2020).

Some previous studies in which the generation time (Ferretti et al., 2020b; Davis et al., 2020)

and/or TOST distributions (Ferretti et al., 2020b; He et al., 2020; Ashcroft et al., 2020) were esti-

mated have considered an alternative assumption that infectiousness depends only on the time since

symptom onset, independent of the time of infection. If the serial interval is always positive, which is

not the case for COVID-19 (Du et al., 2020), this is equivalent to assuming that the serial interval

and generation time distributions are identical (Lehtinen et al., 2021; Cori et al., 2013; Britton and

Scalia Tomba, 2019). In one article (Ferretti et al., 2020b), a non-mechanistic model (the Ferretti

model) was developed in which a host’s infectiousness could depend on both the time since infec-

tion and the time since symptom onset. However, as we have demonstrated, our mechanistic

approach provides an improved fit to data compared to that model. In addition, our method is use-

ful for parameterising population-scale compartmental epidemic forecasting models, since the time

periods derived using our approach correspond naturally to compartments (Hart et al., 2020).
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It should be noted that an assumption underlying the ‘E/P/I’ structure of the best-fitting variable

infectiousness model (Figure 1B, right, solid line) is that infectiousness may change when individuals

develop symptoms. The relative infectiousness of presymptomatic and symptomatic infectious indi-

viduals is then estimated from the data. Here, we attributed the inferred reduction in transmission

following symptom onset found in Figure 2B (blue line) to behavioural factors. However, in practice

behavioural changes may not occur immediately after symptoms appear, particularly if initial symp-

toms are mild or non-specific. A delay between symptom onset and a change in infectiousness could

in principle be incorporated into our mechanistic framework by adding an additional stage of infec-

tion. This would generate a continuous TOST profile. However, we did not take this approach here

since such increased model complexity would require additional parameters to be estimated, likely

requiring further data.

One caveat of this study is that our estimates were obtained using data collected early in the

COVID-19 pandemic (January–March 2020). Since local case numbers were then increasing in loca-

tions where some (although not all) of the data were collected (Ferretti et al., 2020b), shorter serial

intervals may have been over-represented in the dataset (Britton and Scalia Tomba, 2019). On the

other hand, studies from China have indicated a shortening of the generation time (Sun et al., 2021)

and serial interval (Ali et al., 2020) over time due to non-pharmaceutical interventions, perhaps sug-

gesting longer serial intervals at the beginning of the pandemic. Differences in isolation policies are

also likely to affect predictions of the contribution of presymptomatic transmission (Casey et al.,

2020; Sun et al., 2021). We did not explicitly account for isolation policies already in place when the

transmission pair data were collected, potentially lowering the estimated effectiveness of isolating

symptomatic hosts. More recently, the emergence of novel variants may also have affected the gen-

eration time, although their impact is not yet fully clear (Davies et al., 2021). Therefore, while our

main aim was to compare estimates of key epidemiological quantities under different modelling

assumptions, it would be of interest to update our analyses when more recent data from infector–

infectee pairs become available.

In summary, using a novel mechanistic approach in combination with data from SARS-CoV-2

infector–infectee pairs to infer key epidemiological quantities indicates that a higher proportion of

transmissions occur prior to symptoms than predicted by existing methods. A significant proportion

of these transmissions arise immediately before symptom onset. This shows that, while the impact of

isolation of symptomatic hosts alone may be limited, combining this with contact tracing and isola-

tion of presymptomatic infected contacts is valuable even if the contact elicitation window is short.

The use and refinement of contact tracing programmes in countries worldwide is therefore of clear

public health importance.

Materials and methods

Notation and general details
Here, we outline the notation used in this section when describing the different models that we con-

sidered. For a given transmission pair, we label the infector as 1 and the infectee as 2, and define:

tik ¼ time of infection of host kð Þ; k¼ 1;2;
tsk ¼ time of symptom onset of host kð Þ; k¼ 1;2;

t inc;k ¼ incubation period of host kð Þ; k¼ 1;2;
t gen ¼ generation timeð Þ;
xtost ¼ time from symptom onset of 1 to transmission to 2 ðTOSTÞð Þ;
xser ¼ serial intervalð Þ:

In the above, t is used to denote calendar times, t for time intervals relative to the time of infection,

and x for time intervals relative to the time of symptom onset. We denote the probability density

functions of the incubation period, generation time, TOST, and serial interval as finc, fgen, ftost, and fser,

respectively, and use a capital F for the corresponding cumulative distribution functions.

In addition, we denote the expected infectiousness of a host at time since infection t as b tð Þ,

and the expected infectiousness at time since symptom onset x as b xð Þ. These infectiousness profiles

are related to the generation time and TOST distributions, respectively, by

b tð Þ ¼ b0fgen tð Þ;
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b xð Þ ¼ b0ftost xð Þ:

Here, b0 corresponds to the expected number of transmissions generated by each host who devel-

ops symptoms at some stage during infection, that is, the (instantaneous) reproduction number of

such hosts (at least if corrections to the reproduction number within a finite contact network

[Keeling and Grenfell, 2000; Enright and Kao, 2018] can be neglected). However, the exact value

of b0 has no effect on our analyses, since it simply adds a constant factor to the likelihood function

given below. We also let b t j t incð Þ and b x j t incð Þ be the expected infectiousness at time t since

infection and at time x since symptom onset, respectively, conditional on an incubation period of t inc

(these are related by b t j t incð Þ ¼ b t � t incjt incð Þ and b x j t incð Þ ¼ b xþ t incjt incð Þ).

We considered several different models for infectiousness (details of individual models are given

below). In each model, the conditional infectiousness, b t j t incð Þ, or equivalently, b x j t incð Þ, is spec-

ified. The distributions of the generation time and TOST can be recovered from this conditional

infectiousness by averaging over the incubation period distribution (which is assumed to be known):

b tð Þ ¼ b0fgen tð Þ ¼

Z

¥

0

b t j t incð Þfinc t incð Þdt inc;

b xð Þ ¼ b0ftost xð Þ ¼

Z

¥

0

b x j t incð Þfinc t incð Þdt inc:

Alternative (equivalent) expressions for the generation time and TOST distributions are available for

some of the models considered (these are detailed in the “Models of infectiousness” subsection

below).

To obtain an expression for the serial interval distribution, we note that

xser ¼ xtost þ t inc;2:

We assume throughout that xtost and t inc;2 are independent, so that the serial interval distribution is

given by the convolution

fser xserð Þ ¼

Z

¥

0

ftost xser � t incð Þfinc t incð Þdt inc:

The proportion of presymptomatic transmissions (out of all transmissions generated by individuals

who develop symptoms) can be calculated as

qP ¼

Z

0

�¥

ftost xtostð Þdxtost;

although simpler equivalent expressions for individual models are also detailed later.

Data
Following Ferretti et al., 2020b, we considered SARS-COV-2 transmission pair data from five differ-

ent studies (Ferretti et al., 2020a; He et al., 2020; Xia et al., 2020; Cheng et al., 2020;

Zhang et al., 2020), totalling 191 infector–infectee pairs (Figure 2—source data 1). In all 191 trans-

mission pairs, both the infector and the infectee developed symptoms, and the symptom onset date

of each host was recorded. In four of the five studies (Ferretti et al., 2020a; He et al., 2020;

Xia et al., 2020; Cheng et al., 2020), intervals of exposure were available for either the infector or

infectee (or both), whereas in the other (Zhang et al., 2020), only symptom onset dates were

recorded.

Incubation period
In our main analyses, the incubation period was assumed to follow a Gamma distribution with shape

parameter 5.807 and scale parameter 0.948 (Lauer et al., 2020). This corresponds to a mean incuba-

tion period of 5.5 days and a standard deviation of 2.3 days. However, to demonstrate that our main

conclusions are robust to the exact incubation period distribution used, we also repeated our analy-

ses using an alternative, more dispersed, Gamma distributed incubation period with a mean of 5.3
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days and a standard deviation of 3.2 days (Linton et al., 2020; Figure 2—figure supplement 2, Fig-

ure 3—figure supplement 2, Figure 4—figure supplement 2).

Models of infectiousness
Independent transmission and symptoms model
In this model, the infectiousness of each host at a given time since infection is assumed to be inde-

pendent of their incubation period, so that

b t j t incð Þ ¼ b tð Þ ¼ b0fgen tð Þ;

where the generation time distribution, fgen, is prescribed. We assumed (Ferretti et al., 2020a,

Ganyani et al., 2020) that

t gen ~Gamma a;bð Þ;

where a and b are shape and scale parameters, respectively, so that the mean generation time is

mgen ¼ ab and the standard deviation of generation times is sgen ¼ a1=2b.

The TOST distribution for this model is given by

ftost xtostð Þ ¼

Z

¥

0

fgen xtost þ t incð Þfinc t incð Þdt inc;

while the proportion of presymptomatic transmissions is

qP ¼

Z

¥

0

fgen tð Þ 1�Finc tð Þð Þdt :

Derivations of these expressions are given in Appendix.

The vector of unknown (log) model parameters, � ¼ log mgen

� �

; log sgen
� �� �

, was estimated when we

fitted the model to the transmission pair data.

Ferretti model
Ferretti et al., 2020b proposed a model in which the conditional infectiousness was specified as the

re-scaled skew-logistic distribution,

b xjt incð Þ ¼

CFb0e
�

xminc
t inc

��F

� �

=sF

1þ e
�

xminc
t inc

��F

� �

=sF

 !aFþ1
; �t inc � x < 0;

CFb0e
� x��Fð Þ=sF

1þ e� x��Fð Þ=sFð Þ
aFþ1

; x� 0:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

Here, minc is the mean incubation period, and �F, sF, and aF are model parameters that do not have

straightforward epidemiological interpretations. We set

CF ¼
aF

sF 1� 1þ e mincþ�Fð Þ=sFð Þ
�aF

� � ;

in order to ensure the correct scaling for the infectiousness (see Appendix).

The proportion of presymptomatic transmissions is

qP ¼
1þ e�F=sF
� ��aF

� 1þ e mincþ�Fð Þ=sF
� ��aF

1� 1þ e mincþ�Fð Þ=sFð Þ
�aF

:

A derivation of this expression is given in Appendix.

The vector of unknown model parameters, � ¼ �F ; log sFð Þ; log aFð Þð Þ, was estimated when we fit-

ted the model to the transmission pair data (note that �F could take either positive or negative val-

ues, whereas sF and aF were constrained to be positive).
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Our mechanistic model
In our mechanistic approach, we divided each infection into three stages: latent (E), presymptomatic

infectious (P), and symptomatic infectious (I). The stage durations were assumed to be independent,

and infectiousness was assumed to be constant over the duration of each stage. We denote the

stage durations by yE=P=I , their density and cumulative distribution functions by fE=P=I and FE=P=I , and

the infectiousness of hosts in the P and I stages by bP=I , respectively. We also define

a¼ bP=bI

to be the ratio of transmission rates in the P and I stages. In this model, the expected number of

transmissions generated by each infected host is

b0 ¼ bPmP þbImI ;

where mP=I are the respective mean durations of the P and I stages.

We further assumed that the durations of each stage followed Gamma distributions, with

yE ~Gamma kE;
1

kincg

� �

;

yP ~Gamma kP;
1

kincg

� �

;

yI ~Gamma kI ;
1

kI�

� �

;

where

kinc ¼ kE þ kP:

In particular, the scale parameters of yE and yP were both assumed to be equal to 1= kincgð Þ, in order

to ensure a Gamma distributed incubation period,

t inc ¼ yE þ yP ~Gamma kinc;
1

kincg

� �

:

We fixed kinc ¼ 5:807 and g¼ 1= 5:807� 0:948ð Þ, in order to obtain the specified incubation period dis-

tribution (see ’Incubation period’ subsection above). When we fitted the model to data, we assumed

that kI ¼ 1, so that the symptomatic infectious period follows an exponential distribution. The param-

eters kE (representing the shape parameter of the latent (E) period) and � (representing the recipro-

cal of the mean symptomatic infectious (I) period) were estimated in the fitting procedure. We

considered two versions of the model: one in which we assumed a¼ 1 (the constant infectiousness

model), and one in which a was also estimated (the variable infectiousness model).

For this model, the infectiousness of a host at time x since symptom onset, conditional on an incu-

bation period of t inc, can be calculated to be

bðxjt incÞ ¼
aCb0 1�FBeta �x=t inc;kP;kEð Þð Þ; �t inc � x < 0;

Cb0 1�FI xð Þð Þ; x� 0;

�

where FBeta s;a;bð Þ is the cumulative distribution function of a Beta distributed random variable with

shape parameters a and b, and

C¼
bI

b0

¼
kincg�

akP�þ kincg
:

The TOST distribution is given by

ftostðxtostÞ ¼
aC 1�FP �xtostð Þð Þ; xtost < 0;

C 1�FI xtostð Þð Þ; xtost � 0:

�

The generation time can be written as

t gen ¼ yE þ y�;
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where y� is the time between the start of the P stage and the transmission occurring, and therefore

the generation time distribution is given by the convolution

fgen t gen

� �

¼

Z

t gen

0

f � t gen � yE
� �

fE yEð ÞdyE;

where the density, f �, of y� satisfies

f � y�ð Þ ¼C a 1�FP y�ð Þð Þþ

Z y�

0

1�FI y
� � yPð Þð ÞfP yPð ÞdyP

� �

:

The proportion of presymptomatic transmissions is

qP ¼
bPmP

b0

¼
akP�

akP�þ kincg
:

Derivations of these formulae are given in Appendix.

The vector of unknown model parameters, � ¼ log kEð Þ; log �ð Þð Þ, was estimated when we fitted the

constant infectiousness model to the transmission pair data, while the corresponding vector of esti-

mated model parameters for the variable infectiousness model was � ¼ log kEð Þ; log �ð Þ; log að Þð Þ.

Likelihood and model fitting
For a single transmission pair (labelled n), suppose that the times of infection for the infector and

infectee are known to lie in the intervals ti1;L; ti1;R
� �

and ti2;L; ti2;R
� �

, respectively (where these intervals

may be infinitely wide), and that their symptom onset times, ts1 and ts2, are known exactly. In this

case (when only that transmission pair is observed), the likelihood of the parameters, �, of the model

of infectiousness under consideration is given by

L nð Þ �ð Þ ¼
1

b0

Z

ti2;R

ti2;L

Z

ti1;R

ti1;L

b ti2 � ts1 j ts1 � ti1; �ð Þfinc ts1 � ti1ð Þfinc ts2 � ti2ð Þdti1dti2;

where the dependence of the conditional expected infectiousness, b x j t inc; �ð Þ, on the model param-

eters, �, is indicated explicitly. A derivation of this expression is given in Appendix. Assuming that

each transmission pair in our dataset is independent, the overall likelihood is therefore given by the

product of the contributions, L nð Þ �ð Þ, from each individual transmission pair, that is,

L �ð Þ ¼
Y

N

n¼1

L nð Þ �ð Þ;

where N is the total number of transmission pairs.

To account for uncertainty in the exact symptom onset times within the day of onset (and so

avoid imparting bias by fitting continuous-time models to discrete-time symptom onset data), we fit-

ted the models to the data using data augmentation MCMC (Thompson, 2020, Ferguson et al.,

2005, Cauchemez et al., 2004). In alternating steps of the chain, we updated either the vector of

model parameters, �, or the exact symptom onset times of each infector and infectee. The chain was

run for 2.5 million steps, of which the first 500,000 were discarded as burn-in. Posterior distributions

of model parameters were obtained by recording only every 100 iterations of the chain (assuming

independent uniform prior distributions for each entry of �). Point estimates of model parameters

(Supplementary file 1) were obtained by calculating the posterior mean of �. Full details of the

MCMC procedure are given in Appendix.

In order to provide a straightforward comparison of the goodness of fit between models, we also

determined the parameters, �̂, that maximised the likelihood, L �ð Þ, for each model under the

assumption that each host developed symptoms exactly in the middle of the known onset date. The

AIC for each model could then be calculated as

AIC¼ 2� numberof estimatedparametersð Þ� 2 log L �̂
� �� �

;
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where three parameters were estimated for the variable infectiousness and Ferretti models, and two

parameters for the constant infectiousness and independent transmission and symptoms models.

Since the maximum likelihood estimators, �̂, did not account for uncertainty in exact symptom onset

times, they were not used elsewhere in our analyses (however, these all lay within the credible inter-

vals obtained in the MCMC procedure, which are given in Supplementary file 1).

Distributions of the presymptomatic and total non-symptomatic
proportion of transmissions
Expressions for the proportion of transmissions, qP, generated prior to symptom onset, are given for

the individual models above. Once asymptomatic cases are accounted for, the overall non-symptom-

atic proportion of transmissions can be written as

pAxAþ 1� pAð ÞqP
pAxAþ 1� pAð Þ

;

where pA is the proportion of infected individuals who remain asymptomatic and xA is the ratio

between the average number of secondary cases generated by an asymptomatic host and the num-

ber generated by a host who develops symptoms at some stage during infection. A derivation of

this expression is given in Appendix.

For each model, we used the posterior parameter distributions that were obtained when we fit-

ted the model to data to obtain a sample from the posterior distribution of qP. In order to estimate

the total proportion of non-symptomatic transmissions, we assumed the distributions

pA ~ Beta 85;186ð Þ; mean 0:31; standard deviation 0:03½ �;
xA ~ Lognormal �1:04;0:652ð Þ; mean 0:44; standard deviation 0:32½ �;

which are consistent with estimates in Buitrago-Garcia et al., 2020. These distributions are shown in

Figure 3—figure supplement 1. We then combined samples from the assumed distributions of pA
and xA with the sample that we generated from the posterior distribution of qP to obtain a distribu-

tion for the total proportion of non-symptomatic transmissions.

Contact tracing and isolation
First, we considered the proportion of transmissions that can be prevented if a symptomatic host is

isolated d1 days after symptom onset. Assuming that a proportion "1 of infectious contacts that

would otherwise occur are prevented during the isolation period (and neglecting any transmissions

that occur after the end of the isolation period), the overall proportion of transmissions prevented

through isolation is

"1 1�Ftost d1ð Þð Þ:

We then predicted the proportion of the presymptomatic infectious contacts of a symptomatic

index case that will be found, if contacts are traced up to d2 days before the time of symptom onset

of the index case. In this scenario, assuming that it is possible to trace a fraction "2 of the host’s pre-

symptomatic contacts (at times when tracing takes place), then the proportion of presymptomatic

infectious contacts found is equal to

"2 qP�Ftost �d2ð Þð Þ

qP
:

Finally, we considered the proportion of onward transmissions that can be prevented if an

infected individual, who is identified through contact tracing, is isolated d3 days after exposure.

Assuming that a proportion "3 of infectious contacts that would otherwise occur are prevented dur-

ing the isolation period, the overall proportion of onward transmissions prevented through isolation

is

"3 1�Fgen d3ð Þ
� �

:

In the main text (Figure 4), we assumed that "1 ¼ "2 ¼ "3 ¼ 1 (i.e., isolation of symptomatic hosts,
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contact identification, and isolation of infected contacts are all 100% effective). Values of "1, "2, and

"3 below 1 are considered in Figure 4—figure supplement 1.
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Appendix 1

Derivation of the likelihood
For a given transmission pair, the joint probability density that:

i. patient 1 (the infector) is infected in the time interval ti1;L; ti1;R
� �

;

ii. patient 1 transmits the pathogen to patient 2 (we write 1!2 to denote the occurrence of the
transmission);

iii. the transmission from patient 1 to patient 2 occurs in the time interval ti2;L; ti2;R
� �

; and

iv. patients 1 and 2 develop symptoms at times ts1 and ts2, respectively;

conditioned on the parameters, �, of the model of infectiousness under consideration, is given by

p 1! 2; ts1; ts2; ti1;L; ti1;R
� �

; ti2;L; ti2;R
� �

j �
� �

¼

Z

ti2;R

ti2;L

Z

ti1;R

ti1;L

p 1! 2; ti1; ts1; ti2; ts2 j �ð Þdti1dti2

¼

Z

ti2;R

ti2;L

Z

ti1;R

ti1;L

p 1! 2; ti2; ts2 j ti1; ts1; �ð Þp ti1; ts1j�ð Þdti1dti2

¼

Z

ti2;R

ti2;L

Z

ti1;R

ti1;L

p ts2 j 1! 2; ti1; ts1; ti2; �ð Þp 1! 2; ti2 j ti1; ts1; �ð Þp ti1; ts1j�ð Þdti1dti2

¼

Z

ti2;R

ti2;L

Z

ti1;R

ti1;L

p 1! 2; ti2 j ti1; ts1; �ð Þp ts1jti1; �ð Þp ti1j�ð Þp ts2 j ti2; �ð Þdti1dti2:

We note that

p 1! 2; ti2 j ti1; ts1; �ð Þ / b ti2 � ts1 j ts1 � ti1; �ð Þ:

This is because the left-hand side gives the probability density of a transmission from 1 to 2 occur-

ring at time ti2, conditioned on the infection and onset times of 1, and is therefore proportional to

the conditional infectiousness, b xtost j t inc; �ð Þ. We also have that

p tskjtik; �ð Þ ¼ finc tsk � tikð Þ;

for k¼ 1;2. In an exponentially growing epidemic with growth rate r, the term p ti1j�ð Þ will introduce a

factor proportional to erti1 into the likelihood (Ferretti et al., 2020a), although we neglect this cor-

rection here (note that we found a similar fit to data using the Ferretti model compared to that

obtained in Ferretti et al., 2020b, in which the same model was fitted to the same dataset with this

correction included). We therefore obtain the expression for the likelihood, L nð Þ �ð Þ, given in Materials

and methods, up to a constant scaling factor. The factor 1=b0 was added for convenience, although

we note that in general,

1

b0

Z

¥

0

b xtost j t inc; �ð Þdxtost

may not be equal to 1, since the expected number of secondary infections generated by a host may

depend on their incubation period.

Details of model fitting procedure
We denote the vector of model parameters for the model of infectiousness under consideration by

�, the vectors of symptom onset times for each infector and infectee by ts1 and ts2, and the corre-

sponding likelihood by
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L �; ts1; ts2ð Þ ¼
Y

N

n¼1

L nð Þ �; t
nð Þ
s1 ; t

nð Þ
s2

� �

:

In this expression, L nð Þ �; t
nð Þ
s1 ; t

nð Þ
s2

� �

is the contribution to the likelihood from transmission pair n, and

t
nð Þ
s1 and t

nð Þ
s2 are the symptom onset times of the corresponding infector and infectee (i.e., the nth

entries of ts1 and ts2, respectively). We define the proposal distributions Q1 �propj�
� �

and

Q
nð Þ
2

t
nð Þ
s1;prop; t

nð Þ
s2;propjt

nð Þ
s1 ; t

nð Þ
s2

� �

, which are taken to be symmetric (i.e., Q1 �propj�
� �

¼Q1 �j�prop
� �

and

Q
nð Þ
2

t
nð Þ
s1;prop; t

nð Þ
s2;propjt

nð Þ
s1 ; t

nð Þ
s2

� �

¼Q
nð Þ
2

t
nð Þ
s1 ; t

nð Þ
s2 jt

nð Þ
s1;prop; t

nð Þ
s2;prop

� �

; the exact proposal distributions we used are

detailed below).

The data augmentation MCMC algorithm that we used is given by the following steps:

1. Initialise � ¼ �0, ts1 ¼ ts1;0 and ts2 ¼ ts2;0.

2. For n ¼ 1; . . . ;N, calculate L
nð Þ
0

¼ L nð Þ �0; t
nð Þ
s1;0; t

nð Þ
s2;0

� �

.

3. Calculate L0 ¼
Q

N

n¼1

L
nð Þ
0
.

4. For m ¼ 1; . . . ;M:

� If m is odd, then:

. Sample �prop from Q1 �propj�m�1

� �

.
. Set ts1;m ¼ ts1; m�1ð Þ and ts2;m ¼ ts2; m�1ð Þ.

. For n ¼ 1; . . . ;N, calculate L nð Þ
prop ¼ L nð Þ �prop; t

nð Þ
s1;m; t

nð Þ
s2;m

� �

.

. Calculate Lprop ¼
Q

N

n¼1

L nð Þ
prop.

. Generate a random number, r, uniformly distributed between 0 and 1.

. If r � Lprop=Lm�1, set �m ¼ �prop, L
nð Þ
m ¼ L nð Þ

prop for each n, and

Lm ¼ Lprop. Otherwise, set �m ¼ �m�1, L
nð Þ
m ¼ L

nð Þ
m�1

for each n, and Lm ¼ Lm�1.
� If m is even, then:

. Set �m ¼ �m�1.

. For n ¼ 1; . . . ;N:

. Sample t
nð Þ
s1;prop and t

nð Þ
s2;prop from Q

nð Þ
2

t
nð Þ
s1;prop; t

nð Þ
s2;propjt

nð Þ
s1; m�1ð Þ; t

nð Þ
s2; m�1ð Þ

� �

.

. Calculate L nð Þ
prop ¼ L nð Þ �m; t

nð Þ
s1;prop; t

nð Þ
s2;prop

� �

:

. Generate a random number, r, uniformly distributed between 0 and 1.

. If r � L nð Þ
prop=L

nð Þ
m�1

, set t
nð Þ
s1;m ¼ t

nð Þ
s1;prop, t

nð Þ
s2;m ¼ t

nð Þ
s2;prop and L nð Þ

m ¼ L nð Þ
prop. Otherwise,

set t
nð Þ
s1;m ¼ t

nð Þ
s1; m�1ð Þ, t

nð Þ
s2;m ¼ t

nð Þ
s2; m�1ð Þ and L nð Þ

m ¼ L
nð Þ
m�1

.

. Calculate Lm ¼
Q

N

n¼1

L nð Þ
m .

We constrained the symptom onset time, ts, of each host to lie on the grid

ts;L þ dt; ts;Lþ 2dt; . . . ; ts;L þ 1
� �

;

where ts;L is the start of the day of onset for that host, and we took dt¼ 0:125 days. The contribution

to the likelihood from each transmission pair, L nð Þ �; t
nð Þ
s1 ; t

nð Þ
s2

� �

, was then calculated by discretising the

integrals (see the ’Likelihood and model fitting’ subsection in Materials and methods), with the infec-

tion time, ti, of a given host constrained to the grid

ti;L þ
dt

2
; . . . ; ti;R �

dt

2

� �

;

where ti;L and ti;R are lower/upper bounds for the infection time of that host. Different discretisations

were used for the infection and onset times, both to avoid conditioning on an incubation period of

zero days (since the conditional infectiousness may be undefined in this case) and to avoid the possi-

bility of transmissions occurring at the exact time of symptom onset (since the infectiousness profile
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was allowed to be discontinuous at the onset time in our mechanistic model). We also assumed a

maximum possible incubation period of 30 days.

For each model we considered, the initial parameter values, �0, were chosen arbitrarily. The initial

symptom onset times, ts1;0 and ts2;0, were uniformly and independently sampled on the grid of possi-

ble onset times for each host. Independent normal proposal distributions were used for each

entry of � – that is, for each individual parameter � jð Þ, we set

� jð Þ
prop ¼ �

jð Þ
current þ r;

where r is a normally distributed random variate with mean zero and standard deviation s jð Þ. The

tuning parameters, s jð Þ, were chosen to ensure an acceptance rate of between 25% and 30%. We

sampled the proposed symptom onset times for each host, t
nð Þ
s1;prop and t

nð Þ
s2;prop, uniformly on the grid of

possible onset times for the host under consideration (independently both of the corresponding

times in the previous step of the chain, and of the onset times of all other hosts).

Model-specific derivations
Independent transmission and symptoms model

For the independent transmission and symptoms model, the TOST distribution is given by

ftost xtostð Þ ¼
1

b0

Z

¥

0

b xtost j t incð Þfinc t incð Þdt inc

¼
1

b0

Z

¥

0

b xtost þ t inc j t incð Þfinc t incð Þdt inc

¼

Z

¥

0

fgen xtost þ t incð Þfinc t incð Þdt inc:

Alternatively, this formula can be derived by noting that

xtost ¼ t gen � t inc;1:

In this model, t gen and t inc;1 are assumed to be independent, so the TOST distribution is therefore

given by the convolution of the distributions of t gen and �t inc;1.

The proportion of presymptomatic transmissions is given by

qP ¼

Z

0

�¥

ftost xtostð Þ dxtost

¼

Z

0

�¥

Z

¥

0

fgen xtost þ t incð Þfinc t incð Þdt incdxtost

¼

Z

¥

0

Z

¥

t gen

fgen t gen

� �

finc t incð Þdt incdt gen

¼

Z

¥

0

fgen t gen

� �

1�Finc t gen

� �� �

dt gen:

Ferretti model

To derive the correct scaling factor, CF , in the conditional infectiousness, we note that we require

Z

¥

�¥

ftost xð Þdx¼

Z

¥

�¥

Z

¥

0

1

b0

b x j t incð Þfinc t incð Þdt incdx¼ 1:

Now, we can calculate
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Z

¥

�¥

1

b0

b x j t incð Þdx

¼

Z

0

�t inc

CFe
�

xminc
t inc

��F

� �

=sF

1þ e
�

xminc
t inc

��F

� �

=sF

 !aFþ1
dxþ

Z

¥

0

CFe
� x��Fð Þ=sF

1þ e� x��Fð Þ=sFð Þ
aFþ1

dx

¼
CFsF

aF

1� 1þ e�F=sF

� ��aF

þ
t inc

minc

1þ e�F=sF

� ��aF

� 1þ e mincþ�Fð Þ=sF

� ��aF
� �

� �

:

Therefore,

Z

¥

�¥

Z

¥

0

1

b0

b x j t incð Þfinc t incð Þdt incdx

¼

Z

¥

0

Z

¥

�¥

1

b0

b x j t incð Þdx

� �

finc t incð Þdt inc

¼
CFsF

aF

1� 1þ e mincþ�Fð Þ=sF

� ��aF
h i

¼ 1;

so we have

CF ¼
aF

sF 1� 1þ e mincþ�Fð Þ=sFð Þ
�aF

� � :

The proportion of presymptomatic transmissions is given by

qP ¼

Z

0

�¥

ftost xð Þdx

¼

Z

¥

0

Z

0

�¥

1

b0

b x j t incð Þfinc t incð Þdxdt inc

¼

Z

¥

0

CFsFt inc

aFminc

1þ e�F=sF

� ��aF

� 1þ e mincþ�Fð Þ=sF

� ��aF
h i

finc t incð Þdt inc

¼
1þ e�F=sF
� ��aF

� 1þ e mincþ�Fð Þ=sF
� ��aF

1� 1þ e mincþ�Fð Þ=sFð Þ
�aF

:

Our mechanistic model

In our mechanistic model, the expected infectiousness of a host at time x since symptom onset is

given by

b xð Þ ¼
bP� p YP ��xð Þ; x < 0;
bI � p YI � xð Þ; x� 0;

�

where we here explicitly distinguish the random variables YE=P=I from their observed values yE=P=I

(i.e., the lengths of each stage of infection). Therefore,

ftost xtostð Þ ¼
1

b0

b xtostð Þ ¼
aC 1�FP �xtostð Þð Þ; xtost < 0;
C 1�FI xtostð Þð Þ; xtost � 0;

�

where

C¼
bI

b0

¼
bI

bPmP þbImI

¼
1

amPþmI

¼
1

akP
kincg

þ 1

�

� �¼
kincg�

akP�þ kincg
:

Conditional on an incubation period of length t inc, the expected infectiousness is
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b x j t incð Þ ¼
bP � p YP ��x j YE þYP ¼ t incð Þ; �t inc � x < 0;
bI � p YI � xð Þ; x� 0:

�

Now,

p YP ��xjYE þYP ¼ t incð Þ ¼

Z

¥

�x

p YP ¼ yPjYE þYP ¼ t incð ÞdyP

¼

Z

¥

�x

p YE þYP ¼ t inc j YP ¼ yPð Þp YP ¼ yPð Þ

p YE þYP ¼ t incð Þ
dyP

¼

Z

¥

�x

fE t inc� yPð ÞfP yPð Þ

finc t incð Þ
dyP;

where we used Bayes’ rule to obtain the second equality. For the special case of Gamma distributed

stage durations considered, we have that

fE t inc� yPð ÞfP yPð Þ

finc t incð Þ
¼

1

t inc

fBeta yP=t inc;kP;kEð Þ;

where fBeta x;a;bð Þ is the probability density function of a Beta distributed random variable with shape

parameters a and b. Therefore,

p YP ��xjYE þYP ¼ t incð Þ ¼ FBeta �x=t inc;kP;kEð Þ;

and so

b xjt incð Þ ¼
aCb0 1�FBeta �x=t inc;kP;kEð Þð Þ; �t inc � x < 0;
Cb0 1�FI xð Þð Þ; x� 0:

�

The expected infectiousness at time y� since the start of the P stage is equal to

b� y�ð Þ ¼ bP� p YP � y�ð ÞþbI � p YP � y�;YPþYI � y�ð Þ:

The second probability can be evaluated by conditioning on the value of YP, to obtain

b� y�ð Þ ¼ bP 1�FP y�ð Þð ÞþbI

Z y�

0

p Yp � y�;YPþYI � y�jYP ¼ yp
� �

fP yPð ÞdyP

¼ bP 1�FP y�ð Þð ÞþbI

Z y�

0

p YI � y� � yP j YP ¼ yp
� �

fP yPð ÞdyP

¼ bP 1�FP y�ð Þð ÞþbI

Z y�

0

1�FI y� � yPð Þð ÞfP yPð ÞdyP:

Therefore, the distribution of the time between the start of the P stage and secondary transmission

occurring is

f � y�ð Þ ¼C a 1�FP y�ð Þð Þþ

Z y�

0

1�FI y
� � yPð Þð ÞfP yPð ÞdyP

� �

:

The proportion of presymptomatic transmissions is

qP ¼
bPmP

b0

¼
bPmP

bPmPþbImI

¼
amP

amPþmI

¼

akP
kincg

� �

akP
kincg

þ 1

�

� �¼
akP�

akP�þ kincg
:

Total proportion of non-symptomatic transmissions accounting for
asymptomatic cases
Here, we derive an expression for the total proportion of non-symptomatic transmissions once

asymptomatic cases are accounted for. The (instantaneous) reproduction number, R, can be decom-

posed as

R¼ pARA þ 1� pAð Þ RP þRIð Þ;
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where pA is the proportion of completely asymptomatic cases, RA is the expected number of second-

ary transmissions generated by each asymptomatic host, and RP=I are the expected numbers of

transmissions generated before and after symptom onset by a host who develops symptoms,

respectively. The total proportion of non-symptomatic transmissions is given by

pARAþ 1� pAð ÞRP

R
¼

pARAþ 1� pAð ÞRP

pARAþ 1� pAð Þ RPþRIð Þ

¼
pAxAþ 1� pAð ÞqP
pAxAþ 1� pAð Þ

;

where

qP ¼
RP

RP þRI

is the proportion of transmissions generated prior to symptom onset by hosts who develop symp-

toms, and

xA ¼
RA

RPþRI

is the ratio between the expected number of transmissions generated by an asymptomatic host and

the expected number of transmissions generated by a host who develops symptoms.
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