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A B S T R A C T   

How the observed occurrences of a species relate to environmental gradients is a fundamental question in 
community ecology. In this paper, we present a new approach to address this question, using the smoothing 
function, a method not previously recruited into this ecological context. Using simulation techniques, we explore 
its accuracy in recovering known species distributions from simulated noisy data, and we compare the smoothing 
function’s predictive abilities to two widely used methods in this field, the generalised linear model (GLM) and 
random forest machine learning. In studying the smoothing function, we are led to consider a new analytical tool 
for ecology, which we call the environmental manifold. It is given by the shape of the data cloud of sampled 
environmental predictor variables, and has deep relevance to ecological niche theory. Hitherto not considered in 
ecological analyses, it plays a fundamental role in understanding the species-environment relationship, and we 
utilise it to compare the performance and behaviour of these three methods. 

The results of our analysis find both random forest and smoothing to be robust to the complexities of the 
species-environment relationship, and also, to a degree, the shape of the environmental manifold. In contrast, the 
GLM’s accuracy depends heavily on the complexity of the species-environment relationship, and is also affected 
by the geometry of the environmental manifold. Furthermore, the smoothing function is seen to be more accurate 
than random forest in every combination of species-environment relationship and environmental manifold 
shape, and also less affected by sampling bias. This suggests the promising role that such smoothing functions can 
have in ecological analyses. Our results also support the robustness of random forest machine learning to 
nonlinearity in both the species-environment relationship, and for the first time, the complexity of the shape of 
the environmental manifold. We conclude by discussing the implications and uses of the environmental manifold 
in ecological practice and theory, including its importance for niche theory, understanding species distributions, 
and conservation policy.   

Tired of all who come with words, words but no language 
I went to the snow-covered island. 
The wild does not have words. 
The unwritten pages spread themselves out in all directions! 
I come across the marks of roe-deer’s hooves in the snow. 
Language, but no words. 
Tomas Tranströmer 

1. Introduction 

In community ecology, a central question is to understand the 

relationships between observed occurrences of a given species and the 
environmental factors (such as elevation, or forest cover) which influ
ence these patterns of occurrence. In this context, a foundational idea is 
that of the ecological niche: it encompasses a variety of related concepts, 
such as the Grinnellian and Eltonian niches, which are used to describe 
and understand these relationships (Soberón, 2007). The formulation of 
the niche concept which has perhaps most informed quantitative 
ecological analyses is the Hutchinsonian niche, proposed in the 
mid-20th century by G. Evelyn Hutchinson (Hutchinson, 1957). The 
Hutchinsonian niche has two aspects: the fundamental niche, and the 
realised niche. The former is commonly considered to be the region of 
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abstract multi-dimensional environmental space (or ‘niche space’) cor
responding to the combination of conditions theoretically required for a 
species to survive and reproduce; the latter is defined to be the subset of 
this region which the species is actually found to inhabit (Holt, 2009). 
There has been a great deal of work in recent times focused on 
describing the properties and shape of these two aspects of the Hutch
insonian niche (Blonder et al., 2014; Broennimann et al., 2012), with 
deeper insights now made possible by the revolutionary advances in 
high-quality GIS and occurrence data and computational resources 
(Cushman and Huettman, 2010). 

In light of this, a range of statistical tools has been developed to study 
the species-environment relationship quantitatively, and to describe the 
shape and dimensions of the fundamental and realised niche (Hegel 
et al., 2010). Two of the most popular tools for this endeavour are the 
generalised linear model (GLM) and the random forest machine learning 
algorithm (Nelder and Wedderburn, 1972; Breiman, 2001; Liaw and 
Wiener, 2002). The GLM proceeds by assuming a linear relationship 
between species abundance and environmental variables, and then 
estimating a linear combination of environmental variables that best 
predicts species responses. It is possible to incorporate nonlinearities 
into the GLM (such as square or exponential relationships), but these 
must be precisely specified when setting up the model, which is difficult 
a priori (Whittingham et al., 2006; Ash et al., 2021). Indeed, by pre
scribing the functional shape prior to analysis, the GLM is limited in its 
ability to accurately account for the complex and unknown relationships 
among species responses and environmental variables; in this paper, we 
configure the GLM with linear predictors, as it is most often used in 
ecological analyses (McGarigal et al., 2016). Random forest is a machine 
learning algorithm, which uses bootstrapping of classification and 
regression trees to recover the relationships between species occur
rences and environmental variables. In contrast with the GLM, it is 
nonparametric (Evans et al., 2011), and with its techniques of bagging, 
subsampling and cross-validation, random forest has been shown to 
have exceptional predictive ability, and very good performance in ac
counting for nonlinear and interactive effects (Breiman, 1996; Cutler 
et al., 2007; Mi et al., 2017). 

In this paper, we compare the behaviour and performance of the 
GLM and random forest in predicting simulated species-environment 
relationships with a third method, called the smoothing function. The 
smoothing function, in essence, numerically smooths the species 
response along environmental gradients in multiple dimensions; it can 
be used to describe and predict species-environment relationships non
parametrically, and to address scale dependence of species-environment 
relationships in environmental space. This is important because, while 
there has been much attention to scale dependence of species- 
environment relationships in geographical space (Wiens, 1989; Levin, 
1992), scale dependence in environmental space has been almost 
completely unexplored in the ecological literature. In geographical 
space, scale dependence concerns a species’ selection of habitat features 
at multiple spatial scales, which is a fundamental ingredient in the 
inference of the relationship between a species and their habitat, and in 
which smoothing in geographical space plays a key role (Cushman and 
McGarigal, 2002; Chandler and Hepinstall-Cymerman, 2016). Scale 
dependence and smoothing in environmental space, however, is an 
inherently different phenomenon: smoothing in environmental space is 
tied to the scales at which niche dimensions influence species occur
rence, and it relates to the sensitivity and degree to which changes in 
niche variables influence and limit species occurrence. Therefore, it is 
crucial to consider scale dependence in environmental space in order to 
accurately measure the effective niche structure of a species and to 
assess how issues such as sampling bias affect its estimation. Our 
smoothing method addresses this second aspect of scale, as illustrated in 
Section 2.1. A similar smoothing method, for measuring niche overlap in 
environmental space, appeared in Broennimann et al. (2012), which 
suggested the promising role such functions could have in ecological 
analyses. In Broennimann et al. (2012) it was said that ‘the use of a 

kernel smoother makes the process of moving from geographical space 
to multivariate environmental space independent of both sampling 
effort and arbitrary choice of resolution in environmental space’, a claim 
which we will revisit in our discussion. 

In addition to our smoothing function, we introduce a new concept 
called the environmental manifold, which we describe in detail in Sec
tion 2.2. Briefly, the environmental manifold is the shape of the data 
cloud of sampled environmental variables in multi-dimensional envi
ronmental space. It turns out to be a crucial ingredient in understanding 
the observed response between a species and their environment, as 
discussed in Sections 2.1 and A.1, and its multivariate nature affords 
new insights into ecological data by allowing us to observe and analyse 
the nonlinear interactions of several environmental variables simulta
neously. A deep exploration of its properties and relations to other 
ecological analyses lies beyond the scope of this paper, but we will touch 
on its foundational connection to the Hutchinsonian realised niche in 
Section 4. As will become clear from its construction in this paper, the 
environmental manifold is precisely the realisable niche – the 
geographically realised subset of environmental space on which the 
realised niche is constrained to occur – suggesting profound implications 
for both ecological practice and theory. 

After describing the smoothing function and the environmental 
manifold, our analysis will involve simulating species-environment re
lationships, and investigating the ability of the GLM, random forest and 
smoothing methods to recover these relationships. Simulation modeling 
has particular advantages for this kind of exploration. Namely, simula
tion enables us to stipulate, a priori, a known relationship between 
multiple environmental gradients and the species response (Cushman 
and Landguth, 2010; Shirk et al., 2012). This in turn enables us to have a 
‘known truth’ to which we can compare the performance of the different 
methods in terms of their ability to correctly identify the variables and 
estimate their relationship with species occurrence (e.g. Atzeni et al., 
2020; Chiaverini et al., 2021). Using this simulation framework, we 
address the following question: Do all three methods recover the known 
relationship, and do they perform equally well when the relationship is 
complex? To do this, we evaluate their performance along two gradients 
of increasing complexity: (1) from a linear response to a nonlinear 
response, and (2) from a simple isotropic environmental manifold, 
across a range of more interesting geometries, to the actual complexity 
of a three-dimensional environmental manifold from a case-study 
landscape in Borneo, where our team has studied patterns of biodiver
sity in relation to environmental gradients (Hearn et al., 2018; Kaszta 
et al., 2019). 

2. Methods 

2.1. The smoothing function 

The method which we call the smoothing function is mathematically 
described as a Gaussian kernel smoothing function (similar to the 
Gaussian kernel density function seen in Silverman (1986)). Explicitly, 
given a collection of occurrence data (which can be binary 
presence-absence data, or abundance data with multiple occurrences) 
distributed along some environmental gradient, the value V(x) at each 
occurrence point x is replaced by a weighted average S(x) of the values 
at the neighbouring occurrence points, where the weighting function Kσ 
is, in this case, a Gaussian function. This can be expressed mathemati
cally as 

S(x) =
∑

Kσ(x, x
′

)⋅V(x′

)
∑

Kσ(x, x′
)

, where Kσ(x, x
′

) = e−
(x− x

′
)2

2σ2  

with the sum taken over all points x′ in the data set. Sample code for the 
smoothing function is provided in Section A.2. 

In contrast with the GLM, no underlying relationship is assumed, and 
thus this approach is nonparametric, like the random forest method. The 
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smoothing method can be used for predicting species distributions, by 
using the smoothed occurrence points to obtain an estimated probability 
distribution of species occurrence, and in this paper we will compare its 
predictive ability with that of the GLM and random forest. One key 
difference between the smoothing and the other two methods is that it 
may be expressed as a genuine mathematical function on the occurrence 
data points themselves, and is thus more straightforward to work with 
from a mathematical point of view, as will be discussed in the appen
dices. On the other hand, in comparison with the regression coefficients 
predicted by the GLM, and the bagging rules used by random forest, the 
smoothing approach, by its inherently local nature (of smoothing 
around the provided occurrence data points) need not give precise in
formation on extrapolating predictions of occurrence probabilities for 
very different environmental conditions to those from which the 
occurrence data were gathered (although the accuracy of such extrap
olated predictions from models like GLM and random forest need not 
reflect their accuracy in the known regions anyway). 

In Fig. 1, we illustrate the effect of this Gaussian smoothing on the 
response of the Sunda clouded leopard to elevation, in Sabah, Borneo, 
using data from Hearn et al. (2018). We see the effect of smoothing as we 
increase σ, starting from the top-left diagram in which σ = 0 (which 
means that no smoothing has been applied). An analogous multivariate 
smoothing happens when we consider multiple environmental variables 
simultaneously. 

We see that a correlation emerges as we smooth the graph, from an 
initial collection of binary values to a smoothly increasing graph. In the 
first two cases, noise obscures any clear pattern, but in the last case, we 
have potentially smoothed away all information aside from the most 
basic pattern of a positive correlation. The fourth and fifth graph contain 
information more coherent than the first, and more rich than the last, 
with the apparent emergence of two peaks as elevation increases. Fig. 2 
gives another example, using the same empirical occurrence data for the 
clouded leopard, but now looking with respect to human footprint: 

As one could expect, with extensive smoothing we see a negative 
correlation between occurrences of the Sunda clouded leopard and 
increasing human footprint. But, beyond this basic inference, we can say 
little else – how could we explain the clear peak in the fifth graph, in 
which the their occurrence increases as human footprint increases along 
a portion of this environmental gradient? Similarly, how shall we un
derstand the double peak seen in the fifth elevation graph? 

Now comes the key point. What we are observing here is the corre
lation of the species occurrence with this particular environmental 

variable, across different sites in geographical space. But across these 
different sites, other environmental variables will be varying too; this 
means we are not observing their response to this variable indepen
dently of the other variables to which they may be also responding. 
Indeed, rather than the Sunda clouded leopards favouring intermediate 
levels of human footprint (as one may think Fig. 2 suggests), we may 
suspect that the covariance of the environmental variables is the cause of 
this pattern; that, for example, in regions of Borneo for which human 
footprint increases from low to intermediate, another environmental 
variable (such as elevation, or forest cover) is varying simultaneously, 
and their positive response to this environmental variable outweighs 
their negative response to increasing human footprint. Crucially, even if 
the underlying response between a species and every environmental 
gradient is linear, the observed correlations may exhibit the nonlinear 
and multimodal shapes seen in Figs. 1 and 2, due to the complexity not 
of the species response but rather the nonlinear covariance of environ
mental variables; see Section A.1 for details and examples of this phe
nomenon. So, to better observe the underlying response between species 
and environment, we need to understand the shape of how the envi
ronmental variables themselves vary together, which leads us to 
consider the environmental manifold. 

2.2. The environmental manifold 

The environmental manifold, described in detail below, is the shape 
of the data cloud of sampled environmental variables. It encodes pre
cisely how this set of environmental variables co-vary, and in practice is 
obtained from empirical GIS data. The observed correlations above 
provide one motivation for its importance, the implications of which for 
ecological theory and practice are revisited in Sections 4 and A.1. A 
second reason is its fundamental relevance to the Hutchinsonian niche, 
which was mentioned in Section 1 and will be revisited in Section 4. 
Finally, it is a concept which opens avenues for new mathematical in
sights into ecological data, affording a geometric viewpoint hitherto 
unavailable in ecology, which will be discussed in Appendix B. Let us 
now see how to construct the environmental manifold. 

2.2.1. Constructing the environmental manifold 
We choose to illustrate the environmental manifold using three 

environmental variables across the island of Borneo: elevation, forest 
cover and human footprint, given their demonstrated importance as a 
predominant influence on biodiversity (Macdonald et al., 2020) 

Fig. 1. The effects of smoothing on binary presence-absence data. The top-left graph consists of the original occurrence data, with increasing smoothing as we move 
from left to right along the first and then second row (σ = 0.01, 0.05, 0.1, 0.3, 1 respectively). The data are occurrences of the Sunda clouded leopard, taken with 
respect to an increasing gradient of elevation, which has been normalised with standard scaling to have zero mean and unit variance. 
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generally, and particularly for the wild felid species (Hearn et al., 2018) 
in this region (Fig. 3). Elevation is derived from the SRTM data set 
(Jarvis et al., 2008). Forest cover is a continuous variable ranging from 
0 (no tree cover) to 100 (full canopy closure) and is taken from the NASA 
global tree cover data set (Hansen et al., 2013). Human footprint is 
obtained from the global human footprint data set (WCS and CIESIN, 
2005). In this analysis we evaluate these environmental variables at 
different geographical scales, following Hearn et al. (2018) and Kaszta 
et al. (2019), who showed that a species response to these variables 
(illustrated by the Sunda clouded leopard) is scale dependent, and is 
strongest and clearest when measured relative to the focal mean of these 
variables at a given radius. These variables were evaluated at 90 m for 
elevation, 30 m for forest cover and 1,000 m for human footprint. For 
our analysis, all variables were re-sampled to a common resolution of 
250 m, following Macdonald et al. (2020). 

Fig. 4 shows a 100 × 100 pixel grid obtained from the three rasters 
seen in Fig. 3, all from the same region in Borneo. Since we are viewing 
each environmental variable in a different plot, it is difficult to see how 
they co-vary: namely, how do their values change simultaneously as we 
move across this portion of Borneo? Recall from Section 2.1 that the 
knowledge of this simultaneous variation of environmental variables is 
crucial to our understanding of a species-environment relationship. 
Now, the exact nature of this covariance becomes apparent if we move 
from geographical space to environmental space (referred to by G. 
Evelyn Hutchinson in Hutchinson (1957) as ‘niche space’, and similar to 
the ‘gridded environmental space’ in Broennimann et al. (2012)). This is 
simply the space where the axes are given by the different environ
mental variables, and we label this space as E. 

Moving from geographical space to environmental space means that 
each pixel in our GIS layer of Borneo is mapped into three-dimensional 
space (since we are considering here the three environmental variables 
mentioned above), to the point whose coordinates are given by the 
environmental variable values at that pixel. For example, if a pixel has 
elevation α1, with human footprint value α2 and forest cover value α3, 
then this pixel of the Borneo layer gets sent to the point (α1, α2, α3) in our 
three-dimensional environmental space E. We do this for all pixels in any 
chosen portion of Borneo, and we call the resulting shape the environ
mental manifold, labeling this object by M. In Fig. 5, we see how our 
100 × 100 portion of Borneo twists and bends in a highly nonlinear 
manner, demonstrating the geometrically complex covariance of these 
environmental variables. In Fig. 6, we see the graph of this same portion 
of Borneo in a two-dimensional environmental space, where in each case 
the two axes are given by two of the three environmental variables 
considered above. 

Despite its seeming complexity, we are actually working with a shape 
which in some sense we understand very well, since we know it is in fact 
sampled from a portion of two-dimensional geographical space, which 
means that we know which points on the environmental manifold 
neighbour each other in geographical space. Thus, we can create a linear 
approximation of this surface from these points, and hence obtain a 
clearer representation of its shape. In Fig. 7, we see this for three 
different 20 × 20-pixel portions of the above environmental manifold, 
where we have ‘joined up the dots’ by using the knowledge from 
geographical space of which points are contiguous with each other. In 
this paper, we stick to using three environmental variables for the sake 
of visualisation. In the same manner, however, we may construct the 

Fig. 2. Another examples of the effects of smoothing. The data are again occurrences of the Sunda clouded leopard, now with respect to increasing gradient of human 
footprint. The smoothing function has been applied to the latter five graphs with the same values of σ, namely σ = 0.01, 0.05, 0.1, 0.3, 1 respectively. 

Fig. 3. Three GIS layers of Borneo, which are elevation, human footprint and forest cover, respectively. Yellow corresponds to higher values and blue to lower values. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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environmental manifold using as many variables as desired, as discussed 
in Appendix B. 

2.3. Comparison of smoothing with GLM and random forest 

2.3.1. Analysis methodology 
With the smoothing function and environmental manifold now 

developed, we study the accuracy of the GLM, random forest and 
smoothing methods in recovering simulated species-environment re
lationships, as we vary both the relationship z and also the geometry of a 
simulated environmental manifold M. These simulated environmental 
manifolds will be constituted of 10,000 points in environmental space, 
just like the empirical environmental manifold obtained from the GIS 
layers in Section 2.2. We will then describe how a simulated data set is 
created from a chosen relationship z and environmental manifold M. For 
our analysis, the metric of accuracy will be calculated from the differ
ence between the true simulated values and values predicted by each of 
the three models: we will derive the Pearson correlation coefficient and 
mean squared error between the simulated and predicted values at each 
of the 10,000 points on M for the GLM and smoothing function; for 
random forest, at each of the 1,000 points on M obtained from a 9 to 1 
split between train and test data. 

We will consider the linear relationship z1 = X + Y − Z − 1 and the 
nonlinear relationship z2 = (0.3X)3 + YZ + (0.2Y)4 − 1 for our simu
lated species-environment relationships, where X, Y, Z are variables in 
our simulation which play the role of environmental variables, and 
which are scaled to have zero mean and unit variance. We chose these 
two relationships since they gave a distribution of binary values on the 
environmental manifolds which did not lead to an extreme of either very 
few presences or absences, and we used a nonlinear relationship of this 
form so as to include a variety of possible nonlinearities (such as cross 
terms and different powers); other than these two aspects, the particular 
coefficients of z1 and z2, and the form of z2, could just as well have been 

Fig. 4. A 100 × 100 pixel portion of the three rasters in Fig. 3, showing part of Sabah, Borneo.  

Fig. 5. Visualising the environmental manifold. This is the result of mapping 
the pixels from the 100 × 100 pixel portions of the GIS layers into three- 
dimensional environmental space, with axes given by the three environ
mental variables (elevation, human footprint and forest cover). The three 
environmental variables have been normalised using standard scaling to have 
zero mean and unit variance. Intuitively, we can think of this mapping from 
geographical space into environmental space as folding and contorting a piece 
of paper, where the paper is the flat GIS layer of Borneo in geographical space 
(parameterised by latitude and longitude). 

Fig. 6. The same 10,000 points have now been plotted in two-dimensional environmental space, with axes given by the three different possible pairings of the three 
environmental variables above. Visually, this is equivalent to flattening the shape in Fig. 5 onto the floor or the two walls of the axes seen in Fig. 5. 
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chosen differently. For the shape of the environmental manifold, we 
consider four cases: a collection of random points (sampled from a 
uniform distribution), a plane, a sphere, and the portion of the empirical 
environmental manifold seen in Fig. 5. These are illustrated in Fig. 8. We 
chose the uniformly random sample since it represents a null model for 
the environmental manifold, and the plane and sphere in order to have a 
variety of different possible geometries for our study, noting that aspects 
of all three shapes may be realised in empirical environmental data. In 
this simulation, we use the term ‘empirical environmental manifold’ for 
the shape arising from the empirical GIS layers of geographical space in 
Section 2.2, to distinguish it from the simulated shapes in our analysis. 
See the end of this section for a summary of this methodology. 

After this, we again look at the accuracy of the GLM, random forest 
and smoothing methods with the same linear and nonlinear species 
response (given by z1 and z2 respectively), but now on two different 
subsets of points from the empirical environmental manifold, rather 
than using the fully sampled empirical environmental manifold as 
before. This corresponds more closely to the situation which arises in 
empirical studies with camera trap data. Our first subset is a sample of 
5,000 points selected randomly across Borneo. In the second, we use the 
actual 484 locations where camera traps were placed in Sabah to collect 
species occurrence data in Hearn et al. (2018). 

2.3.2. Creating a simulated data set 
To create the simulated data sets for our analyses, we consider three 

environmental variables X, Y, Z (which means that we are working in 
three-dimensional environmental space). We first create our simulated 
environmental manifold M by sampling 10,000 points from the three- 
dimensional environmental space, to obtain one of the shapes 
mentioned above. Then, we choose our species-environment relation
ship z, which is given by a function of these three variables. In our 
analysis, z is a polynomial in X, Y and Z, being one of the two functions z1 
or z2 above. 

Now, to obtain a resulting probability of occurrence from z, taking 
values between 0 and 1 (where values closer to 1 indicate a higher 
likelihood of simulated occurrence, and values closer to 0 a lower like
lihood) we use the logistic transform φ = ez/(1 + ez). This transform 
produces a value φ(p) between 0 and 1 for each point p of the 10,000 

points on our environmental manifold M, which corresponds to the 
probability of the simulated occurrence at each location, as a function of 
the environmental variables at that location and the specified species- 
environment relationship z. 

With this probability of species occurrence, we now generate a 
simulated presence-absence data set which reflects those probabilities 
by, at each point p on M, sampling a random number r(p) uniformly 
between 0 and 1, and calculating the difference φ(p) − r(p), giving a 
value between − 1 and 1. If the resulting value is negative, we relabel it 
as 0, and else relabel it as 1. This is a stochastic simulation of presences 
and absences that reflect the stipulated probability of occurrence at each 
location as a function of z. Our simulated data set is the resulting 
collection of binary values, 0 and 1, at each point p on the environmental 
manifold. Fig. 9 gives an illustration of the environmental manifold, first 
coloured by the value of φ on M and then by the resulting binary value. 

2.3.3. Model setup 
We use a logit link function for the GLM, due to the binary nature of 

the simulated data. As mentioned in the introduction, in configuring the 
GLM we are also required to choose a priori the functional shape (e.g. 
linear, squared, exponential) used to predict the species-environment 
relationship. We choose the linear predictor for our analysis due to its 
use being by far the most prevalent in ecological studies (McGarigal 
et al., 2016). Since the GLM is a parametric model, whose parameters 
are the slope coefficients defining the predicted linear regression plane, 
we will also investigate its ability to recover these coefficients. The GLM 
and random forest were implemented in Python 3.7, the former with the 
statsmodels package and the latter with sklearn, versions 0.12.1 
and 0.24.1 respectively (Seabold and Perktold, 2010; Pedregosa et al., 
2011). 

For configuring the random forest and smoothing methods, there is 
the question of hyperparameters (also known as model parameters), 
which are the parameters chosen in the setup of a model and which 
determine how the model will run. With our study, we found that the 
only hyperparameter which, when changed from its default value, was 
found to increase the accuracy of random forest was the maximum depth 
of a tree (which is the number of splits in each decision tree), which 
greatly increased the accuracy of the random forest model when tuned. 

Fig. 7. Using the knowledge from the raster layers of which points are adjacent to each other, we obtain a linear approximation to any chosen portion of Borneo’s 
surface when mapped into environmental space. 

Fig. 8. The four different shapes for the simulated environmental manifold, each constituted of 10,000 points: respectively, a uniform random selection, a plane, a 
sphere, and the empirical environmental manifold itself. The colouration is given by presence (yellow) and absence (blue), given by the linear simulated relationship 
z1. See Section 2.3.2 for how these binary values are obtained. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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We used a 9 to 1 split between the train and test data, which is the 
default value in the sklearn package. For the smoothing function there 
is only one hyperparameter involved, namely the variance (also known 
as bandwidth) σ of the Gaussian function Kσ defined in Section 2.1. Thus 
the question of tuning hyperparameters reduces to one in each case: for 
random forest, a maximum depth of 7 and 8 was most accurate for z1 and 
z2, respectively; for smoothing, the optimal value for σ depended on both 
relationship and environmental manifold, and varied between 0.05 and 
1. 

All analyses were performed in Python 3.7 using Jupyter notebook. 
Since the simulated occurrence data sets have a random component, we 
ran the simulation 100 times for each case of relationship, and envi
ronmental manifold or sample type, and have taken the mean average of 
the resulting correlation and error statistics. 

2.3.4. Summary of methodology 
In summary, we first create our simulated environmental manifold M 

by sampling 10,000 points from environmental space, with axes X, Y, Z. 
We then define our species response z as a function of X, Y, Z, and apply 
the logistic transform φ = ez/(1 + ez) to obtain a probability of occur
rence for each of the 10,000 points on M. From this we stochastically 
obtain the binary presence-absence data on M as described in Section 
2.3.2, which comprises our simulated presence-absence species occur
rence data set. We apply the GLM, random forest and smoothing 
methods to this binary data, and determine their accuracy by calculating 
the resulting Pearson correlation coefficient and mean squared error 
from the difference between the true simulated values and predicted 
values at each point. We further evaluate the accuracy of all three 
methods on two smaller samples of environmental space, and lastly we 
determine the predictive ability of the GLM to recover the slope co
efficients of the regression plane defining the linear species relationship 
z1 = X + Y − Z − 1. 

3. Results 

3.1. Simulation on the fully sampled environmental manifold 

We present in Table 1 the results of our study on the fully sampled 
environmental manifold. For each shape and method, we see its accu
racy in recovering the simulated species occurrences, first for the linear 
and then for the nonlinear relationship. In each case, the first of the two 
numbers gives the Pearson correlation coefficient between the predicted 
values and the true simulated values, and the second gives the mean 
squared error between these values, to four decimal places. A high 

correlation means that the predicted values are, on average, roughly 
proportional to the distribution of the true values; a low error means that 
there is little variance and bias between the individual predicted and 
true values. Thus, by these two metrics, the overall accuracy is higher 
when the first number is closer to 1, and when the second is closer to 0. 

3.2. Simulation on sparser samples of environmental gradients 

In empirical research, samples are taken at a subset of locations, 
rather than exhaustively (the latter of which was the case with the 
simulated data sets on the environmental manifold in Section 2.3.1). In 
this section, therefore, we present the results for the simulated re
lationships in the two sampling examples described above. This gives an 
illustration of the difference in inference and effectiveness of the three 
methods between ‘ideal’ sampling, consisting of a large random sample, 
and ‘actual’ sampling, which is typically smaller and nonrandom. These 
locations are plotted in environmental space in Fig. 10, and the results of 
this analysis are shown in Table 2. 

3.3. Sensitivity of the GLM to environmental covariance 

Suppose the GLM has accurately recovered the true simulated values 
on the environmental manifold, as was the case with the linear 

Fig. 9. Colouration of the environmental manifold: on the left, by the probability surface φ, and on the right, by the resulting stochastic presence-absence value. On 
the left, yellow and blue correspond to a higher chance of presence and absence, respectively; on the right, they correspond respectively to the resulting binary 
presence and absence values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Pearson correlation coefficient and mean squared error for each relationship, 
environmental manifold geometry and method, shown to four decimal places.  

Relationship Manifold GLM Random 
forest 

Smoothing  

Random (0.9997, 
0.0001) 

(0.9837, 
0.0031) 

(0.9948, 
0.0014) 

Linear Plane (0.9995, 
0.0001) 

(0.9678, 
0.0014) 

(0.9936, 
0.0006) 

z1 = X + Y − Z − 1 Sphere (0.9998, 
0.0001) 

(0.9877, 
0.0024) 

(0.9958, 
0.0008)  

Empirical (0.9997, 
0.0001) 

(0.9774, 
0.0030) 

(0.9881, 
0.0017)   

Random (0.0399, 
0.0332) 

(0.9557, 
0.0038) 

(0.9899, 
0.0025) 

Nonlinear Plane (0.0730, 
0.0099) 

(0.9552, 
0.0009) 

(0.9870, 
0.0005) 

z2 = (0.3X)3 + YZ +

(0.2Y)4 − 1 
Sphere (0.0776, 

0.0184) 
(0.9241, 
0.0042) 

(0.9812, 
0.0020)  

Empirical (0.1747, 
0.0124) 

(0.8984, 
0.0026) 

(0.9642, 
0.0011)  
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relationship z1 = X + Y − Z − 1 above. Since it is a parametric model, 
we may further study its accuracy in recovering the parameters (β0, β1, 
β2, β3) defining the species-environment relationship 
z = β1X + β2Y + β3Z + β0. So, in our case, can the GLM recover the co
efficients (1, 1, − 1, − 1) of the terms in the relationships 
z1 = X + Y − Z − 1? Surprisingly, the accuracy in recovering the simu
lated values of the linear relationship (seen in Table 1) need not reflect 
its accuracy in recovering these coefficients. 

When the environmental manifold had a nonlinear shape (as was the 
case with the random points, sphere, and empirical environmental 
manifold), the GLM recovered the parameters βi with an average error of 
approximately 0.02. However, when the environmental manifold had 
the shape of a plane (which, in our analysis, was given by 
4X + Y − 2Z − 5 =0), the GLM predicted (− 0.063, 0.705, 0.113, 
− 1.013) for the coefficients, which for β1, β2 and β3 is extremely inac
curate (Table 3). This error still occurred, sometimes to a greater 
magnitude, when varying the coefficients βi of the linear relationship z1, 
rotating and translating the environmental manifold plane, and even 
when adding small degrees of noise or nonlinearities orthogonal to the 
plane. In the language of statistical linear algebra, this problem arises 
because the design matrix (which is the matrix of values of the predictor 
variable X, Y, Z) does not have sufficient rank to provide a unique value 
for the slope coefficients of the regression plane. This explanation is 

equivalent to a geometric argument involving the environmental 
manifold, which is left to Section B.1. 

4. Discussion 

Describing the Hutchinsonian realised niche and understanding the 
scale dependence in the response of a species to their environment are 
two central questions in modern ecology, both of which have received 
substantial attention in recent years (Holt, 2020; Blonder et al., 2014; 
Chandler and Hepinstall-Cymerman, 2016). In this work, we have 
illustrated how the tools of smoothing in environmental space, together 
with the hitherto unexplored environmental manifold, are powerful 
tools for studying these two realms. As explained throughout this paper, 
and treated in particular detail in Section A.1, the environmental 
manifold gives us a description of the realisable niche (that is, the subset 
of niche space in which the realised niche is constrained to occur); 
moreover, due to its multi-dimensional nature, the environmental 
manifold is a concept which can lead to surprising insights into 
ecological data by allowing us to consider and observe the nonlinear 
interactions of several environmental variables simultaneously. 
Furthermore, we have demonstrated that smoothing in environmental 
space performs very well in comparison with widely used models such as 
the GLM, and with state-of-the-art machine learning tools such as 
random forest, with an ability to handle scale-dependence and non
linearities in both the species response and the environmental manifold. 

With the ability to stipulate known species-environment relation
ships, the tools of simulation give us the ability to quantify and compare 
the performance of the different statistical methods commonly 
employed in modeling species-environment relationships. Recent work 
has used simulation techniques similar to this study, also for the purpose 
of evaluating the efficacy of various methods to infer predictors of 
species occurrence (Atzeni et al., 2020; Chiaverini et al., 2021). This 
paper develops the simulation framework further, by investigating both 
linear and nonlinear relationships, and also different geometries of the 
environmental manifold. In our analysis, we used these techniques to 
compare the predictive ability of the smoothing function with that of the 
GLM and random forest. Following Cushman and Wasserman (2018) 
and Cushman et al. (2017), we found that the random forest model 
outperformed GLM when there were nonlinear and interactive terms in 
the species-environment relationship, and also found, for the first time, 
that random forest machine learning is robust to the shape of the envi
ronmental manifold. Furthermore, we found the smoothing function to 
be more accurate than the random forest in every setting, particularly in 
situations with greater sampling bias (which is a situation expected in 
practice). Finally, we saw the GLM to be unable to recover the slope 
coefficients of the linear relationship with certain shapes of the envi
ronmental manifold. 

Fig. 10. Two sets of locations, plotted separately in environmental space, with axes given by elevation, human footprint and forest cover. On the left, a 5,000-point 
random sample of locations from across Borneo; on the right, the actual 484 locations of the camera traps in Sabah, as detailed in Hearn et al. (2018). As before, the 
axes have been normalised with standard scaling. 

Table 2 
Pearson correlation coefficient and mean squared error for each relationship, 
sample type and method, taken to four decimal places.  

Relationship Sample GLM Random 
forest 

Smoothing 

Linear 5000 (0.9995, 
0.0001) 

(0.9760, 
0.0037) 

(0.9875, 
0.0020) 

z1 = X + Y − Z − 1 484 (0.9946, 
0.0015) 

(0.9513, 
0.0097) 

(0.9797, 
0.0081)  

Nonlinear 5000 (0.5292, 
0.0143) 

(0.9174, 
0.0034) 

(0.9610, 
0.0019) 

z2 = (0.3X)3 + YZ +

(0.2Y)4 − 1 
484 (0.5839, 

0.0112) 
(0.7921, 
0.0067) 

(0.8887, 
0.0040)  

Table 3 
The GLM’s prediction for the slope coefficients (1, 1, − 1, − 1) of the 
linear relationship z1 = X + Y − Z − 1, with each of the four shapes 
from Section 2.3.1.  

Manifold Predicted coefficients 

Random (0.975, 0.998,− 1.005,− 1.037) 
Plane (− 0.063, 0.705, 0.113, − 1.013) 
Sphere (0.994, 1.040, − 1.040, − 1.040) 
Empirical (0.994, 0.983, − 0.965, − 0.988)  
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4.1. Effects of functional complexity 

To our knowledge, this is the first exploration of how functional 
complexity (which is determined by, for example, the number of vari
ables and nonlinearities in the predicted response) interacts with envi
ronmental covariance in affecting the performance of different models 
to infer species-environment relationships. We found that when the re
lationships were linear, all three methods performed well in correctly 
predicting species occurrence. Furthermore, when the environmental 
manifold was of a highly nonlinear shape in our study, the GLM accu
rately recovered the slope coefficients βi of the regression plane. 

Nonlinearity of the relationship strongly affected the performance of 
the GLM, greatly reducing its ability to predict species occurrence and 
estimate slope coefficients. This sensitivity of the GLM to complex re
sponses stands in contrast with recent studies such as Ash et al. (2021). 
On the other hand, random forest and smoothing performed very well 
with the nonlinear relationship – almost as well as they did on the linear 
relationship – showing these two methods to be capable of recovering 
complex nonlinear species responses. Moreover, the smoothing function 
proved more accurate than random forest, regardless of functional 
complexity. 

4.2. Effects of geometric complexity 

With the metrics of accuracy used in this study, the geometric 
complexity of the environmental manifold generally did not have a great 
influence on the performance of any of the three methods. The exception 
is the case of a planar environmental manifold affecting the ability of the 
GLM to recover the coefficients βi. Upon further investigation, we found 
this error with the GLM to still occur in other similar instances, such as 
when degrees of noise or nonlinearities were added orthogonal to the 
planar environmental manifold. Although a perfect planar geometry is 
not to be expected in empirical environmental data, this means that if 
there are portions of approximate constancy among any linear combi
nation of the environmental variables, the GLM may be unable to 
accurately recover the parameters defining even a linear species 
response; this may very well arise if any of the environmental gradients 
are not well-sampled. From this, we conclude that the random forest and 
smoothing function are highly robust to the geometric complexity of the 
environmental manifold, but the ability of the GLM to predict regression 
coefficients can be strongly affected by certain types of environmental 
covariance. 

4.3. Effects of sampling bias 

With a linear species-environment relationship, we found the GLM to 
be the most accurate method for determining the species response, for 
all types of sampling; however, the strong sensitivity of the GLM to 
functional complexity remains, regardless of sampling effort. As with the 
fully sampled environmental manifold, in the case of the sparser 
empirical data (which reflects the sampling bias arising in practice) we 
found the smoothing function to be more robust than random forest, 
particularly with the more complex species response. We also see that 
the larger 5,000-point random sample gives rise to greater model per
formance than with the smaller, opportunistic sample; all models, 
however, were most accurate with the exhaustive sampling represented 
by the environmental manifold. This shows that, while the smoothing 
function is not strongly affected by sampling bias, its accuracy cannot be 
considered to be independent of sampling, in contrast with what is 
claimed in regards to kernel smoothing methods in Broennimann et al. 
(2012). 

4.4. The Hutchinsonian niche and further developments 

As motivated in Section 2.1, having a precise understanding of the 
way in which environmental gradients vary together is of central 

importance when studying species-environment relationships. Further
more, as demonstrated in detail in Section A.1, observed nonlinearities 
in a species response may arise solely because of the nonlinear shape of 
the environmental manifold, even when all components of the under
lying relationship are linear. This is of major importance for practi
tioners involved in conservation and management decisions, since 
predictions about species occurrences may be highly inaccurate when 
complex environmental covariance is not accounted for. With the 
increasing availability of highly accurate and fine-scale GIS data, we are 
now able to actually visualise, quantify and work with the environ
mental manifold as a tool in ecological analyses, which gives us access to 
a better understanding of the species-environment relationships we may 
observe from empirical data. In this paper we used only three environ
mental variables when working with the environmental manifold, for 
ease of visualisation and exposition, but the concept and insights of the 
environmental manifold are equally applicable for any number of 
environmental variables, suggesting the environmental manifold to be a 
powerful and practical new tool for ecological analyses with large data 
sets. The development of the environmental manifold as such a tool for 
policy and conservation will form the basis for future work, and should 
be configured to handle cloud computing and large volumes of data, in 
line with the latest developments in ecological informatics (van den 
Hoogen et al., 2019; Rey and Huettmann, 2020). 

Another salient aspect of the environmental manifold is its relevance 
to the Hutchinsonian realised niche, the modeling of which is of 
fundamental importance in community ecology. With the tools devel
oped in this paper, we are now afforded the precise description of the 
subset of niche space which is geographically realised; namely, the 
environmental manifold is the realisable Hutchinsonian niche. This 
means that, even if the fundamental niche is isotropic and simply 
described, traditional niche descriptions will fail if the realisable niche 
(in other words, the environmental manifold) is complex and nonlinear. 
As a result, without the environmental manifold, we can only tell half 
the story in quantifying a species-environment relationship. For 
example, we may find from empirical data that, in a region of three- 
dimensional niche space, the occurrence probability of our species is 
close to zero. This may reflect an intolerance of the species to this set of 
environmental conditions – but equally, it may represent a region of this 
niche space which is not geographically realised. The knowledge to discern 
between these two very different realities is provided by the environ
mental manifold, which has heretofore been absent in attempts to 
quantify the ecological niche (such as Broennimann et al., 2012; 
Swanson et al., 2015; Holt, 2009; Blonder et al., 2014). 

We have shown in this paper that random forest and smoothing are 
capable of handling these nonlinearities which arise in the realised 
niche, in contrast with the GLM which assumes a symmetry and isotropy 
of the underlying predictor space. Equipped with the smoothing func
tion and the environmental manifold, deeper insight into the ecological 
niche of a species is possible, and we hope this will form the basis for 
exciting future work. The possibility of delving into the mysteries of the 
environmental manifold and its connections with other ecological 
questions lay beyond the scope of this study. However, the environ
mental manifold is a concept which applies to contexts much wider than 
that studied in this paper; we believe that the combination of its un
derlying ubiquity in questions pertaining to species-environment re
lationships, together with its mathematical richness and depth, makes it 
a tantalising subject of further study – both as an accomplice in other 
ecological explorations, and also as a matter in its own right. 

5. Conclusion 

The simulation framework is useful in exploring the effectiveness of 
different modeling methods, and in studying the influences of factors 
such as sampling design, sample size, complexity of response and 
environmental covariance on the performance of such methods. Our 
results show that random forest and smoothing are robust to the 
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complexity of both species response and environmental covariance, with 
the smoothing function proving more accurate in every case; in contrast, 
the GLM is strongly affected on the functional complexity of the species 
response. Furthermore, the GLM can also be highly impacted by certain 
shapes of the environmental manifold. This suggests that, given the 
expected nonlinear and interactive relationships in empirical ecological 
data, methods like random forest and smoothing which are equipped to 
handle complex and a priori unknown responses are likely to be pref
erable and more capable than parametric models like the GLM. 

Moreover, this study shows that applying a kernel smoothing func
tion to data in environmental space is a promising and powerful way to 
explore and observe the patterns of species-environment relationships, 
with particular relevance to scale dependence in environmental space, 
which heretofore has not been well explored. The smoothing function 
provides a conceptually simple and mathematically transparent 
approach to recover responses of any complexity, in a manner which fits 
well into an ecological setting by inherently accounting for sampling 
bias. In addition to the smoothing function, we have introduced the 
environmental manifold, a new and mathematically rich area of explo
ration in ecology with deep implications for ecological practice and 
theory, particularly in regards to understanding species distributions 
and modeling the Hutchinsonian niche. 

Finally, we would like to contextualise this work within the broader 
realm of scientific discourse in relation to the environment, by 
acknowledging the vast and growing body of important literature which 
discusses and explores, among other things, the importance of language 
(Cronon, 1997), ontology (Lorimer, 2015) and mythos (Kimmerer, 
2013) employed in quantitative studies such as in this paper. When 
discussing the species-environment relationship in the context of the 
work presented here, it has been regarding the response of a species with 
respect to the gradients of environmental variables, both of which are 
processed as numerical data and studied through a quantifiable view
point. Such a viewpoint, and its resulting statistical analyses, doubtless 

have tremendous value in many areas of ecology and the life sciences. 
But we would like to emphasise that the work in this paper is not 
motivated by an effort to ultimately explain the myriad depths to the 
living, breathing relationship between a species and the 
more-than-human earth through purely quantitative means, since a 
deeper and more complete understanding of ecological phenomena is 
greatly aided by considering a multiplicity of approaches and ways of 
knowing (Abram, 1996, 2010; Berkes, 2017; Ingold, 2000). Acknol
wedging this, we have sought in this work to develop and test more 
powerful analytical methods to aid us in the observation and prediction 
of the quantitative patterns arising from these relationships, so that our 
perspective from this particular viewpoint may be enriched. We hope 
that the findings of our simulation study, together with the concepts of 
the smoothing function and the environmental manifold, provide help
ful tools for future explorations in ecology. 
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Appendix A. Details on smoothing in environmental space 

A.1. Nonlinear correlations from linear responses 

We present here some visual examples of the phenomenon discussed in Section 2.1, which explained why, even after accounting for sampling bias 
with the smoothing function, the observed correlations of the distribution of species occurrence along environmental gradients may very much not 
reflect the underlying species response, precisely due to the nonlinearities of the environmental manifold. In particular, highly nonlinear and 
multimodal correlations may spuriously arise even from very simple species-environment relationships, such as when the response to some or all 
environmental variables is linear. 

To illustrate this, on the same 484 empirical camera trap locations mentioned in Section 2.3.1, we used the techniques of Section 2.3.2 to simulate 
four different species-environment relationships, as a function of the three environmental variables (elevation, human footprint and forest cover) 
discussed in Section 2.2, which we label here as X, Y, Z respectively. These four functions were z1 = X, z2 = X + 5Y, z3 = X + 3Z, and 
z4 = X + 2Y2 − 3Z2, which are all linearly increasing with respect to the elevation variable X. We may thus expect that, as elevation increases, the 
occurrence probability of our simulated species also increases. However, in Fig. A.1 we see that the correlations which emerge after accounting for 
sampling bias show this only to be roughly the case for z1 = X, which is a function solely of elevation; when the species responds also to human 
footprint and forest cover, such as in z2, z3 and z4, we may observe correlations which do not at all reflect the linearity (or even monotonicity) of their 
response to elevation. 
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Fig. A.1. Nonlinear correlations arising spuriously from linear relationships, due to nonlinear environmental covariance. From left to right, we see the emergent 
correlations for the four species-environment relationships z1, z2, z3 and z4 respectively, with elevation on the horizontal axis. For each relationship, the upper graph 
displays the binary presence-absence data, and the lower graph shows the occurrence probability which emerges when applying the smoothing function to account 
for sampling bias (σ = 0.5). Though all relationships are linearly increasing with respect to elevation, the only observed correlation which approximately reflects this 
is that of z1, which is a function of elevation only. 

These nonlinearities arise from the linear response to elevation precisely because of the complexity with which the three environmental variables 
co-vary across these locations, as discussed in Sections 2.1 and 2.2. Indeed, if we instead sample our locations uniformly randomly across environ
mental space, Fig. A.2 shows that when the environmental covariance is isotropic (which is very unlikely to occur in practice, but which reflect 
assumptions regarding the Hutchinsonian niche), then all of the smoothed graphs in Fig. A.1 would have instead displayed a linearly increasing shape. 
We can thus conclude that the environmental manifold, which gives us the precise information of how our environmental variables co-vary in 
geographical space, plays a fundamental role in understanding the correlations which emerge from the response of a species to its environment. This is 
a finding of great importance for both ecological theory and practice: in terms of theory, this shows that one cannot effectively study niche structures 
without considering the environmental manifold shape; and in practice, it is important that policy and conservation decisions are to be based on 
predictions of species distributions which accurately reflect their underlying response to the environment, rather than being based upon spurious 
correlations which are mistaken for these responses.

Fig. A.2. Emergent correlations for the same relationships z1, z2, z3, z4 as before, again with elevation on the horizontal axis, but now with the 484 data points 
instead sampled uniformly randomly from three-dimensional environmental space. These smoothed graphs show the true linear nature of the underlying response to 
elevation, which now becomes visible precisely because of the uniformity of the environmental manifold. 

A.2. Sample code for the smoothing function 

First, let us recall the formula for the smoothing function, as defined in Section 2.1: 

S(x) =
∑

Kσ(x, x
′

)⋅V(x′

)
∑

Kσ(x, x′
)

, where Kσ(x, x
′

) = e−
(x− x

′
)2

2σ2 

As noted before, the sum is taken over all points x′ in the data set, but if the data set is much larger than those used in this analysis, then the kernel 
can be truncated to improve run times. We now present the sample code for the smoothing function used in our simulation, implemented in Python 
3.7: 

import numpy as np 

from scipy.spatial import distance 

def S(x, V, sigma): 

D = distance.cdist(x, x, ’sqeuclidean’) 
K = np.exp(- D / (2 * sigma ** 2)) 

return np.sum(K * V, axis = 1) / np.sum(K, axis = 1) 

The input data consist of: x, an array consisting of the coordinates of the points in environmental space, with each row giving the coordinates of one 
point; V, a vector of binary presence-absence values at each point; sigma, the smoothing parameter for the Gaussian kernel Kσ defined in Section 2.1. 
The smoothing function, S, first computes the matrix of squared distances D for the occurrence points in environmental space (whose coordinates are 

S. Unnithan Kumar et al.                                                                                                                                                                                                                     



Ecological Informatics 66 (2021) 101472

12

given by x), then calculates the Gaussian kernel K, and finally returns the vector of smoothed V-values. For example, in our simulation on the 
environmental manifold in three-dimensional space, x is a 10,000×3 numpy array and V is a vector of length 10,000. 

Appendix B. Mathematical aspects 

In this section, we touch on some of the more mathematical aspects of the environmental manifold. We begin by noting that our environmental 
space E can be thought of as the m-dimensional space of real numbers ℝm, where m is the number of environmental variables used for the axes in E. 
Consider the construction of the environmental manifold from Section 2.2, which involves the three environmental variables of elevation, human 
footprint and forest cover. We label them here as e1, e2, e3 respectively. Mathematically speaking, in constructing the environmental manifold, we 
think of the GIS polygon representing Borneo as a subset U of two-dimensional space ℝ2, parameterised by latitude and longitude. We then look at the 
image M = f(U) of the map f : U→ℝ3 defined by f(x, y) = (e1(x, y), e2(x, y), e3(x, y)) for (x, y) in U. In practice, the function f is defined on discrete data, 
namely the pixels of the GIS polygon. However, it can be thought of as continuous and piecewise-linear: it takes the flat GIS polygon of Borneo and 
maps it to a piecewise-linear surface, by ‘joining up the dots’ of the pixels of the GIS polygon in environmental space E (as was seen in Fig. 7 for a small 
portion of the GIS polygon). The resulting position of these pixels in E (as seen in Fig. 5) is provided by the values of those pixels in the empirical GIS 
layers of the environmental variables, as follows: first, we obtained these layers as described in Section 2.2; then, we used the Python package 
rasterio (Gillies et al., 2013) to import the empirical GIS layers into Python as matrices; finally, we defined the mapping f by sending each element 
(x, y) of a meshgrid to the point in ℝ3 given by (e1(x, y), e2(x, y), e3(x, y)) as mentioned above, where the ei are the matrices obtained from the 
environmental GIS layers and ei(x, y) is the (x, y)-entry of that matrix. 

More generally, we could use any number m of environmental variables, and consider the image f(U) in ℝm. This map f would be equivalent (up to 
isometry of ℝm) to considering the metric ||.||E on U, where d(p, q) := ||p − q||E is the Euclidean distance between f(p) and f(q) in m-dimensional 
environmental space E. Note that the environmental manifold may not be a ‘manifold’ strictly in the mathematical sense, and that the metric ||.||E 

could fail positive-definiteness, since the shape could cross over itself; this would happen precisely when two points in the region U of geographical 
space have the same value for all of the m environmental variables considered in E. In light of this, to avoid possible confusion we have not shortened 
the name ‘environmental manifold’ to ‘manifold’ at any instance in this work. 

One exciting aspect of the environmental manifold is that its setting provides a fertile ground for mathematical insights in an ecological context, 
particularly those of a differential, geometric or topological nature. The geometric explanation in Section B.1 of the failure of the GLM in particular 
cases provides a basic example of this, in which we utilised notions of the geometry of intersections of certain shapes with the environmental manifold. 
In particular, this geometric viewpoint afforded the insight that an important role is played by the shape of the environmental manifold (which is 
precisely the realisable niche) in predicting species distributions. 

There is much to explore with this new geometric ecological tool. One example which arises in this paper is that the occurrence probability of a 
species over some geographical region U can be thought of as a map from U to the unit interval [0, 1]. In our case, we obtained this as the composition 
of the three maps φ∘z∘f : U→f(U)→ℝ→[0,1]. Recall that the map φ was given by the logistic transform φ(z) = ez/(1 + ez) of a function z : E→ℝ. As a 
result, we can choose a small positive number ε, and view the ‘thickened’ level sets cε = {x ∈ f(U)||φ(x) − c| < ε} of φ restricted to the environmental 
manifold f(U) as those regions of f(U) with occurrence probability approximately c, which will typically look like 1-dimensional subspaces of f(U). 
Framing species abundance thresholds in terms of these level sets, and recruiting the smoothing function to help us recover these level sets from noisy 
data, could notions of gradient descent, Morse theory, and persistent homology (Ghrist, 2014) be used in describing the realised niche? 

Furthermore, among methods which seek to recover the underlying distribution of a species along an environmental gradient, the smoothing 
function (as expressed mathematically in Section 2.1) is unique in being a genuine mathematical function on the occurrence data points themselves, 
and so is open to mathematical analysis in a way in which models such as the GLM and random forest are not. For example, could we understand more 
deeply the shapes of the correlations seen in Figs. 1 and 2 from the knowledge of: (1) the environmental manifold geometry, and (2) the smoothed 
species data on the environmental manifold? This would give us insight into not just a richer and more accurate description of the Hutchinsonian 
niche, but would also help practitioners in conservation and management effect policy which better reflects the underlying response of species to 
environmental gradients. 

B.1. The geometry of intersections 

We explore here the error of the GLM, when the environmental manifold is a plane P, in recovering the slope coefficients (β0, β1, β2, β3) in the linear 
relationship z = β1X + β2Y + β3Z + β0. The answer is of a geometric nature, and is due precisely to the shape of the environmental manifold. We 
denote the specific linear relationship X + Y − Z − 1 and environmental manifold plane 4X + Y − 2Z = 5 from our earlier analysis by z1 and P1 
respectively, to distinguish it from a general linear relationship z and environmental manifold plane P, discussed in this section. 

First, recall that the GLM tries to predict the coefficients βi defining z. So, from the GLM we obtain a prediction z = β1X+ β2Y + β3Z+ β0, where the 
βi are the predictions for the βi. This equation for z defines a set of planes in three-dimensional space as the value of z varies, corresponding to dif
ference levels of occurrence probability. These planes of z move along the normal direction n = (β1, β2, β3), and thus intersect the environmental 
manifold plane P in a series of parallel straight lines. 

The key point is that the accuracy of the GLM in recovering the simulated linear relationship z1 (Table 1) must mean that these parallel lines of 
intersection between the predicted planes of z1 and P1 are almost exactly the same as those of z1 and P1. However, given these parallel lines of 
intersection, there is still one degree of freedom in defining the planes given by z1. With this information, the GLM was only recover z1 up to a rotation 
along these parallel lines, as we see in Fig. B.3. Indeed, the environmental manifold plane P1, relationship plane z1 and predicted plane z1 all differ by a 
rotation about the same axis of intersection with P1, with the true relationship z1 and the predicted relationship z1 differing by approximately 65 
degrees along this axis. 
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Fig. B.3. The environmental manifold plane P1 used in our simulation analysis, defined by the equation 4X + Y − 2Z − 5 =0. It is coloured by yellow and dark blue, 
corresponding to locations of presence and absence of the simulated species. The plane given by the linear relationship z1 is coloured light blue, and the plane 
predicted by the GLM is coloured orange. The predicted plane has coefficients (− 0.063, 0.705, 0.113, − 1.013), in contrast with the true relationship plane (1, 1, − 1, 
− 1), and they differ by an angle of approximately 65 degrees. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

To investigate this further, we explored rotating and translating the environmental manifold plane P (which, for this problem, would be equivalent 
to varying the coefficients βi defining z), adding degrees of noise orthogonal to P, and adding nonlinearities orthogonal to P (such as sinusoidal 
surfaces). We found that, when the environmental manifold was a plane, the accuracy of the predicted slope coefficients was determined by the angle 
between the environmental manifold plane P and the relationship planes defined by z, where accuracy of z increases with orthogonality between z and 
P. When nonlinearities were added, the accuracy of the predicted coefficients depended on the manner in which the relationship place z intersected the 
environmental manifold. Some of these findings are displayed in Table B.1.   

Table B.1 
The GLM’s prediction for the slope coefficients (1, 1 − 1, − 1) of the linear relationship 
z1 = X + Y − Z − 1, with six different shapes for the environmental manifold. Some are 
linear, and some are nonlinear to differing degrees. P1 is the environmental manifold 
plane used in our simulation analysis.  

Manifold Predicted coefficients 

P1 (− 0.063, 0.705, 0.113, − 1.013) 
Plane orthogonal to z1 (0.996, 1.013, − 0.979, − 0.958) 
Plane approximately tangent to z1 (0.010, 0.014, 0.017, 0.007) 
Plane defined by Z = 0 (1.013, 1.010, 0, − 0.968) 
P1 with 0.1 orthogonal random noise (2.148, 1.263, − 1.554, − 2.334) 
P1 with 0.5 orthogonal random noise (0.898, 1.016, − 0.951, − 0.893) 
Sinusoidal surface with 0.5 amplitude (0.778, 0.763, − 0.008, − 0.999) 
Sinusoidal surface with 5 amplitude (1.068, 0.946, − 0.991, − 1.003)  

These examples demonstrate that when the environmental manifold plane P lies orthogonal to a linear relationship z, the GLM’s predicted co
efficients are most accurate. In contrast, when P and z are approximately tangent, the predictions are extremely inaccurate. In the case of the plane P 
defined by the equation Z = 0, we find the coefficients of X, Y and the intercept accurately recovered, but the coefficient of Z is predicted to be 0. This is 
an example of the phenomenon that, if the environmental sampling is approximately constant along some environmental gradient, then the GLM 
cannot predict the coefficient for this environmental variable. The latter four cases in the table relax the constraint of planar linearity in the first four 
cases, and demonstrate that if the environmental manifold is not sufficiently nonlinear, then the same errors can arise. 

So, the GLM can only ‘see’ the species-environment relationship z where it intersects the environmental manifold. Thus, when the environmental 
manifold is a plane – or more generally, approximately constant along some linear combination of axes in environmental space – the GLM does not 
have enough information to recover the coefficients βi defining a linear relationship z. This also explains the accuracy of z in the other three choices of 
environmental manifold in our simulation analysis, in which the GLM sees enough of the species response planes z via their intersections with the 
environmental manifold M to fix the remaining degree of freedom. For example, if the intersections are shaped like a circle (like the case in our 
simulation when M was a sphere), then M curves into enough dimensions of environmental space to fix the predicted planes z. 

Thus, in this simple example in three-dimensional space where the environmental data are constant along certain axes (as is the case for a plane), or 
more generally when the intersections of z with M are not sufficient to fix the coefficients βi, the GLM may dramatically fail to recover the parameters 
of a species-environment relationship, precisely because of the manner in which the environmental variables co-vary, a phenomenon which only 
becomes apparent with the help of the environmental manifold. 
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