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A METHOD TO COARSE-GRAIN MULTIAGENT STOCHASTIC
SYSTEMS WITH REGIONS OF MULTISTABILITY∗
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Abstract. Hybrid multiscale modeling has emerged as a useful framework for modeling complex
biological phenomena. However, when accounting for stochasticity in the internal dynamics of agents,
these models frequently become computationally expensive. Traditional techniques to reduce the
computational intensity of such models can lead to a reduction in the richness of the dynamics
observed, compared to the original system. Here we use large deviation theory to decrease the
computational cost of a spatially extended multiagent stochastic system with a region of multistability
by coarse-graining it to a continuous time Markov chain on the state space of stable steady states of
the original system. Our technique preserves the original description of the stable steady states of the
system and accounts for noise-induced transitions between them. We apply the method to a bistable
system modeling phenotype specification of cells driven by a lateral inhibition mechanism. For this
system, we demonstrate how the method may be used to explore different pattern configurations
and unveil robust patterns emerging on longer timescales. We then compare the full stochastic,
coarse-grained, and mean-field descriptions via pattern quantification metrics and in terms of the
numerical cost of each method. Our results show that the coarse-grained system exhibits the lowest
computational cost while preserving the rich dynamics of the stochastic system. The method has the
potential to reduce the computational complexity of hybrid multiscale models, making them more
tractable for analysis, simulation, and hypothesis testing.

Key words. large deviation theory, coarse-graining, phenotype pattern formation, multiscale
modeling, hybrid modeling
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1. Introduction. When modeling a biological process, one has to make choices
on how detailed the model should be in order to capture the characteristic features
of the system. At the same time, the model should be as simple as possible in
order to facilitate its analysis and numerical simulations. The evolution of systems
with large numbers of agents (e.g., molecules, cells, species) can be described by
the average behavior of their agents, or their mean-field limits using (ordinary or
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†Centre de Recerca Matemàtica, Bellaterra (Barcelona) 08193, Spain, and Departament
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partial) differential equations [6, 9, 35]. Dynamical systems theory provides methods
and techniques for the analysis and numerical simulations of such systems. This
description might become insufficient when the system comprises agents with internal
variables that change in time, thus altering the agents’ behavior, or when the system
is not “large enough” to be described accurately by the mean-field equations. For
these systems, stochastic descriptions are employed [39] (for example, continuous time
Markov chains (CTMCs) or stochastic differential equations (SDEs)). In biological
systems, the number of agents is finite and some level of noise is always present
which can affect the system dynamics [39]. While exhibiting richer dynamics than
deterministic systems, stochastic models are more computationally intensive.

Furthermore, in order to formulate a theoretical model of a biological phenome-
non, it is often necessary to account for dynamics that act on different temporal and/or
spatial scales [2, 17]. This has led to the development of hybrid multiscale models,
in which different modeling techniques may be applied at each scale and then effi-
cient coupling algorithms are used to integrate these models (see, e.g., [8, 16, 37] and
references therein). In many of these models, individual entities (cells, species, etc.)
are considered as discrete agents which are, themselves, equipped with models for
their internal states determining the behavior (e.g., subcellular signaling, cell cycle,
response to extracellular stimuli). Such models have great potential for generating
insights into the behavior of a system (e.g., endothelial cell rearrangements [3], cell
differentiation and tissue organization in intestinal crypts [8], and multiscale cancer
modeling [10]). However, they frequently become numerically intractable because
of their complexity (e.g., the internal dynamics of agents) [2]. This limits possible
applications of these models.

In this work, we explain how to reduce the computational complexity of a hybrid
model by coarse-graining the internal dynamics of its agents when these are described
by a stochastic system with multiple steady states. The method involves applying
large deviation theory (LDT) to reduce the dynamics of the stochastic system to a
CTMC on the state space of its stable steady states. LDT provides a theoretical
framework with which to quantify how small time-dependent fluctuations can lead to
significant deviations from the mean-field behavior (rare events) such as transitions
between stable steady states which cannot occur in deterministic systems [23]. This
approach has previously been used to study rare, noise-induced events in individual
stochastic systems [14, 15, 19, 39, 40, 42], but to our knowledge, this is its first
application to a multiagent model.

In previous work, we developed a multiscale model of angiogenesis [45], the process
of growth of new blood vessels from preexisting ones [28], which accounts for gene
expression patterns (phenotypes) of endothelial cells at the subcellular scale. For
prescribed levels of extracellular stimuli, the system is either monostable (i.e., only
one cell phenotype exists) or bistable (i.e., two stable steady states, cell phenotypes,
coexist). Cell phenotype is specified via contact-dependent cross-talk with neighbor-
ing endothelial cells via the VEGF-Delta-Notch signaling pathway [5, 24]. VEGF,
or vascular endothelial growth factor, is the activating external stimulus; Delta and
Notch are transmembrane ligands and receptors, respectively, which can trans-bind,
(i.e., a ligand on one cell can bind to a receptor on another cell, thus allowing the
two cells to “communicate”). Cells adjust their gene expression in order to maintain
a pattern of two distinct phenotypes, Delta-high and Delta-low cells (see Figures 1(a)
and 1(b)). We use the internal level of Delta as a proxy to distinguish between the
phenotypes. In angiogenesis, the Delta-high (Delta-low) cells are referred to as tip
(stalk) cells [5]. The number of transmembrane proteins in this signaling pathway is
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(a)

(b) (c)

Fig. 1. Cell phenotype specification. (a) Phenotype (Delta-high and Delta-low cells) patterning
of cells induced by a mechanism of lateral inhibition in two different domains: a cell monolayer
and a branching network. (b) Dynamic time evolution of phenotype adaptation of an individual cell.
Using a phenotype proxy, e.g., level of Delta, allows for identification of a continuous cell phenotype.
(c) Phenotype switches, as in (b) (dashed vertical lines), occur due to either a change in a cell’s
microenvironment or naturally present noise in intracellular signaling.

on the order of thousands for each cell [6]. Therefore, in order to formulate a math-
ematical model, it is tempting to use deterministic mean-field equations to describe
the kinetic reactions of this signaling pathway. However, deterministic descriptions
cannot account for noise-induced transitions between stable steady states or, in the
case of this signaling pathway, phenotypic switches, which can occur in regions of
bistability (see Figures 1(b) and 1(c)). Since branching patterns of vascular networks
are affected by the distribution of cells with different phenotypes, such phenotype
transitions are potentially significant. Therefore, we modeled the subcellular signal-
ing pathways stochastically, which increased the computational cost of the model.
This example illustrates a general problem associated with computational and, in
particular, hybrid models: in order to preserve emergent features of the system, such
as continuous cell phenotypes and noise-induced phenotype switches, the model be-
comes computationally intractable for large lattice simulations. Instead of simulating
the full system of stochastic kinetic reactions for the cell crosstalk, as was done in our
model of angiogenesis [45], the coarse-graining (CG) technique reduces the subcellular
system dynamics to a jump process involving phenotype switches (i.e., between stable
steady states of the system). This allows us to preserve the continuous description
of the steady states and noise-induced transitions between them, while substantially
reducing the computational effort required for simulation.

We illustrate the CG method by reference to the subcellular model of the VEGF-
Delta-Notch signaling pathway that defines cell phenotype. The core Delta-Notch
signaling pathway plays a key role in phenotype adaptation in cell types which can
form cell monolayers, such as epithelial sheets [36, 44], bristle patterning in Drosophila
[11, 30, 13], and neural precursor cells [22]. In all of these biological processes, the
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lateral inhibition mechanism of the Delta-Notch signaling pathway generates spa-
tial patterns of cells with alternating fates (phenotypes). For the particular case of
endothelial cells, we additionally take into account cell activation by a stationary
distribution of an extracellular stimulus, VEGF. In other cell types, which use lat-
eral inhibition to communicate, another external stimulus may play a similar role in
strengthening the respective roles of cell phenotypes (e.g., Wnt-activity in epithelial
cells in intestinal crypts [8]). In this paper we perform our simulations for two spatial
geometries: a cell monolayer and a branching network (Figure 1(a)). For our model
of multicellular VEGF-Delta-Notch signaling, we show typical simulation results of
the coarse-grained system which allow us to explore different configurations of spa-
tial patterns in a single realization of the model (due to phenotypic switches). We
then demonstrate how this dynamic exploration of possible patterns may be used
to uncover robust patterns emerging at long timescales. We finally compare the
spatio-temporal dynamics and computational cost of the full stochastic CTMC, the
coarse-grained and the deterministic mean-field descriptions. Our results show that
the coarse-grained model, while preserving the continuous description of cell phe-
notype and rare events of phenotype switching, is more computationally efficient
than the other two systems. Thus, it significantly reduces the computational com-
plexity of the model without sacrificing the rich dynamics of the original stochastic
system.

The remainder of the paper is organized as follows. In section 2, we review the
hybrid (multiscale) modeling approach (subsection 2.1) and summarize LDT (sub-
section 2.2). This provides us with the information needed to formulate the coarse-
grained model in section 3. In subsection 3.1, we start by coarse-graining the in-
dividual agent system and checking the accuracy of the method. We then extend
the technique to a multiagent system in subsection 3.2, where we outline a general
algorithm for formulating and simulating the coarse-grained model. In section 4, we
present typical simulation results for the model of the VEGF-Delta-Notch signaling
pathway (subsection 4.2) and compare the full stochastic, coarse-grained and mean-
field systems via metrics which quantify the spatial patterns formed by the two cell
phenotypes and we also compare computational cost of simulations (subsection 4.3).
The paper concludes in section 5 with a summary of our findings and suggestions for
future research directions.

2. Theoretical background.

2.1. Hybrid models. Biological systems are often highly complex, involving
processes that may interact across multiple spatial and temporal scales (see Figure 2).
From a general perspective, the subcellular scale is characterized by intracellular chem-
istry (e.g., gene expression, signal transduction, and receptor/ligand dynamics). Sub-
cellular processes determine behavior at the cellular scale and may generate emergent
properties at the tissue scale. In addition to this upward coupling across spatial scales,
there is downward coupling whereby extracellular chemicals and biomechanical cues
influence the subcellular chemistry/mechanics within a cell. In this way, dynamic
interactions, encompassing all the scales, can occur (Figure 2).

From the theoretical perspective, models which consider only processes at a single
spatial/temporal scale do not allow for investigation of emergent features which man-
ifest at other scales (for example, collective migration or phenotype patterning which
arises from individual cell dynamics and governs tissue scale organization). Equally,
difficulties associated with the physical interpretation of parameters in phenomenolog-
ical models, i.e., large-scale models which capture the overall evolution of a biological
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408 D. STEPANOVA, H. BYRNE, P. MAINI, AND T. ALARCÓN

Fig. 2. A schematic diagram illustrating characteristic spatial and temporal scales of a typi-
cal biological process and coupling between them. The VEGF-Delta-Notch signaling pathway, which
serves as an illustrative example for application of the CG method, acts at the subcellular scale (high-
lighted in blue) on a timescale shorter than other processes (e.g., cell migration, cell-extracellular
matrix interaction at the tissue scale) involved in the multiscale model of angiogenesis [45]. As a
result, we may use LDT theory to coarse-grain its dynamics.

process, make it challenging to fit the model to biological data. In particular, this
abstract parameter construct hinders model calibration/validation and limits poten-
tial applications of the models. Multiscale models, which couple processes at different
spatial and/or temporal scales, have the potential to address these issues [4].

A challenge in formulating a multiscale model relates to the number of entities
(protein, cells, extracellular components, etc.) that should be included at each scale of
interest. Using the same mathematical formalism to model processes involving enti-
ties which vary in number by several orders of magnitude may lead to the omission of
essential features or make the model computationally intractable. Hybrid approaches
are increasingly being recognized as suitable tools for trying to overcome problems of
this type and have become a key part of multiscale modeling [16, 17]. The central
idea is to employ the modeling framework most suitable to each subprocess and then
to couple them. For example, the extracellular environment and signaling cues are
usually modeled deterministically due to the large number of proteins involved. On
the other hand, cells may be treated as individual entities, equipped with a subcellular
model which determines their behavior (e.g., proliferation, cell polarity and migra-
tion). This framework has been used to develop multiscale models of cancer (see the
reviews [16, 41] and references therein), angiogenesis [28], and collective cell migration
[17], among other examples [2].

Hybrid modeling allows for efficient parameter estimation and model visualiza-
tion, forging interdisciplinary collaboration between researchers in theoretical mod-
eling and experimental biology [2, 37]. There is also the potential of using high-
throughput experimental data to develop more detailed multiscale models. As an
example, one of the aspects of biological systems that has received little attention in
theoretical modeling is the effect of stochasticity in the response of individual entities
to external stimuli [17]. Hybrid modeling allows investigation of this effect on the
collective, emergent behavior. However, increasing computational complexity makes
these models intractable for large-scale simulations [16].

This challenge motivated us to develop a technique which reduces the compu-
tational complexity of a model while preserving its stochasticity. The method is
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applicable to systems characterized by stochastic processes which exhibit multistabil-
ity and which evolve on timescales shorter than those associated with other system
processes. The example that we study in this paper is of this type: the subcellular dy-
namics of cell fate determination via lateral inhibition (a bistable, stochastic system)
act on a shorter timescale than those associated with, for example, cell migration,
and tissue scale processes such as the dynamics of extracellular soluble factors (e.g.,
diffusion, secretion by cells, degradation) [28] (Figure 2). This observation motivates
us to use LDT to coarse-grain the dynamics associated with intracellular signaling to
produce a jump process (i.e., a Markov chain) on the stable state space of the steady
states of the original system which describes the VEGF-Delta-Notch pathway.

2.2. Large deviation theory. In the presence of noise, small fluctuations can
drive significant deviations from mean-field behavior such as, for example, transitions
from one stable steady state to another. These transitions are usually referred to as
rare events since their likelihood is small. LDT is predicated on the assumption that
when rare events occur, the system follows the least unlikely paths. Deviations from
these paths occur with very small probability (i.e., smaller than the probability of
a rare event). Specifically, the Freidlin–Wentzell theory of large deviations predicts
that the deviations are exponentially suppressed [23], making such transitions “pre-
dictable.” LDT provides the means to analyze the frequency of rare events and to
identify the maximum likelihood path (minimum action path (MAP)) along which
these transitions can occur.

An SDE of a diffusion process, xϵ ∈ Rn, has the following form:

dxϵ(t) = b(xϵ)dt+
√
ϵσ(xϵ)dW,(2.1)

where b : Rn → Rn is a drift vector, a(xϵ) = (σσT )(xϵ) is a diffusion tensor (σ : Rn →
Rn × Rm, m corresponds to the number of kinetic reactions in the system), W is a
Wiener process in Rm, and ϵ = Ω−1 is noise amplitude.

The mean-field limit of (2.1), x(t) ∈ Rn, solves the following differential equation:

dx

dt
= b(x).(2.2)

Assume that (2.2) has two stable steady states, x1, x2 ∈ Rn, whose basins of
attraction form a complete partition of Rn. We are interested in transitions from
x1 → x2 (and x2 → x1) which cannot be accounted for unless noise is present in the
system.

A key player in LDT is the action functional

ST (ψ) =


∫ T

0

L(ψ, ψ̇) dt if ψ ∈ C(0, T ) is absolutely continuous and
the integral converges,

+∞ otherwise,

which is computed for a transition path ψ : [0, T ] → Rn from x1 to x2 (ψ(0) = x1 and
ψ(T ) = x2, T is the transition time). Here, ψ̇ denotes the gradient of the transition
path, ψ; L(x, y) = supθ∈Rn (⟨y, θ⟩ −H(x, θ)) is the large deviation Lagrangian, with
⟨·, ·⟩ being the Euclidean scalar product in Rn and H(x, θ) being the Hamiltonian
associated with L(x, y). The particular form of the Hamiltonian depends on the
dynamical system under consideration (in section SM2, we explain how to define the
Hamiltonian for an SDE such as (2.1) and a general birth-death CTMC).
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Fig. 3. An illustration of a transition path between two stable steady states of an arbitrary
bistable system. The two stable steady states, x1 and x2, are marked by filled red circles; an unstable
saddle point is marked by an unfilled red circle. The transition path, ψ(t), from x1 to x2 is shown
by a thick green line, whereas a single stochastic trajectory, xϵ(t), is indicated by a thin black path.
The shaded blue region indicates a δ-neighborhood around ψ(t) (δ as defined in (2.3)).

The action functional is used to estimate the probability that a trajectory xϵ(t)
lies in a narrow neighborhood, of width δ > 0, of a given path ψ ∈ C(0, T ) (see
Figure 3 for an illustration):

P

{
sup

0≤t≤T
| xϵ(t)− ψ(t) |< δ

∣∣∣∣ xϵ(0) = x1

}
≈ exp

{
−ϵ−1ST (ψ)

}
.(2.3)

Since the probability function in (2.3) decreases as the action functional, ST (ψ),
increases, the maximum likelihood path, ψ∗, is the minimizer of ST (·). This leads
naturally to the idea of the quasipotential:

V (x1, x2) = inf
T>0

inf
ψ∈Cx2

x1
(0,T )

ST (ψ).(2.4)

Here C
x2

x1
(0, T ) is the space of absolutely continuous functions f : [0, T ] → Rn such

that f(0) = x1 and f(T ) = x2. Roughly speaking, the quasipotential gives an estimate
of how “difficult” it is to move from x1 to x2. Thus, the quasipotential value depends
on the direction of a transition path and, in general, V (x1, x2) ̸= V (x2, x1).

On timescales which are much longer than those associated with relaxation to a
stable steady state, the dynamics of (2.1) can be reduced, or coarse-grained, to that of
a CTMC on the state space of the two stable steady states, {x1, x2}, with transition
rates [23, 47]

kx1→x2
≍ exp

(
−ϵ−1V (x1, x2)

)
, kx2→x1

≍ exp
(
−ϵ−1V (x2, x1)

)
.(2.5)

Here the symbol ≍ denotes log-asymptotic equivalence so that f(ϵ) ≍ g(ϵ) if and only

if limϵ→0
log f(ϵ)
log g(ϵ) = 1.

In practice, most double minimization problems, such as (2.4), do not have a solu-
tion for finite T > 0. Furthermore, closed-form Lagrangians exist for SDEs of the type
defined by (2.1) but not for general birth-death CTMCs. (2.4) can be reformulated
in terms of a Hamiltonian system of the form
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dϕ

dt
=
∂H(ϕ, θ)

∂θ
,

dθ

dt
= −∂H(ϕ, θ)

∂ϕ
.

This problem must be solved as a boundary-value problem, i.e., ϕ(0) = x1 and ϕ(T ) =
x2, on an infinite time interval, T → ∞, [26] which makes it a nontrivial numerical
problem. Thus the traditional LDT methods are inapplicable in most cases.

One way to resolve these problems is to reformulate the minimization problem
defined by (2.4) on the space of curves (i.e., transition paths from one stable steady
state to another). In [29], Heymann and Vanden-Eijnden proved that the minimization
problem defined by (2.4) is equivalent to

V (x1, x2) = inf
ϕ
Ŝ(ϕ) with Ŝ(ϕ) = sup

θ̂:[0,1]→Rn

H(ϕ,θ̂)=0

∫ 1

0

⟨ϕ′, θ̂⟩ dα,(2.6)

where ϕ : [0, 1] → Rn is a curve from x1 to x2 parametrized by standard arc length.
The geometric reformulation, (2.6), resolves analytically the issue of the infinite

time, T , in the original minimization problem. Furthermore, only the Hamiltonian
is needed. In this respect, the method is more general as it can be applied to SDEs,
CTMCs, and other systems for which the Hamiltonian is known (see section SM2 in
Supplementary Material).

In [29], an algorithm was developed to efficiently compute V (x1, x2) and the
corresponding minimizer, ϕ∗, from the geometric reformulation. The algorithm is
known as the geometric minimum action method (gMAM) and the minimizer, ϕ∗, of
the action functional is referred to as the minimum action path, or MAP (for more
details see section SM2).

Once the quasipotential has been computed, the coarse-grained system is given
by a CTMC, with rates defined by (2.5).

3. Coarse-graining. We now illustrate how the theory described in the previ-
ous section can be used to coarse-grain a specific hybrid multiscale model, one for
which the internal dynamics of the agents are described by multistable stochastic
systems. This property is characteristic of, for example, systems driving cell fate
(phenotype) determination. We begin by using LDT to formulate a CG model for
a system comprising a single agent (here a cell). The subcellular signaling pathway,
which we use to illustrate the method, is the VEGF-Delta-Notch pathway (see sec-
tion SM1 in Supplementary Material and [45] for details). This pathway regulates
phenotypic adaptation via lateral inhibition [12, 36]. This system meets the require-
ments for application of the CG technique: (a) it is bistable; its stable steady states
are associated with cellular phenotypes (Delta-high and Delta-low cells); (b) we are
interested in its evolution on timescales longer than the typical time for relaxation to
an equilibrium since other processes (e.g., cell migration and dynamics of extracellular
matrix) act on longer timescales (see Figure 2).

We then extend the method to the general case of multiagent systems. Here the
dynamics of each entity is coarse-grained to a CTMC on the state space of its stable
states, and coupling between the internal dynamics of individual agents is achieved
via the external variables whose dynamics depend on the states of neighboring agents
and/or the time evolution of these variables. We outline below how we apply this
method to a monolayer of cells (motivated by phenotype patterning via the core
Delta-Notch pathway in cell monolayers [36]) and a branching network (angiogenesis-
motivated application [45]) that interact via VEGF-Delta-Notch signaling.
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412 D. STEPANOVA, H. BYRNE, P. MAINI, AND T. ALARCÓN

3.1. Individual agent system. Our algorithm for coarse-graining a stochastic
system with a region of multistability involving a single entity is illustrated in Fig-
ure 4. For the particular case of VEGF-Delta-Notch signaling, a cell’s internal state
(phenotype) depends on two model parameters (inputs) corresponding to the extra-
cellular levels of Delta and Notch, v = (dext, next) ∈ R2 (corresponding to the levels
of Delta and Notch, respectively, that the cell under consideration perceives from the
cells in its external microenvironment; see section SM1). We fix the values of the
model parameters and the external variables, v (see Table SM3). We then use the
mean-field system defined by equation (SM1.2) to compute the steady state solutions.
For this example, the values of the external variables, v, are chosen so that the system
is bistable; the two stable steady states correspond to Delta-high and Delta-low cell
phenotypes, {x1, x2} = {Delta-high, Delta-low}, and the unstable steady state is an
unstable saddle. Our goal is to compute the transition rates of the CG system which
we approximate as follows:

kxs→xl
≈ Cxs→xl

exp (−ΩV (xs, xl)) , s, l ∈ {1, 2} , s ̸= l.(3.1)

We note that the prefactor, Cxs→xl
, arises from the asymptotic equivalence relation

defined by (2.5) [23, 39, 34]. The system size is given by Ω = ϵ−1, where ϵ is the noise
level.

We use the gMAM to compute the quasipotential values and corresponding paths
(MAPs) for transitions between the Delta-high and Delta-low phenotypes (for more
details, see section SM4 in Supplementary Material). An illustrative example is shown
in Figure 5, where we compare the MAPs and sample paths of the full stochastic
CTMC for an individual cell (see also Table SM2 in section SM1). Several character-
istic features of the phenotype transitions are noteworthy. First, the dynamics of the
MAP can be split into two parts: the transition from the steady state of origin to the
saddle point (for example, from the Delta-low phenotype to the saddle point, indicated

Fig. 4. A flowchart of the procedure used to coarse-grain a multistable stochastic system for
an individual entity. The steady state solutions, quasipotential, and prefactor depend on the model
parameters and external variables, v ∈ RV (V indicates the dimension of the vector of external vari-
ables). Here the transition rates, kxs→xl , are defined by (3.1), the prefactor, Cxs→xl , is determined

from (3.2b), and Ω is given by (3.3).

D
ow

nl
oa

de
d 

03
/2

6/
22

 to
 1

29
.6

7.
18

7.
61

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COARSE-GRAINING MULTIAGENT STOCHASTIC SYSTEMS 413

by the blue circle in Figure 5(a)) which is possible due to the presence of noise. The
main contribution to the quasipotential comes from this transition. The MAP from
the unstable saddle point to the stable steady state of destination (from the saddle
point indicated by the blue circle to the Delta-high phenotype in Figure 5(a)) follows
the fastest route given by the deterministic heteroclinic orbit connecting the steady
states (i.e., the unstable saddle and the stable Delta-high cell state). For systems that
possess a single unstable saddle point and no other limit sets such as periodic orbits,
it is possible to show that the MAP crosses the separatrix at the unique saddle point
(see, e.g., [23, 46, 26] and references therein). Thus, Figure 5 confirms the accuracy
of the implemented gMAM for the system of interest. The second noteworthy feature
of the phenotype transitions is that, as the level of noise, ϵ, decreases, the stochastic
sample path follows the MAP more closely (compare Figures 5(a) and 5(b) for which
Ω = ϵ−1 = 70 and Ω = ϵ−1 = 450, respectively). In addition, Figure SM4 illustrates
the corresponding transition tubes (tubular neighborhoods around the MAPs within
which transitions between steady states occur) for these phenotype transitions.

To fully determine the CG transition rates, the prefactor value, Cxs→xl
, must be

estimated. From (3.1), for s, l ∈ {1, 2} , s ̸= l, we have

log⟨TΩ
xs→xl

⟩ ≈ ΩV (xs, xl)− logCxs→xl
,(3.2a)

logCxs→xl
≈ ΩV (xs, xl)− log⟨TΩ

xs→xl
⟩ ,(3.2b)

where ⟨TΩ
xs→xl

⟩ = 1/kxs→xl
is the mean passage time between the stable steady states,

xs and xl (Delta-high and Delta-low phenotypes), for a fixed value of the system size,
Ω. ⟨TΩ

xs→xl
⟩ can be determined from direct simulation of the full stochastic model

using the reaction kinetics given in Table SM2.
An accurate estimate of the quasipotential (as obtained via the gMAM) allows

us to obtain the prefactor given the mean passage time, ⟨TΩ
xs → xl

⟩, for a single value
of the system size, Ω. However, the approximate relation in (3.2) is valid in the
limit Ω → ∞ (see Figure 6). Thus, Ω should be chosen sufficiently large to achieve
convergence in (3.2) and, at the same time, not too large in order to ensure that tran-
sitions between the phenotypes occur in a computationally feasible time, since the
waiting times for transitions between stable steady states increase exponentially as Ω
grows. Specifically, since larger values of the quasipotential, V (xs, xl), in (3.2) lead
to longer mean passage times, a maximum simulation time, Tmax, can be determined
computationally by simulating the original stochastic system for the values of the ex-
ternal variables, v, for which the quasipotential is large (either V (xs, xl) or V (xl, xs)).
For the VEGF-Delta-Notch signaling pathway, the quasipotential is characterized by
larger values close to the border of the bistability region. Thus, we performed several
realizations of the full stochastic system, choosing several values of v for which at least
one of the quasipotentials is large, and recorded the maximum simulation time, Tmax,
and the average prefactor estimate obtained, C̄. The corresponding system size, Ω,
is then approximated as follows:

Ω ≈ log Tmax + log C̄

V (xs, xl)
.(3.3)

Then the prefactor, Cxs→xl
, can be approximated using (3.2b) with Ω = Ω.

From (3.2a), we know that log⟨TΩ
xs → xl

⟩ is a linear function of Ω whose slope and
intercept are given by the quasipotential, V (xs, xl), and (− logCxs → xl

), respectively.
Thus, in order to check the accuracy of our estimate for the system size, Ω (3.3), we
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414 D. STEPANOVA, H. BYRNE, P. MAINI, AND T. ALARCÓN

(a) system size, Ω = 70 (noise level, ϵ = 1/Ω ≈ 0.014)

(b) system size, Ω = 450 (noise level, ϵ = 1/Ω ≈ 0.002)

Fig. 5. An illustration of the MAPs and stochastic sample paths for transitions between the
Delta-high and Delta-low cell phenotypes. We computed the MAPs (indicated by the dotted ma-
genta lines) for the subcellular VEGF-Delta-Notch system in an individual cell using the gMAM
for transitions from (a) Delta-low to Delta-high cell and (b) Delta-high to Delta-low cell. The sto-
chastic sample paths obtained by simulating the full stochastic CTMC model (Table SM2) with the
system sizes (a) Ω = 70, (b) Ω = 450, are plotted in black. The thin gray lines indicate streamlines
of the corresponding mean-field system (equation (SM1.2)). The Delta-high (Delta-low) cell stable
steady state is indicated by a green (red) filled circle, the unstable saddle by a blue unfilled circle.
The plots represent three-dimensional projections of the full five-dimensional system as defined by
equation (SM1.2). Parameter values are fixed as indicated in Table SM3.
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COARSE-GRAINING MULTIAGENT STOCHASTIC SYSTEMS 415

(a) (b)

Fig. 6. Convergence of the quasipotential, V (xs, xl), as the system size, Ω, increases. We ran
1000 realizations of the stochastic VEGF-Delta-Notch model for an individual cell (see Table SM2)
for fixed values of dext = 0.2, next = 0.5 and increasing system size, Ω. We plotted the convergence
to the quasipotential value (a) V (Delta-low,Delta-high) and (b) V (Delta-high,Delta-low) as a func-
tion of Ω (black circle markers). For these parameter values, transitions from the Delta-low to the
Delta-high phenotype are less likely to occur (higher noise levels, ϵ = Ω−1, and/or longer transition
times are needed) than transitions from the Delta-high to Delta-low phenotype (see (3.2a)). There-
fore, the perturbations of this random event are smaller and convergence is reached for higher values
of noise. This is why lower values of Ω in (a) suffice to accurately determine the prefactor value
from (3.2). The blue dashed lines indicate the value of the corresponding quasipotential computed
via the gMAM; the red dotted lines indicate Ω from (3.3). All other parameter values are fixed as
indicated in Table SM3.

compared linear fitting of data obtained from the full stochastic CTMC model for
increasing Ω, with the estimate obtained from the gMAM quasipotential and the
prefactor extracted from simulations with system size, Ω. The results presented in
Figure 7 show that the estimates converge as Ω increases, confirming the accuracy of
the two methods.

To summarize, we coarse-grain the stochastic VEGF-Delta-Notch dynamics as
follows (see Figure 4):

I Fix the model parameter values and the vector of external variables, v, which,
for this system, is given by the extracellular levels of Delta and Notch, v =
(dext, next).

II Compute the steady states of the corresponding mean-field system (equa-
tion (SM1.2)).

III Formulate the CG model:
i If, for the given v = (dext, next), the system is monostable (either Delta-
high or Delta-low cell steady state exists), then the quasipotential value
to arrive at this state is 0. The value of the other quasipotential can
be assumed infinite (since the system is monostable, this transition is
impossible). For example, if the only stable steady state is the Delta-high
cell, then V (Delta-low,Delta-high) = 0 and V (Delta-high,Delta-low) =
∞. The CG model is defined by its unique stable steady state.

ii If the system is within the bistable regime (both Delta-high and Delta-
low steady states are stable), then the CG model is defined as a CTMC
on the state space of {xs, xl} = {Delta-high, Delta-low}. The transition
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416 D. STEPANOVA, H. BYRNE, P. MAINI, AND T. ALARCÓN

(a) Delta-low → Delta-high (b) Delta-high → Delta-low

Fig. 7. Prefactor estimation. Comparison of prefactor estimates obtained from simula-
tions of the full stochastic CTMC model (black circles) and estimates obtained using the gMAM-
quasipotential and mean passage times for a single value of the system size, Ω (blue line); see
(3.2a). The linear fit of the full stochastic data (red line) was performed for values of Ω such that
the corresponding sample {TΩ

xs → xl
} is exponentially distributed (high levels of noise might affect

the distribution of these transitions). Panel (a) corresponds to the transition from Delta-low to
Delta-high phenotype; panel (b) corresponds to the transition from Delta-high to Delta-low pheno-
type. The red dotted lines indicate Ω from (3.3). All other parameter values are fixed as indicated
in Table SM3.

rates are given by (3.1). The quasipotential, V (xs, xl), is approximated
using the gMAM; the prefactor value, Cxs → xl

, is obtained via (3.2b)
from stochastic simulations of the full VEGF-Delta-Notch model for a
fixed value of the system size, Ω, defined by (3.3).

IV The CG model can be simulated using any variant of the stochastic simulation
algorithm, such as, for example, the classical Gillespie algorithm [25].

The above method generalizes naturally for systems with an arbitrary number
of stable steady states (see Figure 4). In this case, the quasipotential and the corre-
sponding prefactor must be approximated for each pair of stable steady states. The
method can also be applied to systems which possess other attractors, e.g., limit cycles
[15, 23].

3.2. Multiagent system. In this section we show how the CG method can be
applied to multiagent systems with a region of multistability. In this case, the dynam-
ics of each agent is coarse-grained to that of a CTMC between its stable steady states
for given values of the external variables, v, which establish the coupling between
the internal dynamics of individual agents (v depends on the state of agents in the
local environment of the focal agent and/or time and defines its internal state, e.g.,
phenotype). If the dynamics of an individual agent are independent of its neighbors
and time (i.e., the values of the external variables are constant), then we use the CG
method described in subsection 3.1 (see also Figure 4). A suitable range of values for
the external variables, v ∈ V, where V ⊂ RV , can be determined by simulating the
original multiscale model. Here V indicates the dimension of the vector of external
variables, v. In order to reduce the computational cost in the multiagent CG system,
it is convenient to calculate a priori look-up tables for the steady states, quasipotential
and prefactor values for a discretization, {vj}j∈J ⊂ V (here, j indexes entries in the

generated discretization; J is the size of the discretization). Interpolation routines
can then be used to establish an input-output relationship between an arbitrary v ∈ V
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and the values of the corresponding steady states and the transition rates between
them. Therefore, we split the general CG method for multiagent systems into two
steps (see Figure 8):

(i) Presimulation: calculate look-up tables for the system steady states, quasi-
potential, and prefactor values for each entry in a discretization, {vj}j∈J , for

a range of values of the external variables, V ⊂ RV .
(ii) Simulation: the CG model is simulated (via, e.g., the Gillespie algorithm)

as a CTMC on a state space defined by the steady states of all of its entities,
with the coupling maintained via the external variables, v, updated at each
simulation step according to entities’ local environments and/or time.

We now provide more details on the presimulation and simulation steps.

3.2.1. Presimulation: Look-up tables. Precomputed look-up tables of sys-
tem steady states, quasipotential, and prefactor values are used to interpolate the
values of the system steady states and the CG transition rates between them for an
arbitrary set of values of the external variables, v ∈ V, without calculating them ex-
plicitly at each step during simulations of the CG model. By an accurate estimation
of the range of the external variables, V, we ensure that these look-up tables need
to be computed only once, prior to the simulation of the CG system. In a general
setting, the dimension of each table is equal to V , the dimension of the vector of
external variables.

Fig. 8. A flowchart of the procedure to coarse-grain a multiagent stochastic system with a region
of multistability. A pseudocode of the simulation algorithm for the multiagent CG model is presented
in section SM5. The simulation part of the diagram illustrates an iteration of the Gillespie algorithm
for simulation of multiagent CG systems. Here Tfinal stands for the final simulation time; Exp(λ)
is an exponential distribution of intensity, λ.
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The steady states must be computed numerically for each entry vj in the dis-
cretization, {vj}j∈J , using the mean-field limit for an individual entity (as described

in subsection 3.1). For values of vj that fall within the multistability region, the
quasipotential is computed via the gMAM in a pairwise manner, for each pair of
stable steady states, {xs}Ss=1. The last look-up table corresponds to the prefactor,
Cxs→xl

, xs, xl ∈ 1 . . .S, which must be approximated for each vj within the multi-
stability region. The prefactor values are obtained from (3.2b) as before, using the
mean passage times, ⟨TΩ

xs → xl
⟩, which are determined by simulating the full stochastic

model with the system size, Ω = Ω, defined by (3.3).

3.2.2. Simulation algorithm. Once all the look-up tables have been computed,
the multiagent CG system can be simulated as a standard Gillespie algorithm (or one
of its variants, e.g., the next subvolume method [20]) in which the total propensity,
P , at each time step is computed as a sum of transitions, kexs→xl

, for each entity, e, to
switch its (stable) state (see Figure 8). The steady states corresponding to each entity
(and the transition rates between them) for the exact value of the external variables
ve ∈ V (ve has to be computed for each entity, e, according to its microenvironment)
are interpolated via appropriate numerical routines. We present pseudocode for the
simulation procedure in section SM5.

Note that our CG method does not account for the initial, relatively short (com-
pared to the LDT timescale), relaxation time during which the system relaxes onto
the timescale on which the CG approximation is valid. Thus, it is necessary to ob-
tain an initial stable steady state configuration, i.e., to prepattern the system, using
either the full stochastic CTMC or the mean-field model (see Figure 8 and line 5 in
Algorithm SM5.1). The final simulation time for the prepatterning should be large
enough to ensure that the system relaxes to an equilibrium. Since this procedure
is performed only once, it does not affect the computational complexity of the CG
simulations. We have chosen to use the mean-field system to prepattern our simu-
lations since it is less time-consuming and the stochasticity (i.e., transitions between
phenotypes) is preserved later in the CG simulation loop.

4. Results. For illustrative purposes, we consider the specific example of spatial
phenotype patterning via the Delta-Notch lateral inhibition mechanism in response to
an external signaling cue (VEGF). First, we provide more details about our implemen-
tation of the CG model and present typical simulation results and the robust patterns
that emerge at long times. We then discuss the relative merits of the CG method,
using a variety of metrics to compare its performance with the original stochastic
and mean-field systems. We used the next subvolume method [20] for simulations of
the full stochastic CTMC and the Euler–Lagrange method (explicit scheme) for the
numerical integration of the mean-field equations.

4.1. CG model of spatial cell phenotype patterning. The multicellular
VEGF-Delta-Notch (i.e., the Delta-Notch signaling pathway coupled with external
VEGF stimulation) model is bistable (see section SM1 in Supplementary Material).
When simulated in a two-dimensional geometry, it produces “salt-and-pepper” pat-
terns in which the phenotypes of neighboring cells alternate between Delta-high and
Delta-low states [45]. For this model, cross-talk between individual cells is achieved via
external variables, dext and next, which represent the levels of Delta and Notch, respec-
tively, summed over cells in a circular neighborhood with a fixed interaction radius, Rs
(see Figure 9 and section SM1). Hence, for this system, v = (dext, next) defines a cell’s
internal state (phenotype) and the dimension of the precomputed look-up tables is 2
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Fig. 9. A schematic diagram showing the nonlocal interactions in the multicellular VEGF-
Delta-Notch model. Cell-to-cell interactions may be nonlocal (i.e., beyond immediate neighbors on a
given lattice) provided they lie within an interaction radius, Rs. The diagram illustrates the weights
of interactions between the focal cell (highlighted in blue) and cells in its neighborhood for a regular
hexagonal lattice (the weights are defined as a normalized area of the overlap between a neighboring
voxel and the circular neighborhood of the focal cell; see equation (SM1.3) in section SM1).

(see subsection 3.2.1). We determined a suitable range, V = [0, dmaxext ]×[0, nmaxext ] ⊂ R2,
for these variables by running 100 realizations of the multiscale model of angiogenesis
(the number of realizations depends on the model of interest).

We then generated a regular discretization of V, {vj}j∈J , with a grid 100× 100.
For each vj in this grid, we computed the steady states for the mean-field limit defined
by equation (SM1.2) using nonlinear solvers from the C++ GNU Scientific Library.
We note that, once the steady states of the full system have been computed, the
subcellular variables ι, r2, and r

∗
2 , corresponding to the Notch intracellular domain,

VEGF receptor 2 (VEGFR2), and VEGF-VEGFR2 complexes, respectively (see defi-
nitions in section SM1 in Supplementary Material), are redundant; it is not necessary
to track these variables because the input-output relationship between v = (dext, next)
and the steady states completely defines the configuration of the system.

For values of vj that fall within the bistability region, we computed the quasipo-
tential values of the transitions between phenotypes (see Figure 10) using the gMAM
(see section SM2 in Supplementary Material). We also used the full stochastic sys-
tem to check those values of the quasipotential for which a phenotype switch is more
likey to occur. As expected, most phenotype transitions occur close to the boundary
of the bistability region, where values of the quasipotential are lower. For exam-
ple, Figures 10(a) and 10(b) show a sample path of the full stochastic system for
an individual cell during a simulation of the multiagent model [45]. The cell un-
dergoes a noise-induced switch from a Delta-high to a Delta-low phenotype. Fig-
ures 10(c) and 10(d) show the same sample path projected onto the quasipotential
surfaces. These plots show that phenotypic switches are more likely to occur when
the values of external Delta and Notch, (dext, next), are such that the quasipotential,
V (x1, x2) = V (Delta-high,Delta-low), is small.

We constructed a look-up table of prefactor values, Cxs→xl
, xs, xl ∈ {Delta-high,

Delta-low}, by approximating the mean passage times, ⟨TΩ
xs→xl

⟩ (sample size of 1000
realizations), for an individual cell to switch its phenotype from simulations of the
full stochastic CTMC (Table SM2) with the system size, Ω, given by (3.3).

We then implemented the CG model in C++ using Algorithm SM5.1. In order
to establish an input-output relationship between an arbitrary v = (dext, next) and
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(a) (b)

(c) (d)

Fig. 10. An illustration of the quasipotential surfaces. Upper panels: a noise-induced transition
from Delta-high (in magenta) to Delta-low (in black) phenotype of a single cell during a simulation
of the angiogenesis model [45] plotted as a function of the focal cell’s (a) Delta and (b) Notch levels.
The external Delta, dext, (Notch, next) for the focal cell is computed as a weighted sum of the Delta
(Notch) levels of its neighbors as defined by equation (SM1.4). Lower panels: two-dimensional pro-
jections of the quasipotential surfaces (c) V (Delta-low,Delta-high) and (d) V (Delta-high,Delta-low)
as functions of dext and next. The monostability region in which the unique stable steady state
corresponds to a Delta-high (Delta-low) cell is colored green (red). The color bar indicates the value
of the corresponding quasipotential. The trajectory (as in panels (a) and (b)) plotted on the quasipo-
tential surfaces (in (c) and (d)) illustrates that phenotype switches are more likely to occur for lower
values of the quasipotential. Parameter values are fixed as indicated in Table SM3.

the corresponding cell phenotypes and transition rates, we used bilinear interpolation
routines from the C++ GNU Scientific Library (gsl interp2d routines). The model
was then simulated using the standard Gillespie algorithm. We used no-flux boundary
conditions to compute for each cell the extracellular levels of Delta and Notch in all
our simulations.

4.2. Spatial patterning in the CG model. In order to illustrate the CG
model, we first ran numerical simulations on a small cell monolayer (10 × 12 vox-
els). The results presented in Figures 11(a) to 11(d) show how the distribution of
Delta-high and Delta-low cells changes over time during a typical CG realization (see
also Movie S1 [local/web 6.5MB]). Starting from an initial prepattern (Figure 11(a)),
noise-induced phenotype transitions enable the system to explore different pattern
configurations for the given geometry, while the proportion of Delta-high cells re-
mains on average constant (see Figure 11(e)).
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(a) (b)

(c) (d)

(e)

Fig. 11. Different pattern configurations explored by the CG model. (a)–(d) Series of plots
showing how the distribution of cell phenotypes changes over time during a single simulation of the
CG model. The color bar indicates the level of Delta. (a) t = 0; (b) t = 40; (c) t = 260; (d)
t = 410 minutes. (e) Time evolution of the Delta-high cell proportion (defined as a ratio of cells
with the Delta-high phenotype to the total cell number) for a single simulation of the CG model (blue
line) and averaged over 1000 realizations (red line). For these simulations, the interaction radius
and system size were fixed at Rs = 15µm and Ω = 100, respectively; the values of the remaining
parameters were fixed as indicated in Table SM3.
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The mean proportion of Delta-high cells (and, thus, the spatial pattern) during
simulations of the CG system depends on the interaction radius, Rs. For values of
Rs corresponding to nearest-neighbors interaction (Rs ≤ 1.5h, where h is the voxel
width), we observe classical patterns of alternating Delta-high and Delta-low cells (i.e.,
the so-called salt-and-pepper pattern [12]; see Figure SM6a). As Rs increases, the
number of Delta-low cells that may be inhibited by a focal Delta-high cell increases,
causing the proportion of Delta-high cells in the spatial patterns to decrease [45].
Thus, for larger values of Rs (Rs > 1.5h), Delta-high cells are separated by larger
distances (see Figures SM6b to SM6d). These results for CG simulations are consistent
with those obtained for the full multicellular stochastic model of the VEGF-Delta-
Notch signaling pathway [45]. The ability of the CG system to explore different
spatial patterns increases as the size of the interaction radius, Rs, grows, and the
corresponding emerging patterns are more diverse (see Figures SM6b to SM6d and
Figures 11(a) to 11(d)).

It is noteworthy that spatial patterns explored in simulations of the CG model
differ in their robustness to noise. In particular, the mean passage time for a phenotype
switch, and, thus, a change in the pattern, to occur, which is equal to the inverse of
the total propensity, P , depends on the values of the quasipotential, V (xs, xl), for all
entities in the system. Here, the total propensity, P , for a phenotype switch event is
defined as a sum of, transition rates, kexs→xl

, for each cell with index, e, to change its
state from xs to xl; see Figure 8. When, via random exploration, the system finds
a configuration for which the values of V (xs, xl) are larger, the waiting time for a
phenotype switch increases and the configuration is more resilient to further changes.

This feature of the CG method facilitates exploration of new robust spatial pat-
terns which cannot practically be achieved using other numerical frameworks: (i) sim-
ulations of the full stochastic model are too computationally intensive, which makes
the exploration of these patterns infeasible because of the longer timescales needed;
(ii) the deterministic framework does not allow for transitions between stable steady
states, which makes this exploration impossible; (iii) the complexity of analytic meth-
ods needed to verify the stability of a pattern of a system with nonlocal interactions
does not permit exploration of complex pattern configurations [38].

We now present simulation results which illustrate the ability of the CG method
to uncover new spatial patterns for the VEGF-Delta-Notch system at long times. We
fixed the interaction radius at Rs = 3.0h = 15µm (h = 5µm is the voxel width), so
that interactions occur between cells that are first and second order neighbors in the
lattice; the noise amplitude was fixed at ϵ = Ω−1 = 0.001. We ran a CG simulation on
a medium-size monolayer of cells (see Figure 12(a) and Movie S2 [local/web 5.9MB]).
Starting from the initial prepattern, the CG model explores various patterns until
it eventually settles on a more robust configuration (shown in Figure 12(a)). In
order to confirm our prediction regarding pattern robustness, we plotted the temporal
evolution of the total propensity of the lattice, P , in Figure 12(b). As its value
decreases, P → 0, the mean waiting time for a change in the spatial pattern becomes
infinite, which accounts for the robustness of the emerging pattern. We also considered
the dynamics of an individual cell (its position in the monolayer is highlighted by
a cyan line in Figure 12(a)). Figure 12(c) shows how the phenotype of this cell
changes over time: at early times, the cell switches between Delta-high and Delta-
low phenotypes (low (high) values of subcellular Delta, d, correspond to Delta-low
(Delta-high) phenotype). As the spatial pattern settles to a robust configuration, the
cell’s environment, i.e., the levels of Delta of its neighbors, dext, stops changing and
the cell acquires a Delta-high phenotype that remains unchanged for the rest of the
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(a) (b)

(c) (d)

Fig. 12. Emergence of robust pattern configurations in simulations of the CG model. At long
times, via exploration of different pattern configurations, the dynamics of the CG system evolve to a
robust pattern in which any further phenotype switches are unlikely. (a) A typical emergent pattern
for a single realization of the CG model (the color bar indicates the level of Delta, d, for each cell).
(b) The time evolution of the total propensity, P , for a phenotype switch to occur. Cells in the border
rim (three-cell width) are excluded from P since, due to the model geometry, they do not possess a
“robust” configuration of neighbors. As P decreases to 0, the waiting time for a phenotype switch
to occur approaches infinity, and the pattern becomes more robust to change. (c)–(d) The dynamics
of an individual cell (outlined in cyan in (a)) during this simulation. (c) Temporal evolution of
the internal level of Delta, d (defining cell phenotype: high (low) values of d correspond to Delta-
high (Delta-low) phenotype), and that in its microenvironment, dext. (d) Temporal evolution of
transition rates for a phenotype switch for this cell. We note that the large difference in the order
of values for transition rates for the total propensity, P , of the lattice (O(106)), plot (b), and for an
individual cell (O(10−17)−O(10−3)), plot (d), comes from the contribution to P of transition rates
for cells which are, for the given values of the external variables, on the border of the bistability
region (see Figure 10). For these simulations, the interaction radius and system size were fixed
at Rs = 15µm and Ω = 1000, respectively; the values of all remaining parameters were fixed as
indicated in Table SM3.
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simulation. The transition rates for phenotype switches for this cell (Figure 12(d))
exhibit similar dynamics to the total propensity, P , of the whole lattice (Figure 12(b)).

Our CG simulation results show that this robust pattern configuration is not
unique. However, we note that the spatial patterns tend to have a regular structure;
for example, Delta-high cells may be organized in similar clusters comprising two
or three cells as in the pattern shown in Figure 12(a). These configurations have
lower values of the total propensity, P . Cells on the border of the lattice undergo
phenotype switches (see Movie S2 [local/web 5.9MB]), since they cannot attain this
“more robust” combination of neighbors for the given geometry (since we use no-flux
boundary conditions in our simulations).

4.3. Comparison of the full stochastic, coarse-grained, and mean-field
frameworks. We compared the dynamics of the multicellular VEGF-Delta-Notch
model using three frameworks:

(i) full stochastic CTMC in which each cell’s dynamics is given by the set of
kinetic reaction rates listed in Table SM2 of Supplementary Material;

(ii) CG description formulated as in subsection 4.1;
(iii) deterministic mean-field description in which each cell is equipped with a set

of deterministic ODEs (see equation (SM1.4) in Supplementary Material).
Simulated (using any of these frameworks) on a two-dimensional domain, the model
produces a characteristic pattern of ECs with two cell phenotypes (see, for example,
Figure SM6 and Figure 11). Since the CG approximation describes the long-term
behavior of the system, when its evolution is dominated by the timescale associated
with phenotypic switches, it does not account for the initial relaxation onto a quasi–
steady state pattern. Thus, the three frameworks cannot be compared with respect
to their behavior at early evolution times. Instead, we quantified the final pattern
and the computational cost of simulations. The final simulation time, t = Tfinal, was
chosen sufficiently large to ensure that a steady state pattern had been established
for the mean-field simulations (since stochastic systems do not have a steady state
pattern in a classical sense). In order to systematically compare the three frameworks,
we used the same final simulation time, t = Tfinal, for the other two systems.

We used the following set of metrics to compare the dynamics of the three mathe-
matical descriptions (Supplementary Material (Supplement.pdf [local/web 16.2MB])):

• Delta-high cell proportion, which is defined as the ratio of the number of cells
with Delta-high phenotype to the total number of cells in the system;

• distribution of Delta-high cell clusters, which provides a breakdown of sizes
of Delta-high cell clusters (adjacent cells with Delta-high phenotype, e.g.,
a single Delta-high cell, two adjacent Delta-high cells) in a steady pattern
configuration;

• computational cost, which is defined as the average CPU time (in seconds)
to perform a single realization of model simulation.

Since the precalculated look-up tables for the CG simulations (subsection 3.2.1)
were computed for a fixed set of model parameters (see Table SM3), we held them
fixed for all simulations. However, the cell-to-cell interaction radius, Rs, which is
used in the multicellular simulations to determine for each cell, e, the vector of
extracellular variables, ve = (deext, n

e
ext), may vary. In our simulations, we used

Rs ∈ {5, 7.5, 10, 12.5, 15} µm which correspond to experimental observations of the
distance over which cell-to-cell interaction can occur in endothelial cells [18] (which
corresponds to up to three cells in the interaction circle). Nonetheless, from a the-
oretical point of view, this quantity can take any value greater than the half-width
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of a voxel, Rs > 0.5h, where h is the voxel width (we fix h = 5µm in our simu-
lations). In addition, for the full stochastic CTMC and CG descriptions, we vary
the noise amplitude, ϵ = 1/Ω, by changing the system size parameter, Ω. We used
Ω ∈ {50, 100, 200, 500, 1000}. The larger the value of Ω, the closer will be the dy-
namics of a stochastic system to its mean-field description. For each numerical setup
(Rs and Ω), we ran 100 realizations.

We considered two simulation geometries: a 2D cell monolayer and a branching
network.

Setup 1: A cell monolayer. We first ran numerical simulations on a cell
monolayer (see Figure SM7). This spatial geometry was motivated by the biological
process of cell fate specification induced by lateral inhibition via Delta-Notch signal-
ing in flat domains. Examples of such cell fate specification include bristle patterning
in Drosophila notum [11, 30, 13] and differentiation of neural precursors in neurogen-
esis [22] (see [7, 36] and references therein for other examples). The fixed stationary
distribution of the VEGF serves as an external stimulus which enhances lateral inhibi-
tion via Delta-Notch signaling. We chose VEGF as an illustrative example, although,
depending on the specific system, other extracellular signals will provide cell stimulus.

We began by considering the dynamics of the Delta-high cell proportion for this
spatial geometry (see Figure 13(a)). Consistent with the previous results [45], for
all simulation frameworks (i.e., the full stochastic (CTMC), CG, and mean-field de-
scriptions), the Delta-high cell proportion decreases as the cell interaction radius, Rs,
increases. Figure 13(a) confirms that, as expected, differences in this metric between
the three systems decrease as the level of noise is reduced (i.e., as Ω increases). In
particular, for high noise levels (i.e., lower values of Ω), the patterns generated by
the stochastic systems (full CTMC and CG frameworks) are more diverse, and the
Delta-high cell proportions differ from those for the associated mean-field description.
We note that each cell is not an isolated system; its dynamics are affected by the noisy
behavior of its neighbors and the model geometry. This explains why we observe varia-
tions in the Delta-high cell proportion for lower values of Ω for the full CTMC and CG
frameworks. We also note that the dynamics of the Delta-high cell proportion for the
mean-field system (red lines) are identical in all subplots in Figure 13(a) since noise
is absent in deterministic systems (i.e., the system size parameter, Ω, is irrelevant).

We also quantified the size distribution of the Delta-high cell clusters associ-
ated with the final patterns established on the cell monolayers. Since the dynamics
of the three systems converge for larger values of the system size, Ω (as shown in
Figure 13(a)), Figure 13(b) shows results for this metric computed for simulations
with Ω = 1000. The distributions are in good quantitative agreement for the three
systems. The discrepancy for simulations with larger cell interaction radius (e.g.,
Rs = 15µm) arises because (for this value of Ω) the CG system is more likely to
explore long timescale patterns which have a more “regular” structure and are more
robust to noise (cells with Delta-high phenotype organized in similar clusters; see
subsection 4.2).

Setup 2: A branching network. We next considered a more complex spatial
geometry of a small branching network (see Figure SM8) extracted from a simula-
tion of a hybrid model of angiogenesis [45]. Figure SM9 shows a series of patterns
explored by the CG system at different time points during a typical simulation for
this configuration (for the full simulation, see Movie S3 [local/web 3.4MB]).

For this spatial configuration, we compared the three simulation frameworks using
the same metrics as for the cell monolayer. The results for the Delta-high cell pro-
portion are presented in Figure SM10a. We find that the number of possible patterns
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(a)

(b)

Fig. 13. Comparison of the dynamics of the multicellular VEGF-Delta-Notch model simulated
on a cell monolayer using the full stochastic (CTMC), CG, and mean-field descriptions. (a) The
Delta-high cell proportion as a function of the cell-to-cell interaction radius, Rs, for varying noise
amplitude, ϵ = 1/Ω (the value of Ω is indicated in the title of each plot), for the full stochastic CTMC
(black), CG (blue), and mean-field (red) descriptions. To explore different possible patterns in the
deterministic mean-field system, we created a small initial perturbation to the initial configuration
(Figure SM7). (b) A series of barplots showing how the long-time distribution of Delta-high cell
clusters changes as the interacton radius, Rs, varies for the full stochastic CTMC (left panel), CG
(middle panel), and mean-field (right panel) systems. The number of single Delta-high cells in the
final pattern (i.e., at a fixed final simulation time) is shown in blue; the number of clusters with
2, 3, and 4 adjacent Delta-high cells is shown in yellow, green, and red, respectively. For these
simulations, we fixed Ω = 1000 (ϵ = 0.001). The results are averaged over 100 realizations. The
remaining parameter values were fixed as indicated in Table SM3.

generated by lateral inhibition is lower for the branching network geometry than for
the cell monolayer (see Figure SM9). Consequently, the Delta-high cell proportions
converge for smaller values of Ω (compare Figure SM10a and Figure 13(a)). We also
note that since, in the network configuration, cells have fewer neighbors, the values
of this metric are higher than those computed for a cell monolayer.

Figure SM10b shows the size distribution of Delta-high cell clusters for simulations
on the branching network. We note that, for this configuration, isolated Delta-high
cells (i.e., cells not adjacent to another Delta-high cell) are predominant in the final
spatial patterns and the patterns generated by the three frameworks are comparable.

Regarding the computational cost (see technical specifications of computers used
in File S1 [local/web 10KB]), the CG method showed a great reduction in the aver-
age CPU time compared to the original stochastic system when performing a single
realization (see Figure 14). Whereas the numerical cost of simulations of the full
stochastic system (Figure 14, left panels) increases exponentially as the system size,

D
ow

nl
oa

de
d 

03
/2

6/
22

 to
 1

29
.6

7.
18

7.
61

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

File_S1.txt
https://epubs.siam.org/doi/suppl/10.1137/21M1418575/suppl_file/ File_S1.txt


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COARSE-GRAINING MULTIAGENT STOCHASTIC SYSTEMS 427

Ω, grows, simulations of the CG system decrease in average computational time as Ω
increases (Figure 14, middle panels). This is because, as the noise level decreases (i.e.,
Ω increases), fewer transitions occur in a CG simulation for a fixed final simulation
time. Interestingly, the CG simulations are also faster (see Figure 14, right panels)
than the numerical integration scheme used for the mean-field system (we used the
explicit scheme for the Euler–Lagrange method, although other schemes for numer-
ical integration may show better performance). This scheme required evaluation of
the nonlinear right-hand side of the mean-field equations (see equation (SM1.4) in
Supplementary Material) at each time step for every voxel in the lattice, whereas for
the CG simulations only one voxel undergoes a change (i.e., a phenotype switch) at
each iteration and an update is required only for a local neighborhood of this voxel.
Therefore, fewer updates are required in the CG system (which are further decreased
as Ω grows). In addition, the transition rates for phenotype switches needed for CG
updates are interpolated directly using the precalculated look-up tables (see subsec-
tion 3.2.1) which reduces the amount of computations required (as compared to the
evaluation of the right-hand side of the deterministic system). This explains why the

(a) cell monolayer

(b) branching network

Fig. 14. Comparison of the mean CPU times to simulate the multicellular VEGF-Delta-Notch
model. The plots show how the average (100 realizations) CPU times (in seconds) to perform a
single realization using the full stochastic CTMC (left panels), CG (middle panels), and mean-field
(right panels) descriptions change as the cell-to-cell interaction radius, Rs, and the system size,
Ω, vary. The color code indicates the system size, Ω (shown as insets in the middle panels); the
mean-field description (dotted black line) corresponds to the limit Ω → ∞. The simulation setup was
(a) a medium size cell monolayer and (b) a small branching network. For both spatial geometries,
the average CPU time for simulating the full stochastic CTMC is several orders of magnitude larger
that those for CG and mean-field descriptions. For these simulations, the parameter values were
fixed as indicated in Table SM3.
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mean CPU time for CG simulations is smaller (except for high noise levels, Ω = 50)
than for the numerical scheme we used for the associated deterministic system (see
Figure 14, middle and right panels).

To summarize, the CG method, while preserving stochasticity of transitions be-
tween cell phenotypes and producing spatial patterns comparable to those generated
using the original stochastic and mean-field descriptions, significantly reduces com-
putational time of simulations.

5. Discussion and conclusions. Hybrid (multiscale) models of complex bio-
logical phenomena are often computationally inefficient, which hinders their potential
utility. To address this issue, we have developed a coarse-graining, or CG, method
that reduces the numerical cost of simulations of multiagent stochastic systems with
multiple stable steady states. The CG technique is based on large deviation theory
that allows the dynamics of a stochastic system to be reduced to a jump process
(i.e., a continuous time Markov chain) on a discrete state space which comprises
the stable steady states of all agents in the system. The CG system operates on a
timescale on which transitions between these steady states take place. This allows
the method to be applied to models whose dynamics act on timescales longer than
the typical timescale for relaxation to an equilibrium (e.g., molecular or subcellular
processes act on longer timescales when compared to higher spatial scales such as cell
migration, dynamics of extracellular cues, etc.). Our results show good qualitative
and quantitative agreement between CG simulations and other simulation methods
(Figure SM10 and Figure 13). Furthermore, the CG algorithm is numerically more
efficient in terms of CPU time even when compared with the corresponding mean-field
simulations (see Figure 14). Likewise, the CG framework allows exploration of new
emergent properties of the system, such as long timescale patterns in multicellular
systems (Figure 12).

The implementation of the CG method requires precalculation of several look-up
tables (for stable steady state solutions of the system that is being coarse-grained,
quasipotential values for transitions between them, and the corresponding prefactor of
these transitions) which are used later in simulations. To do this, the values of model
parameters must be fixed (except for the external variables). However, in order to
perform sensitivity analysis with respect to any specific parameter, this parameter may
be added to the set of external variables (thus, adding a new dimension to the look-up
tables). Since the procedure of precalculating the look-up tables is done once, prior to
model simulation, it does not increase the numerical cost of the algorithm. Likewise,
the computational cost of computing the quasipotential via the geometric minimum
action method is independent of the system size, Ω, and an estimate for the required
prefactor can be obtained from simulations of the full stochastic model for a single
value of the system size parameter, Ω, for which we provided an accurate estimate
(see (3.3) and Figure 7). Then the CG model can be efficiently simulated using the
standard Gillespie algorithm for any value of Ω (or, equivalently, noise level, ϵ = 1/Ω).

After introducing the CG method (section 3), we applied it to a multiagent model
of phenotypic specification of cells via the VEGF-Delta-Notch signaling pathway. For
this system, we demonstrated how the spatial patterning of cells with different phe-
notypes changes as CG transitions between these steady states (phenotypes) occur
(Figure 11). We then confirmed that the patterns generated by the CG system are
quantitatively similar to steady state configurations of the original stochastic sys-
tem and the associated mean-field limit for this model (see Figure SM10 and Fig-
ure 13). We conclude that the CG method preserves the continuous cell phenotypes
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and stochasticity of the original system, while reducing the computational cost of
simulations by several orders of magnitude (as compared to the numerical cost of
simulations of the full stochastic system; see Figure 14).

In this paper, we used the VEGF-Delta-Notch model to illustrate the benefits
of the CG method. We note, however, that the CG method can be applied to a
wider class of multiagent models in which the behavior of the agents is regulated
by stochastic models with multiple stable attractors (e.g., steady states, limit cycles)
and whose dynamics are controlled by external cues (e.g., morphogens, growth factors,
levels of specific ligands/receptors in neighboring cells). Examples of systems with
subcellular dynamics which satisfy the requirements for application of the CG method
include fate specification of cells in intestinal crypts [32, 8], epithelial to mesenchymal
phenotypic transition (and its reverse) in cancer invasion [31] and development [43],
cell differentiation in neurogenesis [22], and a general class of models describing cell
decision switches [27]. These models are multistable and the timescale of simulations
is longer than the timescale of the relevant subcellular signaling pathway. Nonetheless,
the spectrum of models which are suitable for coarse-graining via the CG algorithm
is not restricted to intracellular signaling pathways in animal cells; other examples
include vegetation patterning in arid ecosystems [33] or plant morphogenesis mediated
via the auxin hormone [1, 21]. The exact implementation of the CG system for the
aforementioned models is beyond the scope of this paper.

To conclude, the CG method developed in this paper paves the way for a sys-
tematic reduction of the dynamics of a wide class of multistable stochastic models.
It allows for investigation of their behavior on longer timescales than is possible with
other frameworks (e.g., full stochastic simulations or deterministic equations). To our
knowledge, this is the first example in which large deviation theory has been used to
coarse-grain the dynamics of a multiagent system. In future work we intend to further
investigate the performance of the CG method by incorporating the CG system for
the VEGF-Delta-Notch signaling into a multiscale model of angiogenesis [45].

Data management. All of the computational data output is included in the ma-
nuscript and/or in the supplementary material (Supplement.pdf [local/web 16.2MB]).
The code of the numerical procedures used in this work is available upon request.

Supplementary materials.
Supplementary Material (Supplement.pdf [local/web 16.2MB]). The file

contains a more detailed description of the VEGF-Delta-Notch model, implementation
of the CG method, and additional figures and tables.

File S1 [local/web 10KB]. Technical specifications of the computers used to
perform simulations in this work.

Movie S1 [local/web 6.5MB]. A simulation movie showing different
pattern configurations explored by the CG system in a small two-dimen-
sional cell monolayer. The movie is the complete animation of the simulation
snapshots shown in Figure 11 of the main text. This movie demonstrates how the
spatial distribution of cells with two phenotypes changes over time in the CG system
due to phenotype switches in individual cells. The color bar indicates the levels
of Delta. For this simulation, the interaction radius and system size were fixed at
Rs = 15µm and Ω = 100, respectively; the values of the remaining parameters were
fixed at the values given in Table SM3.

Movie S2 [local/web 5.9MB]. A simulation movie showing the emer-
gence of robust pattern configurations in simulations of the CG system.
The movie is the complete animation of the simulation snapshot shown in Figure 12 of
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the main text. This movie illustrates the emergence of a robust spatial pattern in the
dynamics of the CG system at long times. Due to the exploration of different pattern
configurations, the CG system settles on a configuration whose total propensity, P ,
is small. Thus, the mean waiting time for a phenotype switch for this pattern (given
by 1/P ) tends to infinity and it becomes robust to any further phenotype switches.
The lattice site highlighted in cyan indicates the position of a cell whose dynamics
are shown in Figures 12(c) and 12(d). The color bar indicates the levels of Delta.
For this simulation, the interaction radius and system size were fixed at Rs = 15µm
and Ω = 1000, respectively; the values of all remaining parameters were fixed at the
values given in Table SM3.

Movie S3 [local/web 3.4MB]. A simulation movie showing different
pattern configurations explored by the CG system in a branching net-
work. The movie is the complete animation of the simulation snapshots shown in
Figure SM9 of Supplementary Material. It illustrates the evolution of the CG system
simulated on a branching network. The color bar indicates the levels of Delta. For
this simulation, the interaction radius and system size were fixed at Rs = 15µm and
Ω = 100, respectively; the values of the remaining parameters were fixed at the values
given in Table SM3.

REFERENCES

[1] V. Baldazzi, N. Bertin, H. de Jong, and M. Génard, Towards multiscale plant models:
integrating cellular networks, Trends in Plant Science, 17 (2012), pp. 728–736.

[2] R. Bardini, G. Politano, A. Benso, and S. Di Carlo, Multi-level and hybrid modeling
approaches for systems biology, Computational Structural Biotechnology J., 15 (2017),
pp. 396–402.

[3] K. Bentley, C. A. Franco, A. Philippides, R. Blanco, M. Dierkes, V. Gebala,
F. Stanchi, M. Jones, I. M. Aspalter, G. Cagna, et al., The role of differential
Ve-cadherin dynamics in ell rearrangement during angiogenesis, Nature Cell Biology, 16
(2014), pp. 309–321.

[4] S. Bernard, How to build a multiscale model in biology, Acta Biotheoretica, 61 (2013), pp.
291–303.

[5] R. Blanco and H. Gerhardt, Vegf and notch in tip and stalk cell selection, Cold Spring
Harbor Perspectives Medicine, 3 (2013), a006569.

[6] M. Boareto, M. K. Jolly, M. Lu, J. N. Onuchic, C. Clementi, and E. Ben-Jacob, Jagged–
delta asymmetry in notch signaling can give rise to a sender/receiver hybrid phenotype,
Proc. Natl. Acad. Sci. USA, 112 (2015), pp. E402–E409.

[7] F. Bocci, J. N. Onuchic, and M. K. Jolly, Understanding the principles of pattern forma-
tion driven by notch signaling by integrating experiments and theoretical models, Frontiers
Physiology, 11 (2020).

[8] P. Buske, J. Galle, N. Barker, G. Aust, H. Clevers, and M. Loeffler, A comprehensive
model of the spatio-temporal stem cell and tissue organisation in the intestinal crypt, PLoS
Comput. Biol., 7 (2011), e1001045.

[9] H. Byrne and M. Chaplain, Mathematical models for tumour angiogenesis: numerical sim-
ulations and nonlinear wave solutions, Bull, Math, Biol., 57 (1995), pp. 461–486.

[10] M. A. Chaplain, Multiscale modeling of cancer: Micro-, meso-and macro-scales of growth and
spread, in Approaching Complex Diseases, Springer, New York, 2020, pp. 149–168.

[11] M. Cohen, M. Georgiou, N. L. Stevenson, M. Miodownik, and B. Baum, Dynamic filopo-
dia transmit intermittent delta-notch signaling to drive pattern refinement during lateral
inhibition, Developmental Cell, 19 (2010), pp. 78–89.

[12] J. R. Collier, N. A. Monk, P. K. Maini, and J. H. Lewis, Pattern formation by lateral
inhibition with feedback: A mathematical model of delta-notch intercellular signaling, J.
Theoret. Biol., 183 (1996), pp. 429–446.

[13] F. Corson, L. Couturier, H. Rouault, K. Mazouni, and F. Schweisguth, Self-organized
notch dynamics generate stereotyped sensory organ patterns in drosophila, Science, 356
(2017).

[14] R. de la Cruz, P. Guerrero, J. Calvo, and T. Alarcón, Coarse-graining and hybrid meth-
ods for efficient simulation of stochastic multi-scale models of tumour growth, J. Comput.
Phys., 350 (2017), pp. 974–991.

D
ow

nl
oa

de
d 

03
/2

6/
22

 to
 1

29
.6

7.
18

7.
61

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

S3_Movie.MP4
https://epubs.siam.org/doi/suppl/10.1137/21M1418575/suppl_file/ S3_Movie.MP4


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COARSE-GRAINING MULTIAGENT STOCHASTIC SYSTEMS 431

[15] R. De La Cruz, R. Perez-Carrasco, P. Guerrero, T. Alarcon, and K. M. Page, Mini-
mum action path theory reveals the details of stochastic transitions out of oscillatory states,
Physical Rev. Lett., 120 (2018), 128102.

[16] T. S. Deisboeck, Z. Wang, P. Macklin, and V. Cristini, Multiscale cancer modeling, Ann.
Rev. Biomed. Engrg., 13 (2011), pp. 127–155.

[17] A. Deutsch, P. Friedl, L. Preziosi, and G. Theraulaz, Multi-scale analysis and modeling
of collective migration in biological systems, Philos. Trans. B, 375(2020).

[18] Y. Du, S. C. Herath, Q.-g. Wang, D.-a. Wang, H. H. Asada, and P. C. Chen, Three-
dimensional characterization of mechanical interactions between endothelial cells and ex-
tracellular matrix during angiogenic sprouting, Scientific Reports, 6 (2016), 21362.

[19] M. I. Dykman, E. Mori, J. Ross, and P. Hunt, Large fluctuations and optimal paths in
chemical kinetics, J. Chemi. Phys., 100 (1994), pp. 5735–5750.

[20] J. Elf and M. Ehrenberg, Spontaneous separation of bi-stable biochemical systems into spa-
tial domains of opposite phases, Systems Biol., 1 (2004), pp. 230–236.

[21] E. Farcot, C. Lavedrine, and T. Vernoux, A modular analysis of the auxin signaling net-
work, PLoS One, 10 (2015), e0122231.
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