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SM1. VEGF-Delta-Notch system. The VEGF-Delta-Notch signalling path-
way mediates phenotype specification of endothelial cells (ECs) during angiogenesis
and vasculogenesis [SM1, SM4]. In a two-dimensional geometry, lateral inhibition in-
duced by Delta-Notch trans-interactions (i.e. binding of a Delta ligand on one cell to
a Notch receptor on a neighbouring EC) produces an alternating pattern of cells with
two distinct levels of gene expression which correspond to ‘Delta-high’ and ‘Delta-low’
phenotypes (in angiogenesis, the Delta-high (Delta-low) phenotype is referred to as
tip (stalk) cell) [SM8, SM11]. Delta-high cells are characterised by elevated levels
of Delta ligand and VEGFR2 (VEGF receptor 2), and low levels of Notch, whereas
Delta-low cells are associated with low levels of Delta and VEGFR2, and high levels
of Notch. When Delta-Notch signalling is combined with cell activation in response to
extracellular VEGF stimulation, the robustness of the cell phenotypes increases [SM2].

SM1.1. Individual cell system. A schematic of the kinetic reactions involved
in the VEGF-Delta-Notch signalling pathway for an individual cell system is shown
in Figure SM1. Briefly, a Notch receptor trans-binds a Delta ligand on a neighbouring

cell (reaction 1a in Figure SM1). This leads to cleavage of the Notch Intracellular
Domain (NICD) which, on translocation to the nucleus, inhibits (gene) expression

of VEGFR2 (reaction 2 ) and up-regulates (gene) expression of the Notch receptor

(reaction 3 ). After trans-binding, the Delta ligand is degraded or recycled by endo-

cytosis (reaction 1b ). Delta-Notch interactions can also occur on the membrane of
the same cell, via a phenomenon termed cis-inhibition, which inhibits Delta and Notch

from interacting with other proteins until they are eventually degraded (reaction 4 ).
At the same time, VEGF, on binding to its receptor, VEGFR2, activates this recep-

tor (reaction 5 ) which up-regulates production of Delta ligand (reaction 6 ). The

model also accounts for degradation of all proteins (see, for example, reaction 7 for
NICD degradation).

Zooming out from the detailed description of each kinetic reaction, we note that
trans-activation of Notch in a focal cell by Delta ligand from a neighbouring cell (pro-
duction of an NICD) produces a positive feedback for Notch expression and negative
feedback for Delta production. Thus, a focal cell with low levels of Delta expres-
sion can down-regulate Notch levels in fewer neighbouring cells while being further
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Fig. SM1. A schematic of the kinetic reactions incorporated in our mathematical model of
the VEGF-Delta-Notch signalling pathway for the individual cell system [SM9]. The reactions
are labelled by blue circled numbers (see Table SM2). Next and Dext represent extracellular levels
of Notch and Delta, respectively. VEGFR∗

2 denotes VEGFR2 receptor activated by extracellular
VEGF.

Table SM1
Dependent variables associated with our model of the VEGF-Delta-Notch signalling path-

way. Capital letters indicate numbers of protein molecules (used in the full stochastic system), while
lowercase letters represent the corresponding dimensionless protein concentrations (used in the mean-
field system of equations).

Protein Dependent
variable (dimen-
sional)

Concentration (di-
mensionless)

Notch receptor N n
Delta ligand D d
NICD I ι
VEGFR2 R2 r2
activated (bound to VEGF) VEGFR2 R∗

2 r∗2

inhibited by its neighbours due to its up-regulated Notch level. This mechanism of
crosstalk between cells (when ligand, here Delta, on one cell inhibits production of the
same ligand in neighbours) is known as lateral inhibition. We refer to our previous
work [SM9] in which we presented a detailed derivation and analysis of the kinetic re-
actions and the corresponding mean-field equations for this signalling pathway. Here
we list the kinetic reactions and the corresponding transition rates of the full stochas-
tic continuous time Markov chain (CTMC) model and its deterministic mean-field
limit. The dependent variables and their non-dimensional concentrations are listed
in Table SM1. Given the size of the stochastic system, Ω, we relate the number of
molecules of a protein, P , with its non-dimensional concentration, p, via p = P /Ω.

Given the transition rates and the corresponding stoichiometric vectors (listed
in Table SM2), we can formulate our individual cell stochastic model of the VEGF-
Delta-Notch pathway in terms of the Chemical Master Equation (CME)
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Table SM2
Details of the kinetic reactions included in our full stochastic model of the VEGF-

Delta-Notch signalling pathway within an individual cell. Here HS
(
S;S0, λS,P , nP

)
=

1+λS,P (S/S0 )
nP

1+(S/S0 )
nP

is the so-called shifted Hill function. It represents the regulation of gene expres-

sion of protein, P , in response to the signalling variable, S. Production of P is down-regulated
(up-regulated) for 0 ≤ λS,P < 1 (λS,P > 1) as the level of signal, S, grows. The prefactor in front
of HS(·; ·, ·, ·) indicates the baseline production of the corresponding protein. Next and Dext repre-
sent extracellular levels of Notch and Delta, respectively, which are fixed model parameters for the
individual cell system. A full list of parameter values is given in Table SM3. Ω represents system
size, which is used to scale the transition rates [SM5]. The stoichiometric vectors, νr, are indexed
as (N,D, I,R2, R∗

2)
T . Reaction labels are as in Figure SM1.

Reac-
tion
label,
r

Kinetic reaction(s) Transition rate(s), αr Stoichiometric
vector(s), νr

1a N+Dext −→ I+Dext dextN , dext = Dext/Ω (−1, 0,+1, 0, 0)T

1b D +Next −→ Next ηnextD, next = Next/Ω (0,−1, 0, 0, 0)T

2 ∅⇄ R2
[→] ΩβR2H

S(ρN I; Ω, λI,R2 , nR2 ) (0, 0, 0,+1, 0)T

[←]R2 (0, 0, 0,−1, 0)T

3 ∅⇄ N
[→] ΩβNHS(ρN I; Ω, λI,N , nN ) (+1, 0, 0, 0, 0)T

[←]N (−1, 0, 0, 0, 0)T

4 N +D −→ ∅ κ
Ω
ND (−1,−1, 0, 0, 0)T

5
R2 −→ R∗

2 vextR2 (0, 0, 0,−1,+1)T

R∗
2 −→ ∅ τR∗

2 (0, 0, 0, 0,−1)T

6 ∅⇄ D
[→] ΩβDHS(ρR2

R∗
2 ; Ω, λR∗

2 ,D
, nD) (0,+1, 0, 0, 0)T

[←]D (0,−1, 0, 0, 0)T

7 I −→ ∅ τI (0, 0,−1, 0, 0)T

(SM1.1)
∂ P(X, t)

∂t
=

∑
r

(αr(X − νr) P(X − νr, t)− αr(X, t) P(X, t)) ,

where X = (N,D, I,R2, R
∗
2)

T and P(X, t) is the probability of finding the system in
state X at time t. This CME cannot be solved analytically but can be numerically
simulated via the Gillespie algorithm (GA) [SM5] or the more efficient Next Subvolume
(NSV) method [SM3]. The computational cost of these simulations rapidly increases
with the system size, Ω. Furthermore, when extended to a multicellular system, the
simulation time increases as the number of cells in the system increases (linearly for
the GA or logarithmically for the NSV method). Thus, high computational power is
required to perform numerical simulations for large numbers of cells (O(102)−O(103))
as in the angiogenesis model (see Figures 14a and 14b, left panels).

We can significantly decrease the computational cost of model simulations by
deriving the mean-field limit equations, which read:

dn

dt
= βNHS(ρN ι; 1.0, λI,N , nN )− n− dextn− κnd,

dd

dt
= βDHS(ρR2 r

∗
2 ; 1.0, λR∗

2 ,D
, nD)− d− ηnextd− κnd,
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dι

dt
= dextn− τ ι,(SM1.2)

dr2
dt

= βR2
HS(ρN ι; 1.0, λI,R2

, nR2
)− (1 + vext)r2,

dr∗2
dt

= vext r2 − τ r∗2 .

This system of equations is bistable for a range of values of the control (bifur-
cation) parameters, here the extracellular Delta and Notch concentrations, dext and
next, respectively [SM9]. In Figure SM2a, we present a bifurcation diagram showing
how the steady state non-dimensional Notch concentration, n, changes as dext varies
for a fixed value of next. We note that for low (high) values of dext, the system is
monostable, its only stable steady state corresponding to the Delta-high (Delta-low)
cell phenotype. For intermediate values of dext, the system has two stable steady
states (i.e. in this region both phenotypes coexist).

The mean-field equations (Equation (SM1.2)) are valid in the limit Ω → ∞.
For finite values of Ω (as in any biological system), some level of noise is always
present. This can affect the dynamics of the system, leading to behaviours which
differ from the mean-field limit. In Figure SM2b, we plot the non-dimensional Notch
concentration of an individual cell during a single realisation of our multiscale model of
angiogenesis [SM9]. Arrows on this plot indicate times at which the focal cell switched
its phenotype. For example, a phenotype switch from Delta-low to Delta-high cell at
t = 478 minutes indicates that, during the simulation, the neighbourhood of the focal
cell ({dext, next}) changed and the cell was forced to adjust its phenotype accordingly.

(a) (b)

Fig. SM2. (a) A bifurcation diagram (corresponding to Equation (SM1.2)) for the non-
dimensional Notch concentration, n, as a function of extracellular Delta signalling, dext. The
solid lines correspond to stable steady states; dashed line - to unstable saddle points. Saddle-node
bifurcation points are indicated by red filled circles. Vertical (horizontal) hatching indicates a re-
gion in which the Delta-high (Delta-low) cell steady state exists. (b) Notch concentration, n, of a
representative cell during simulation of a multiscale angiogenesis model [SM9] as the function of
the cell’s extracellular Delta signal, dext. The black line corresponds to a bifurcation curve (as in
(a)) for a fixed value of next (although this value changes together with dext in the simulations of
our angiogenesis model, the bifurcation curve does not change significantly, so just one of them was
plotted for simplicity). Arrows indicate phenotype switch transitions for the representative cell with
the corresponding times. The colour bar represents simulation time.
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However, the phenotype switch, from Delta-high to Delta-low cell, at t = 640 minutes
is noise-induced since the cell’s neighbourhood (i.e. dext) did not change at that
time. Phenotype transitions of this type cannot be accounted for by the deterministic
mean-field model. Likewise, Figure SM2b confirms that fluctuations away from the
mean-field steady state values are small since the simulated trajectory of the focal cell
(circled markers) lies in a narrow neighbourhood around the deterministic bifurcation
curve. This strengthens the case for the application of large deviation theory to
coarse-grain the dynamics of this system.

SM1.2. Multicellular system. In order to extend the individual cell CTMC
model of the VEGF-Delta-Notch system given by the CME, Equation (SM1.1), and
the corresponding kinetic reactions listed in Table SM2, to a multicellular system
in a 2D domain, we need only to specify the external levels of Delta, (Dext)k, and
Notch, (Next)k (for the mean-field model, (dext)k and (next)k, respectively) for a
cell situated in voxel k. A key parameter to determine cell cross-talk is the cell
interaction radius, Rs, allowing for non-local (beyond immediate neighbours on a
chosen lattice) interactions between cells. This is because in this model, cell position
is known up to the position of its nucleus, and cell interactions are assumed to occur
via membrane protrusions within a circular neighbourhood of its nucleus. Thus,
(Dext)k and (Next)k are computed as a normalised sum of the corresponding protein
over all the neighbouring ECs within the interaction radius, Rs, from the focal cell’s
nucleus (for more details, see [SM9]):

(Dext)k =
∑

vl ∈ neighbours(k)

αklDl,(SM1.3a)

(Next)k =
∑

vl ∈ neighbours(k)

αklNl.(SM1.3b)

Here k indicates the voxel index of the multicellular system. The weight αkl =
|vl∩BRs (k)|

A(k) , with A(k) =
∑

j |vj ∩ BRs(k)|, represents the proportion of the area of the

circular neighbourhood of radius Rs surrounding the focal cell in voxel vk, BRs(k),
that overlaps with voxel vl.

When a bimolecular reaction of Delta-Notch trans-binding occurs, the neighbour-

ing cell (in neighbours(k)) is chosen probabilistically (reaction 1a ; reaction 1b is

redundant for multicellular systems since it is accounted for as reaction 1a which
takes place in neighbouring cells).

The derivation of the mean-field system is straightforward. For each voxel, vk, in
the lattice we specify a system of ODEs:

dnk

dt
= βNHS(ρN ιk; 1.0, λI,N , nN )− nk − (dext)k nk − κnk dk,

ddk
dt

= βDHS(ρR2
(r∗2)k ; 1.0, λR∗

2 ,D
, nD)− dk − η (next)k dk − κnk dk,

dιk
dt

= (dext)k nk − τ ιk,(SM1.4)

d (r2)k
dt

= βR2H
S(ρN ιk; 1.0, λI,R2 , nR2)− (1 + vext) (r2)k ,

d (r∗2)k
dt

= vext (r2)k − τ (r∗2)k ,
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(dext)k =
∑

vl ∈ neighbours(k)

αkldl,

(next)k =
∑

vl ∈ neighbours(k)

αklnl.

Here, again, cross-talk between neighbouring cells is accounted for via (dext)k and
(next)k.

SM2. Geometric minimum action method (gMAM). The geometric min-
imum action method (gMAM) was developed in [SM7] as a technique for efficient
numerical computation of the minimum action path (MAP) and the corresponding
quasipotential (given as the minimum of the action functional) of a rare event. Briefly,

starting with the geometric representation, Ŝ(ϕ) (Equation (2.6)), the Euler-Lagrange

equation associated with the minimisation of Ŝ(ϕ) is derived, assuming θ̂(ϕ, ϕ′) is
known. Then a (pre-conditioned) steepest descend algorithm can be used to solve
this Euler-Lagrange equation, maintaining the standard arc length parametrisation
of ϕ. If no explicit formula for θ̂(ϕ, ϕ′) is available, then θ̂(ϕ, ϕ′) is computed in the
inner loop of the algorithm, as a solution to the system

H(x, θ̂) = 0(SM2.1a)

∂H(x, θ)

∂θ
= λϕ′(SM2.1b)

for some λ.
For a diffusion process of type Equation (2.1), there are explicit expressions for

the Lagrangian and the corresponding Hamiltonian

L(x, y) = ⟨y − b(x), a−1(x)(y − b(x)) = ∥y − b(x)∥2a,(SM2.2a)

H(x, θ) = ⟨b(x), θ⟩+ 1

2
⟨θ, a(x)θ⟩,(SM2.2b)

where ∥p∥2a = ⟨p, a−1(x) p⟩1/2 is a norm induced by the diffusion tensor, a(x). This
allows us to explicitly derive the action functional in its geometric reformulation [SM7],

Ŝ(ϕ) =

(∫ 1

0

∥ϕ′∥a∥b(ϕ)∥a − ⟨ϕ′, a−1(ϕ)b(ϕ)⟩
)
dα,

and the solution to the system of equations Equation (SM2.1):

θ̂(x, y) = a−1(x)

(
∥b(x)∥a
∥y∥a

− b(x)

)
,(SM2.3a)

λ(x, y) =
∥b(x)∥a
∥y∥a

.(SM2.3b)

For a general birth-death CTMC of type Equation (SM1.1) with transition rates,
αr(x), and the corresponding stoichiometric vectors, νr, the Hamiltonian reads:

(SM2.4) H(x, θ) =
∑
r

αr(x) (exp (⟨θ, νr⟩)− 1) .

In this case, there is no explicit solution to the system given by Equation (SM2.1)
but it can be computed in the inner loop of the gMAM [SM7].
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For the convergence of the gMAM for an SDE, a and b must be bounded and
uniformly continuous, and a has to be uniformly elliptic, whereas, for a CME, the
rate functions, αr, must be uniformly bounded away from 0 and +∞ [SM7].

For alternative numerical methods to compute minimum action paths (MAPs)
we refer the reader to [SM6, SM10] and references therein.

SM3. System of stochastic differential equations of the VEGF-Delta-
Notch model (individual cell). Let xϵ = (nϵ, dϵ, ιϵ, rϵ2, r

∗ϵ
2 )

T
. Then, the SDE for

the stochastic VEGF-Delta-Notch system reads:

(SM3.1) dxϵ(t) = b(xϵ)dt+
√
ϵσ(xϵ)dW.

Here the drift vector, b(xϵ) ∈ R5, is given by Equation (SM3.2), the diffusion tensor,
a(xϵ) = (σσT )(xϵ) ∈ R5×5, and σT (xϵ) ∈ R12×5 is given by Equation (SM3.3). The
level of noise is controlled by ϵ = Ω−1. Finally, W is a Wiener process in R12.

(SM3.2) b(xϵ) =



βNHS(ρN ιϵ; 1.0, λI,N , nN )− nϵ − dextn
ϵ − κnϵdϵ

βDHS(ρR2
r∗ϵ2 ; 1.0, λR∗

2 ,D
, nD)− dϵ − ηnextd

ϵ − κnϵdϵ

dextn
ϵ − τ ιϵ

βR2
HS(ρN ιϵ; 1.0, λI,R2

, nR2
)− (1 + vext)r

ϵ
2

vext r
ϵ
2 − τ r∗ϵ2


.

Here the shifted Hill function, HS(p; p0, λ, n) =
1+λ(p/p0)

n

1+(p/p0)
n .

The matrix σT (xϵ) takes the form:

(SM3.3) σT (xϵ) =

S1(x
ϵ) 08×2

04×3 S2(x
ϵ)

 ,

where 0n×m is a zero block matrix of size n ×m, and block matrices S1(x
ϵ) ∈ R8×5

and S2(x
ϵ) ∈ R4×2 are defined as

S1(x
ϵ) =



√
βNHS(ρN ιϵ; 1.0, λI,N , nN ) 0 0

−
√
nϵ 0 0

0
√

βDHS(ρR2 r
∗ϵ
2 ; 1.0, λR∗

2 ,D
, nD) 0

0 −
√
dϵ 0

−
√
dextnϵ 0

√
dextnϵ

0 −
√
ηnext dϵ 0

0 0 −
√

τ r∗ϵ2

−
√
κnϵ dϵ −

√
κnϵ dϵ 0



,

S2(x
ϵ) =


√

βR2H
S(ρN ιϵ; 1.0, λI,R2 , nR2) 0

−
√
vext rϵ2 −

√
vext rϵ2

−
√
rϵ2 0

0 −
√

r∗ϵ2

 .
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SM4. Minimum action path (MAP) for the VEGF-Delta-Notch system
in an individual cell. Using the SDE for the VEGF-Delta-Notch system (Equa-
tions (SM3.1)–(SM3.3)), we implemented the gMAM to compute the minimum action
path (MAP) and the corresponding quasipotential (using explicit expressions for the
Hamiltonian and the momentum, Equations (SM2.2) and (SM2.3)). An illustration
of the MAPs for transitions between phenotypes for a fixed set of parameters (Ta-
ble SM3) is shown in Figure SM3. In addition, Figure SM4 demonstrates the tubular
neighbourhoods around these MAPs (the transition tubes within which phenotype
transitions occur) for different values of the noise level. In can be seen that transition
paths can diverge more from the corresponding MAP in higher noise levels (ϵ ≈ 0.014
in Figure SM4a) than in lower ones (ϵ ≈ 0.002 in Figure SM4b).

(a) Delta-low cell → Delta-high cell (b) Delta-low cell → Delta-high cell

(c) Delta-high cell → Delta-low cell (d) Delta-high cell → Delta-low cell

Fig. SM3. Minimum action paths. Projections (3D, left panels; 2D, right panels) of the
MAPs computed using the gMAM (dotted magenta lines) for transitions from (a)-(b) Delta-low cell
→ Delta-high cell; (c)-(d) Delta-high cell → Delta-low cell. Streamlines associated with the mean-
field model are drawn in grey. Stable steady states corresponding to Delta-high (Delta-low) phenotype
are indicated by filled green (red) circles; unstable saddle points are indicated by unfilled blue circles.
Heteroclitic orbits, connecting steady states, are indicated by thick black lines.
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(a) system size, Ω = 70 (noise level, ϵ = 1/Ω ≈ 0.014)

(b) system size, Ω = 450 (noise level, ϵ = 1/Ω ≈ 0.002)

Fig. SM4. An illustration of the transition tubes for stochastic sample paths of transi-
tions between the cell phenotypes. This figure corresponds to Figure 5 of the main text. Here,
we additionally plotted in orange 100 transition paths for the corresponding trajectories from (a)
Delta-low to Delta-high cell and (b) Delta-high to Delta-low cell. Thus, the regions shaded in or-
ange indicate the transition tubes around the MAPs (indicated by the dotted magenta lines) for
the corresponding noise level. Representative stochastic sample paths (identical to the ones shown
in Figure 5) obtained by simulating the full stochastic CTMC model (Table SM2) with the system
sizes (a) Ω = 70, (b) Ω = 450, are plotted in black. The thin grey lines indicate streamlines of
the corresponding mean-field system (Equation (SM1.2)). The Delta-high (Delta-low) cell stable
steady state is indicated by a green (red) filled circle; the unstable saddle by a blue unfilled circle.
The plots represent three-dimensional projections of the full five-dimensional system as defined by
Equation (SM1.2). Parameter values are fixed as indicated in Table SM3.
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Algorithm SM5.1 Pseudocode algorithm for simulating the multi-agent CG model
of a system with a region of multistability.

1: Specify final simulation time, Tfinal, and the system size, Ω.
2: Given a discretisation, {vj}j , of the external (bifurcation) variables, read look-up

tables for steady states, quasipotential and prefactor values.
3: For each vj , compute CG transition rates, kxs→xl

, s, l = 1 . . . S, s ̸= l, defined by
Equation (3.1) for the specified Ω. Here {xs}Ss=1 is a set of stable steady states.

4: Initialise interpolation routines to establish an input-output relationship between
an arbitrary v ∈ V and the CG transition rates, kxs→xl

.
5: Initialise the system with a pre-pattern by using the original stochastic model or

its mean-field limit (preferable).
6: Set the simulation time, t = 0.
7: while t < Tfinal do
8: Set total propensity, P = 0.
9: for each entity, e, do

10: Compute its external variables, ve.
11: for s, l = 1 . . . S, s ̸= l, do
12: Interpolate kexs→xl

for the given ve.
13: P = P + kexs→xl

.
14: end for
15: end for
16: Sample the waiting time for the next transition to occur, τ̄ ∼ Exp(1/P ), where

Exp(λ) is an exponential distribution of intensity λ.
17: Probabilistically (as in the Gillespie algorithm), decide which transition occurs

(in which entity, ē, and between which stable steady states).
18: For this entity, compute again vē and interpolate its new steady state after

the transition.
19: Update the simulation time, t = t+ τ̄ .
20: end while
21: End of simulation.

SM5. Pseudocode algorithm for simulating the multi-agent CG model
of a system with a region of multistability.

SM6. Quantification metrics. We used the following metrics to compare our
models.

Delta-high cell proportion. In the angiogenesis model [SM9], we used Delta levels
as a proxy to determine cell phenotype. Thus, the number of Delta-high cells is given
by the number of cells whose Delta level exceeds the threshold dtip = 0.1βD. Then the
Delta-high cell proportion at time, t, can be computed as the ratio of the number of
Delta-high cells to the total number of cells. Here, βD is the characteristic expression
of Delta in a cell (see Table SM3).

Delta-high cell cluster distribution. Depending on the parameter values, in the
final spatial pattern (at a fixed final simulation time), Delta-high cells can form small
clusters, i.e. be adjacent (see Figure SM5). We extracted the distribution of the
cluster sizes for final configurations of the spatial phenotype pattern.

Computational cost. Computational cost is defined to be the mean CPU times
(in seconds) required to perform a single realisation of a model simulation. Technical
specifications of computers used to perform the simulations are indicated in File S1.
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(a) (b)

Fig. SM5. Simulation results showing how the long time distribution of Delta-high cell
clusters in a small monolayer of cells changes as the cell-to-cell interaction radius varies.
Cell interaction radius (a) Rs = 5µm (b) Rs = 15µm. Each group of Delta-high cells (a cluster) is
coloured by a distinct colour (randomly chosen). Delta-low cells are left white.
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SM7. Supplementary figures, tables.

(a) Rs = 5µm (b) Rs = 10µm

(c) Rs = 15µm (d) Rs = 20µm

Fig. SM6. A series of plots showing how the spatial patterns, generated by the VEGF-
Delta-Notch signalling in a cell monolayer, become more clustered as the interaction radius,
Rs, increases. For these simulations, the interaction radius is fixed at (a) Rs = 5µm; (b) Rs =
10µm; (c) Rs = 15µm; (d) Rs = 20µm. The system size is fixed at, Ω = 100; the rest of the
parameter values were fixed as indicated in Table SM3. The colour bar indicates the levels of Delta,
d, in each cell.
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Fig. SM7. Initial configuration of a cell monolayer for numerical simulation. The size of
the monolayer is 25× 29 voxels. The colour bar indicates the initial levels of Delta, d, in each cell.

Fig. SM8. Initial setup configuration of a branching network for numerical simulation.
We extracted this configuration from a simulation of the angiogenesis model [SM9]. The colour bar
indicates the level of Delta, d. Voxels without cells are left white in the plot.
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(a) (b)

(c) (d)

Fig. SM9. A series of plots illustrating the time evolution of the phenotype patterning in
a branching network in a typical simulation of the CG system for the multicellular VEGF-
Delta-Notch signalling pathway. Time points (indicated in the title of each plot) are (a) t = 0,
(b) t = 42, (c) t = 260, (d) t = 412 minutes. The colour bar indicates the levels of Delta, d, in each
cell. For these simulations, the interaction radius and system size were fixed at Rs = 15µm and
Ω = 100, respectively. The remaining parameter values were fixed as indicated in Table SM3.
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(a)

(b)

Fig. SM10. Comparison of the dynamics of the multicellular VEGF-Delta-Notch model
simulated on a branching network using the full stochastic (CTMC), CG, and mean-field
descriptions. (a) The Delta-high cell proportion as a function of the cell-to-cell interaction radius,
Rs, for varying noise amplitude, ϵ = 1/Ω (the value of Ω is indicated in the title of each plot),
for the full stochastic CTMC (black), CG (blue) and mean-field (red) descriptions. (b) A series of
barplots showing how the long-time distribution of Delta-high cell clusters changes as the interacton
radius, Rs, varies for the full stochastic CTMC (left panel), CG (middle panel), and mean-field
(right panel) systems. The number of single Delta-high cells in the final pattern (i.e. at a fixed final
simulation time) is shown in blue; the number of clusters with 2, and 3 adjacent Delta-high cells is
shown in yellow and green, respectively. For these simulations, we fixed Ω = 1000 (ϵ = 0.001). The
results are averaged over 100 realisations. The remaining parameter values were fixed as indicated
in Table SM3.
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Table SM3
Non-dimensional parameters of the VEGF-Delta-Notch system.

Parameter Value

βN 2.5, fixed in all figures.

βD 4.0, fixed in all figures.

βR2
4.0, fixed in all figures.

ρN 20.0, fixed in all figures.

ρR2
10.0, fixed in all figures.

λI,N 4.0, fixed in all figures.

λI,R2
0.0, fixed in all figures.

λR∗
2 ,D

2.0, fixed in all figures.

nN 2, fixed in all figures.

nD 1, fixed in all figures.

nR2
1, fixed in all figures.

η 0.5, fixed in all figures.

τ 5.0, fixed in all figures.

κ 4.0 for Figures SM3 and 5 to 7; 12.0 for all other figures and simulations.

vext 0.1 for Figures SM3 and 5 to 7; 1.25 for all other figures and simulations.

dext 0.2 for Figures SM3 and 5 to 7; dext ∈ [0.0, 4.0] and the exact value is
determined during the simulations (depending on the neighbourhood of each
cell) for all other figures.

next 0.5 for Figures SM2a, SM3, and 5 to 7; dext ∈ [0.0, 4.0] and the exact value
is determined during the simulations (depending on the neighbourhood of
each cell) for all other figures.

voxel width, h 5 µm in all multicellular simulations (hexagon width).

Rs 15 µm in Figures SM9, 11, and 12; for all other multicellular simulations Rs

is indicated in the text and/or figure captions.

final simulation
time, Tfinal

12000 mins for Figures SM6 and 11; 5 · 1023 mins for Figure 12; 1500 mins
for Figures SM10, 13, and 14; 9000 mins for Figure SM9.
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