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New experimental data have shown how the periodic exposure of cells to low oxygen levels (i.e., cyclic
hypoxia) impacts their progress through the cell-cycle. Cyclic hypoxia has been detected in tumours
and linked to poor prognosis and treatment failure. While fluctuating oxygen environments can be repro-
duced in vitro, the range of oxygen cycles that can be tested is limited. By contrast, mathematical models
can be used to predict the response to a wide range of cyclic dynamics. Accordingly, in this paper we
develop a mechanistic model of the cell-cycle that can be combined with in vitro experiments to better
understand the link between cyclic hypoxia and cell-cycle dysregulation. A distinguishing feature of our
model is the inclusion of impaired DNA synthesis and cell-cycle arrest due to periodic exposure to
severely low oxygen levels. Our model decomposes the cell population into five compartments and a
time-dependent delay accounts for the variability in the duration of the S phase which increases in severe
hypoxia due to reduced rates of DNA synthesis. We calibrate our model against experimental data and
show that it recapitulates the observed cell-cycle dynamics. We use the calibrated model to investigate
the response of cells to oxygen cycles not yet tested experimentally. When the re-oxygenation phase is
sufficiently long, our model predicts that cyclic hypoxia simply slows cell proliferation since cells spend
more time in the S phase. On the contrary, cycles with short periods of re-oxygenation are predicted to
lead to inhibition of proliferation, with cells arresting from the cell-cycle in the G2 phase. While model
predictions on short time scales (about a day) are fairly accurate (i.e, confidence intervals are small),
the predictions become more uncertain over longer periods. Hence, we use our model to inform exper-
imental design that can lead to improved model parameter estimates and validate model predictions.

� 2022 Elsevier Ltd. All rights reserved.
1. Introduction genetic stability by promoting cell-cycle arrest to allow time for
The cell-cycle is one of the most fundamental and energy con-
suming processes in cell biology. It is divided into four phases:
G1 (growth), S (DNA synthesis), G2 (growth and preparation for
mitosis) and M (mitosis). Transitions between these phases are
regulated by complex interactions between cellular pathways
and external stimuli which normally act to maintain tissue home-
ostasis. These interactions are impaired in transformed cells, lead-
ing to uncontrolled proliferation, which is a key hallmark of cancer
(Hanahan and Weinberg, 2000). Cell-cycle dysregulation is further
linked to the hallmarks of cancer because it promotes genetic
instability, i.e., increasing mutation frequency (Negrini et al.,
2010). In normal cells, the DNA damage response (DDR) maintains
DNA repair or, when DNA damage is irreparable, by promoting cell
death via the induction of apoptosis. The DDR is activated early
during tumourigenesis as an anti-cancer barrier to oncogene activ-
ity and physiological stresses (Bartkova et al., 2005; Gorgoulis
et al., 2005). However, continuous activation of the DDR results
in selective pressure for the outgrowth of mutated cancer cells,
with aberrant cell-cycle progression and apoptotic control (Begg
and Tavassoli, 2020; Gorgoulis et al., 2005). Loss of cell-cycle con-
trol also plays a significant role in the failure of standard treat-
ments, such as chemotherapy and radiotherapy, where treatment
relapse is driven by the emergence of small subpopulations of
resistant cells. Exposure to insufficient oxygen levels, i.e., hypoxia,
is a key driver of tumorigenesis. Hypoxic regions are commonly
found in solid tumours (Barker et al., 2015; Good and Harrington,
2013; Kirkpatrick et al., 2004; Koumenis and Wouters, 2006) as a
result of uncontrolled cell proliferation and abnormal vascular
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structures. Exposure to severe levels of hypoxia (< 0:1% O2), which
are only observed in pathophysiological conditions, leads to repli-
cation stress and consequent activation of DDR and the pro-
apoptotic p53 tumour suppressor (Foskolou et al., 2017;
Leszczynska et al., 2016; Olcina et al., 2013). Further, conditions
of less than 0:1% O2 are associated with resistance to radiotherapy
and are therefore commonly referred to as radio-biological hypoxia
(RH) (West and Slevin, 2019).

Our study is motivated by evidence that the tumour micro-
environment is characterised by highly dynamic oxygen levels.
While chronic hypoxia affects tumour regions at a significant dis-
tance from vessels, acute/cycling hypoxia can occur close to, and
far from, blood vessels, with periods ranging from seconds to
hours/days (Ron et al., 2019). While high frequency fluctuations
are usually associated with vasomotor activity, processes that
occur on longer time scales (e.g., vascular remodelling) can gener-
ate cycles with longer periods (Michiels et al., 2016). Such periodic
changes in the environment are known to cause inflammation,
which promotes the survival of more aggressive forms of cancer
that are resistant to standard treatments (Bader et al., 2021;
Begg and Tavassoli, 2020; Bristow and Hill, 2008; Michiels et al.,
2016; Saxena and Jolly, 2019; Simms et al., 2012).

It is possible to culture cells in vitro in controlled oxygen envi-
ronments that partially mimic the fluctuating oxygen levels expe-
rienced by tumours in vivo. However, in vitro experiments are
limited by the range of oxygen cycles that can be tested. By con-
trast, mathematical models can provide insight into a wider range
of experimental conditions. Our aim in this work is therefore to
develop a novel mechanistic model of the cell-cycle that can be
combined with in vitro experiments, to increase our understanding
of how cyclic hypoxia impacts the cell-cycle.

When exposed to radio-biological hypoxia (RH) in vitro, pro-
gress through S phase is inhibited due to a rapid reduction in the
rate of DNA synthesis (Foskolou et al., 2017; Pires et al., 2010). This
hypoxia-induced S phase block has been attributed to impaired
functioning of the enzyme ribonucleotide reductase (RNR)
(Foskolou et al., 2017; Olcina et al., 2010), which mediates de novo
production of deoxynucleotide triphosphates (dNTPs). Since dNTPs
are the building blocks of DNA, the decrease in dNTP levels in sev-
ere hypoxia causes DNA synthesis to stall. In contrast, milder levels
of hypoxia (1� 2%O2) do not impact dNTP levels (Foskolou et al.,
2017). Replication stress, which is defined as any condition impact-
ing normal DNA replication, leads to activation of the DDR when
local oxygen levels are sufficiently low. While cells can initially
survive at such low oxygen levels, if severe conditions are pro-
longed then cell death occurs (Pires et al., 2010). Alternatively, if
oxygen levels are restored, cells can re-enter the cell-cycle
although they may accumulate DNA damage, likely associated with
the accumulation of reactive-oxygen species (ROS) during reoxy-
genation (Michiels et al., 2016). Depending on the amount of dam-
age sustained, activation of cell-cycle checkpoints causes cells to
accumulate in the G2-phase and prevents damaged cells from
entering mitosis (Bristow and Hill, 2008; Goto et al., 2015; Olcina
et al., 2010). Alternatively, if the reoxygenated cells are unable to
repair the damage accumulated, they die. Periodic exposure to
RH (cyclic hypoxia) may therefore lead to cell death and strong
selective pressure for more aggressive clones with impaired check-
point activation.

Common techniques for monitoring cell-cycle dynamics include
flow cytometry and time-lapse microscopy using the fluorescent
ubiquitination-based cell-cycle indicator (FUCCI). Both methods
can be used to indirectly estimate how the fraction of cells in dif-
ferent stages of the cell-cycle changes over time, by measuring
either DNA content (flow cytometry) or expression of cell-cycle
related proteins (FUCCI). Since we have access to flow cytometry
data, we build our mathematical model so that it can be calibrated
2

against this type of data. As shown in the schematic in Fig. 1, flow
cytometry can distinguish cells in different stages of the cycle, sort-
ing them according to their DNA content. While cells in the S phase
are synthesising new DNA and, therefore, have a variable amount
of DNA (from one to two copies), cells in the G1 and G2/M phases
have exactly one and two copies of DNA, respectively. Although
this method can fail to distinguish cells with similar DNA content
(i.e., cells in G1 and early S phases or, cells in the G2/M and late
S phases), bromodeoxyuridine (BrdU) labelling can overcome this
limitation. Since cells in the S phase incorporate BrdU into newly
synthesised DNA, it is possible to distinguish these cells by mea-
suring BrdU uptake (Ubezio, 2004). The bivariate distribution of
cells over DNA content and BrdU labelling can therefore be used
to estimate cell-cycle distributions which are usually presented
as time series data for the evolution of the fractions of cells in
the G1, S or G2/M phases. These estimates can be further refined
by measuring the expression of proteins involved with cell-cycle
regulation, such as cyclin-dependent kinases (Chiorino and Lupi,
2002; Ubezio, 2004).

Several mathematical formalisms have been proposed to inves-
tigate cell-cycle evolution in normal ‘healthy’ conditions, as well as
perturbed environments, for example in the context of drug devel-
opment. These formalisms encompass discrete (Fauré et al., 2006;
Ubezio et al., 2009), continuous (either deterministic Alarcón et al.,
2004; Basse et al., 2003; Basse et al., 2005; Fadda et al., 2012;
Sasane, 2016; Simms et al., 2012; Sherer et al., 2008 or stochastic
Altinok et al., 2011; Weber et al., 2014) and hybrid approaches
(Alfieri et al., 2011; Singhania et al., 2011). When interested in
the population scale, population balance (PB) models are often
used (Basse et al., 2003; Basse et al., 2005; Fadda et al., 2012;
Sasane, 2016; Sherer et al., 2008; Spinelli et al., 2006). These take
the form of age- and/or phase-structured models, where a struc-
ture variable is introduced to track progress through the cell-
cycle. Several recent reports have focused on developing compart-
ment models of the cell-cycle, proliferation and migration which
exploit time-resolved FUCCI data (Chao et al., 2017; Vittadello
et al., 2018; Vittadello et al., 2019; Vittadello et al., 2021). When
analysing flow cytometry data, instead, continuous structure vari-
ables are commonly used. For example, in a series of papers (Basse
et al., 2003; Basse et al., 2004; Basse et al., 2005), Basse and coau-
thors developed cell-cycle models based on systems of partial dif-
ferential equations in which cells are structured according to their
DNA content. In these models, cells in the G1 and G2/M phases
have constant DNA content (x), with x ¼ 1 and x ¼ 2, respectively,
while x increases at a constant rate for cells in the S phase. Given a
cell DNA content x at time t, and given its rate of DNA synthesis, it
is possible to estimate the amount of time that a cell has spent in
the S phase. However, information about the amount of time spent
in the other phases of the cycle is lost. This shortcoming has moti-
vated the development of age-structured models (Basse and
Ubezio, 2007), in which the age of a cell in a certain phase of the
cycle corresponds to the time it has spent in that phase. Models
combining both structure variables (i.e., DNA and cell age) have
also been proposed (Chapman et al., 2008), but they are complex
and difficult to validate against data. Further cell-cycle specific
properties such as size (Fadda et al., 2012), or protein expression
levels (Chiorino and Lupi, 2002), can also be included in this frame-
work. PB models can be extended to account for variability in com-
partment specific parameters, such as transition and/or death rates
(Fadda et al., 2012) and length of cell-cycle phases (Basse et al.,
2003), to capture the effect of different drugs on cell-cycle progres-
sion. Several theoretical studies have investigated the effect of
chronic exposure to hypoxia on cell-cycle arrest (Alarcón et al.,
2004; Csikász-Nagy, 2009) with particular emphasis on hypoxia-
induced G1 arrest. At the population level, quiescence is usually
represented by introducing an additional phase to the standard



Fig. 1. Schematic representation of flow cytometric data: at different time points (tði;Ei Þ) during experiment Ei a subpopulation of N (the population of cells in the chamber) is
harvested and sorted via flow cytometry according to their DNA content (PI fluorescence intensity), and BrdU uptake. This allows us to extract the fractions F1; Fs and F2 of
cells in the subpopulation with one, intermediate (i.e. in between one and two), and two copies of DNA, respectively. This is an approximation of the frequency of cells with
different DNA content in the total population in the chamber.
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cell-cycle: the so-called ‘G0’ (or quiescent) phase (Ducrot et al.,
2011; Gyllenberg and Webb, 1990), which cells enter prior to com-
mitting to DNA synthesis (i.e, prior to entering the S phase) when
the local oxygen levels are too low (/1%O2). While this extension
can account for cell responses to chronic hypoxia, recent experi-
mental findings (Bader et al., 2021; Foskolou et al., 2017) suggest
that this is not sufficient to account for cell behaviours in acute/-
cyclic hypoxia.

In this paper we develop a mathematical model to investigate
how periodic (rather than constant) RH influences cell-cycle
dynamics. In §2 we introduce the experimental data from Bader
et al. (2021) and summarise the biological mechanisms on which
our model is based. In §3 we present our 6-compartment, DNA-
structured, model which describes how the number of cells in each
phase of the cycle evolves over time. Novel features of the model
include a time- and oxygen-dependent rate of DNA synthesis (here
denoted by vðtÞ) and the introduction of three ‘‘checkpoint” com-

partments (C1;C
ðaÞ
2 and CðbÞ

2 ), where cells arrest due to unfavourable
environmental conditions or due to the accumulation of damage
and stress. We reduce our model to a system of 5 ordinary differ-
ential equations coupled to a delay-differential equation, where
the delay (sS) represents the duration of the S phase and is not nec-
essarily constant, rather, it depends on the environment that the
cells have encountered. In §4, we first consider model predictions
in well-oxygenated conditions. Here we recover the well-known
result of cells converging to a regime of balanced exponential
growth. In §5, we explore model predictions in constant and cyclic
RH, highlighting the distinct effects that these two types of hypoxia
have on the cell-cycle dynamics. We first show that the model can
replicate experimental data from Bader et al. (2021) and then use it
to investigate the cell-cycle dynamics for modes of oxygen fluctu-
ations not yet tested experimentally. In §5.2, we introduce a class
of models (M) of decreasing complexity by neglecting some of the
mechanisms (and complexity) included in the full model (such as

arrest in C1;C
ðaÞ
2 and CðbÞ

2 ). In §6 we compare these models using
Bayesian model selection: we first calibrate our class of models
against experimental data by using Bayesian inference methods
and then identify the ‘‘best” model structure based on the deviance

information criteria. This analysis reveals that the C1 and CðaÞ
2 check-

point compartments are necessary to describe the experimentally
observed dynamics. In §7, we use the selected and calibrated
3

model to predict cell responses to different oxygen environments
when considering the uncertainty in the parameter estimates.
We also explain how our results could inform the design of new
experiments to validate the model and/or improve the accuracy
of the parameter estimates. In §8 we conclude by summarising
our results and outlining possible directions for future work.
2. Experimental motivation

This work is inspired by experimental data showing how the
cell-cycle of RKO (colorectal cancer) cells changes when they are
cultured in vitro as 2D monolayers and exposed to fluctuating oxy-
gen levels (Bader et al., 2021). As shown in Fig. 1, cells are cultured
in chambers where the oxygen levels c ¼ cðtÞ (where t is time) are
carefully controlled and assumed to be spatially homogeneous. At
prescribed time points, a subset of the cells is analysed using flow
cytometry to estimate the fractions of cells in the G1, S and G2/M
phases of the cycle, which we denote, respectively, by F1; Fs and F2.
Since each measurement requires cells to be harvested, measure-
ment errors can be taken to be independent. In the absence of cell
death, we have that by definition F1 þ Fs þ F2 ¼ 1, so only two of
the three cell fractions are needed to fully characterise the cell-
cycle dynamics.

As shown in Fig. 2, two experimental protocols are tested. At
time t ¼ 0, cells are exposed to either constant radio-biological
hypoxia (cðtÞ � cRH � 0:1%O2; t > 0) or periodic cycles of radio-
biological hypoxia (2 hr at c ¼ cRH and 2 hr at 2%O2). Prior to both
experiments, the cells are cultured in normoxia (21%O2) so that the
measurements at time t ¼ 0 contain information on this condition.
In normoxia, and in absence of competition, the cells are typically in
a regime of balanced exponential growth for which the cell frac-
tions Fm are stationary (i.e., they do not change over time). Hence
a single set of measurements is sufficient to fully characterise the
cell-cycle dynamics in these environmental conditions. We divide
the data into three different sets: E0 (normoxia), E1 (constant RH)
and E2 (cyclic RH). The histograms in Fig. 2 summarise the data
available from Bader et al. (2021), obtained by averaging over mul-
tiple runs of the experiments. As mentioned in §1, our focus is on
fluctuating environments (i.e. the scenario E2), however data from
E0 and E1 are also used to assist with parameter estimation.



(a)

(b)

Fig. 2. (a) Data are split into three sets corresponding to the three experiments:
normoxia (E0), constant RH (E1) and cyclic RH (E2). We plot the evolution of the
oxygen levels, cðtÞ (see blue curve), and compare it to the threshold c� at which DNA
synthesis is impaired (see red horizontal line). (b) Histogram summarising the data
from Bader et al. (2021). At each time point we report the mean cell fractions
estimated frommultiple (between two and four) measurements. Error bars indicate
one standard deviation in the estimated values. The complete data sets can be
found in Appendix B.

Fig. 3. Schematic representation of the 6-compartment model of the cell-cycle
given by Eqs. (1). Here the two independent variables are time t and the cell DNA
content x (measured in number of copies), while P1; Ps and P2 are as defined in
Fig. 1. The sub-population P1 groups cells in the G1 and C1 compartments, while P2

comprises cells in the G2; C að Þ
2 and CðbÞ

2 compartments. Cells in the G compartments
are progressing along the cell-cycle as usual, while the C compartments are
‘‘checkpoint” compartments where cells arrest. The black dots on the arrows
correspond to redistribution of cell fluxes according to a given probability (for
example in P1 the influx k1G1 is redistributed with probability Q1 into C1 and 1� Q1

into S). To account for DNA synthesis during the S phase we structure cells in the S-
compartment according to their DNA content x, which is synthesised at velocity v.
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The data in Fig. 2 show that both constant (E1) and cyclic RH (E2)
redistribute the cells along the cycle. For experiment E1, cells tend
to accumulate in the G1 phase (as seen by the increase in the frac-
tion F1), whereas in experiment E2, we observe a decrease in the
fraction F1. In this case, cells initially concentrate in the S phase
(as seen by the increase in the fraction Fs), while they accumulate
in the G2/M phase at later times (see time t ¼ 28 hr). For experi-
ment E1 we only consider the early dynamics since on longer time
scales (t > 20 hr) cell-death becomes significant. By contrast, cells
can survive for longer periods in cyclic hypoxia, with cell death
being negligible for up to 28 hr.

As mentioned in the introduction, and based on current
experimental evidence (Bader et al., 2021; Foskolou et al.,
2017; Pires et al., 2010), three mechanisms may influence the
cell-cycle dynamics under cyclic hypoxia: the reduction in the
rate of DNA synthesis (Mechanism 1) and variation in the timing
of the G1-S (Mechanism 2) transition, both due to dNTP short-
age, and the arrest of cells in the G2 phase due to accumulation
of damage and replication stress (Mechanism 3). Here, we
assume that there is an oxygen threshold, c�, such that dNTP
levels drop (due to the impaired activity of RNR enzyme) when
oxygen levels fall below c�. We further hypothesise that cells
experience transient mitotic arrest due to lack of oxygen (Mech-
anism 4). Based on the experiments in Foskolou et al. (2017), we
4

estimate that 0:1%O2 < c� < 2%O2. We therefore fix c� at an
intermediate value (i.e., c� � 1%O2). Our aim is to develop a
mathematical model that captures these four mechanisms and
that can be used to investigate whether they can explain the
experimental data in both constant RH (E1) and cyclic RH (E2)
conditions. Nonetheless, we can not exclude the possibility that
other mechanisms (i.e., modelling assumptions) not considered
here, might also explain the data.

3. The mathematical model

We propose a 6-compartment partial differential equation
(PDE) model to describe cell-cycle dynamics in cyclic RH. For sim-
plicity, we assume that the cells are in a well-mixed, spatially-
homogeneous environment where the oxygen concentration
c ¼ cðtÞ is externally prescribed. We also assume that cell death
is negligible since this is supported by the experimental
observations.

As illustrated in Fig. 3, we subdivide the population into 6 com-
partments. Here G1 ¼ G1ðtÞ and G2 ¼ G2ðtÞ denote, respectively, the
number of cells at time t in the G1 and G2/M phases of the cycle
that are actively proceeding along their cycle. On the other hand,

C1 ¼ C1ðtÞ and CðbÞ
2 ¼ CðbÞ

2 ðtÞ are, respectively, the number of cells
in the G1 and G2/M phases that are temporarily arrested at time

t due to lack of oxygen. We denote by CðaÞ
2 ¼ CðaÞ

2 ðtÞ cells that are
arrested in G2 due to the damage and stress that they have accu-
mulated during the S phase as a result of exposure to hypoxia.

We view C1;C
ðaÞ
2 and CðbÞ

2 as checkpoint compartments and assume
that the rates of entry into, and exit from, these compartments
change over time in response to current and previous environmen-
tal conditions (i.e, oxygen levels). Finally, we structure cells in the S
phase according to their DNA content, x, so that S ¼ Sðx; tÞ repre-
sents the number of cells with DNA content x at time t. Here x is
a dimensionless variable corresponding to the relative DNA con-
tent of a cell, scaled so that 1 6 x 6 2. Cells start the S phase with
x ¼ 1 and exit it upon completion of DNA duplication with x ¼ 2.

Referring to the schematic in Fig. 3 and applying the principle of
mass balance, we obtain the following system of equations for the
time evolution of the model variables:



Table 1
Summary of the model variables in Eqs. (1)-(8).

Description

t time [hr]
x copies of DNA in a cell (1:0 6 x � 2:0)
c externally controlled oxygen levels [%]
G1ðtÞ number of cells in P1 active in the cycle
C1ðtÞ number of cells in P1 that are arrested in response to hypoxia
Sðx; tÞ number of cells in Ps with DNA content x
G2ðtÞ number of cells in P2 active in the cycle

CðaÞ
2 ðtÞ number of cells in P2 that are arrested due to accumulation of

damage and replication stress

CðbÞ
2 ðtÞ number of cells in P2 that are arrested in response to hypoxia

NðtÞ total cell number
f mðtÞ predicted fraction of cells (f m 2 0;1½ �) in the Pm sub-population

m 2 1; s;2f g
FmðtÞ experimentally measured fraction of cells (Fm 2 0;1½ �) in the Pm sub-

population m 2 1; s;2f g
sðx; tÞ DNA distribution of cells in the Ps sub-population
sSðtÞ duration of the S phase for cells that exit the S compartment at time t

[hr]
xðtÞ population proliferation rate [hr�1]
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dG1

dt
¼ 2ðk2G2 þK2ðtÞCðbÞ

2 þA2ðtÞCðaÞ
2 Þ � k1G1; t > 0; ð1aÞ

dC1

dt
¼ Q1ðtÞk1G1 �K1ðtÞC1; t > 0; ð1bÞ

@S
@t

þ @

@x
vðtÞSð Þ ¼ 0; x 2 ð1;2�; t > 0; ð1cÞ

dG2

dt
¼ �k2G2 þ ð1�PðtÞÞvðtÞSðt;2Þ; t > 0; ð1dÞ

dCðaÞ
2

dt
¼ PðtÞvðtÞSðt;2Þ �A2ðtÞCðaÞ

2 ; t > 0; ð1eÞ

dCðbÞ
2

dt
¼ Q2ðtÞk2G2 �K2ðtÞCðbÞ

2 ; t > 0: ð1fÞ

The factor of 2 in Eq. (1a) arises because cell division produces
two daughter cells. The positive constants k1; k2 [hr�1] represent
the rates at which cells leave G1;G2, respectively. In Eq. (1c), we
account for DNA synthesis by assuming that cells in the S compart-
ment are advected along the x-axis at velocity vðtÞ > 0 [hr�1] (i.e.,
they produce DNA at a rate vðtÞ). In Eq. (1b), we assume that cells
exiting the G1 compartment arrest (i.e. enter the C1 compartment)
with probability Q1 2 0;1½ �, while they proceed to enter the S phase
with probability 1� Q1. We further assume that arrested cells re-
enter the cycle at rate K1 [hr�1]. In a similar manner, in Eq. (1f)
we assume that cells exiting the G2 compartment (i.e., attempting

mitosis) arrest in CðbÞ
2 with probability Q2 2 0;1½ �, and re-enter the

cycle at rateK2 [hr�1]. Further we allow cells exiting the S phase to
arrest due to damage with probability P 2 0;1½ �. These damaged
cells may re-enter the cycle at a rate A2. We account for the effect
that different oxygen levels have on cell behaviour by allowing cer-
tain model parameters (specifically Ki;A2;v ;P and Qi with
i ¼ 1;2) to vary over time in response to the oxygen levels c. The
boundary condition for Eq. (1c) is derived by applying conservation
of cell flux at x ¼ 1. Under the assumption that vðtÞ > 0 for all
t > 0, we find:

v tð ÞS 1; tð Þ ¼ 1� Q1 tð Þð Þk1G1 tð Þ þK1 tð ÞC1 tð Þ: ð1gÞ
We close Eqs. (1a)–(1g) by imposing the following initial

conditions:

G1 0ð Þ ¼ G1;0; C1 0ð Þ ¼ C1;0;

Sðx;0Þ ¼ S0ðxÞ x 2 ð1;2�;
G2 0ð Þ ¼ G2;0; C kð Þ

2 0ð Þ ¼ C kð Þ
2;0; with k 2 a; bf g:

ð1hÞ

Since cell numbers can not be negative, in Eq. (1h) Gi;0;C1;0 and

CðkÞ
2;0 are non-negative constants and S0ðxÞ is a prescribed non-

negative function S0ðxÞ P 0 for all x 2 1;2½ �.
In order to compare the model output to flow cytometry data,

we need to express cell fractions (see Fig. 1) in terms of our model
variables. As shown in Fig. 1, cells can be divided in three sub-
populations depending on the cell-cycle phase they are in: P1; Ps

and P2. Cells in G1 belong to P1, cells in G2/M to P2 and cells in S
to Ps. The total number of cells, N ¼ NðtÞ, is then obtained by sum-
ming the number of cells in each sub-population:

NðtÞ ¼ P1ðtÞ þ PsðtÞ þ P2ðtÞ; ð2aÞ
where (as illustrated in Fig. 3),

P1ðtÞ ¼ C1ðtÞ þ G1ðtÞ;
PsðtÞ ¼

R 2
1 Sðx; tÞdx;

P2ðtÞ ¼ G2ðtÞ þ CðaÞ
2 ðtÞ þ CðbÞ

2 ðtÞ:
ð2bÞ

Differentiating Eq. (2a) with respect to time and using (1), we
find that NðtÞ satisfies:
5

dN
dt

¼k2G2 þK2ðtÞCðbÞ
2 þA2ðtÞCðaÞ

2 ; ð3aÞ

with Nð0Þ ¼
X2
i¼1

Gi;0 þ C1;0 þ
X

k2 a;bf g
CðkÞ
2;0 þ

Z 2

1
S0ðxÞdx :¼ N0: ð3bÞ

The population proliferation rate, x, is given by:

xðtÞ ¼ 1
N

dN
dt

¼ k2G2 þK2ðtÞCðbÞ
2 þA2ðtÞCðaÞ

2

N
; ð4Þ

while the cell fractions f m are defined by:

f mðtÞ ¼
PmðtÞ
NðtÞ ; m 2 1; s;2f g; ð5Þ

and correspond to the probability that a cell randomly chosen from
the total population belongs to the sub-population Pm. We note that
the fractions f m are not independent; Eq. (2) implies that

P
mfm ¼ 1.

We further introduce the distribution s ¼ sðx; tÞ:

sðx; tÞ ¼ Sðx; tÞ
NðtÞ ; 1 < x < 2; ð6Þ

which corresponds to the probability that a cell in the sub-
population Ps has DNA content x 2 1;2½ � at time t. A summary of
the model variables is given in Table 1.

A key feature of our model is that the velocity v is assumed to
depend on the oxygen levels c in order to account for impaired
DNA synthesis at low oxygen levels (c < c�). In particular, we pro-
pose the following piece-wise linear ODE to describe how the
advection velocity v adapts to changes in local oxygen levels cðtÞ:
dv
dt

¼ �R� v � v�ð Þ; cðtÞ < c�;

Rþ vþ � vð Þ; cðtÞ P c�;

�
ð7aÞ

with vð0Þ ¼v0: ð7bÞ

In Eqs. (7), R�;v0 and v� are positive constants, while c� is the
threshold oxygen level below which RNR activity is impaired (see
§2 for details). Here vþ and v� represent, respectively, the equilib-
rium velocities in well-oxygenated (c > c�) and severely hypoxic
(c < c�) environments and 0 < v� < vþ. It is straightforward to
show that if v0 2 v�;vþ½ �, then vðtÞ 2 v�;vþ½ � at all times t > 0,
so that vþ and v� can also be viewed, respectively, as the maxi-
mum and minimum rates of DNA synthesis. When oxygen levels
drop below the critical value c�, the rate of DNA synthesis
decreases (i.e. dv=dt � 0 for c < c�), capturing the effect of dNTP
shortage. As observed in Foskolou et al. (2017), cells maintain a



Fig. 4. Schematic illustration of the characteristic curves in the ðt; xÞ plane. The bold
curve divides the plane into two distinct regions: in the green region (whereR t
0 vð‘Þd‘ < x� 1) the solution Sðx; tÞ is determined by the initial data; in the orange
region (where

R t
0 vð‘Þd‘ > x� 1) Sðx; tÞ is instead determined by the boundary data.
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minimum level of DNA synthesis even after prolonged exposure to
severe hypoxia (c < c�); we therefore assume that v� > 0, which
guarantees that Sð1; tÞ, as defined by Eq. (1g), remains finite. Once
c > c�, dNTP levels are restored and the rate of DNA synthesis
increases (i.e., dv=dt > 0) towards its maximum value vþ. The rates
R� are assumed constant for simplicity although, in practice, they
may depend on oxygen levels. In the absence of suitable data to
identify these dependencies, we proceed with the simplest form
that captures the currently available data and postpone investiga-
tion of more complex functional forms to future work.

We introduce the checkpoint compartments C1 and CðbÞ
2 to account

for transient arrest of cells in the P1 and P2 subpopulations, respec-
tively, due to lack of oxygen. The rates of transition into (Qi) and
out of (Ki) these compartments depend on current oxygen levels.
For simplicity, we adopt the following functional forms to describe
these rates:

KiðtÞ ¼Ki H�ðcðtÞ � c�Þ; i 2 1;2f g; ð8aÞ
QiðtÞ ¼qi H�ðc� � cðtÞÞ; i 2 1;2f g ð8bÞ

where Ki and qi are non-negative constants with qi 2 0;1½ � and c� is
the oxygen threshold introduced above. The function H� is the stan-
dard continuous approximation of the Heaviside function:

H�ð	Þ ¼ 1
2

tanh
	
�

� �
þ 1

h i
: ð8cÞ

where 0 < �
 1 is a small parameter, here set to � ¼ 0:01% oxygen.
We note that Eqs. (8a)-(8b) ensure that cells arrest when c < c� and
resume cycling once c > c�. We considered alternative functional
forms for Ki and Qi but found that the resulting model was unable
to capture the experimentally observed dynamics (results not
shown).

In Eq. (7), prolonged or frequent exposure to RH slows DNA
replication and, therefore, increases the time sS that cells spend
in the S phase. More precisely, we denote by sS ¼ sSðtÞ the amount
of time a cell exiting the S phase at time t has taken to complete
DNA synthesis (we will explain how sSðtÞ is computed in §3.1).
Consequently, the larger sS, the more cells have been damaged
during the S phase due to re-oxygenation and replication stress
(in RH). Since the accumulation of damage in the S phase regulates
the following arrest of cells in the G2 phase (here captured by cells

transitioning into the CðaÞ
2 compartment), we assume that the prob-

ability, P tð Þ, of arrest in G2 increases with sSðtÞ. In particular, we
assume that, when cells exit the S phase, they arrest with a prob-
ability P 2 0;1½ � where:

P tð Þ ¼ pH�p sS tð Þ � Tð Þ: ð8dÞ

In Eq. (8d), we fix the small parameter �p so that �p ¼ 0:1 hr, while
p 2 0;1½ � and T > 0 are unknown parameters. Here p is the maxi-

mum probability that a cell enters the CðaÞ
2 compartment while T

captures the critical duration of the S phase after which cells are

likely to arrest in CðaÞ
2 . Based on Eq. (7), the timescale for completing

the S phase, sS, satisfies v�1
þ 6 sS 6 v�1

� . When oxygen levels are suf-
ficiently high, (i.e. cðtÞ > c� for all t), neglecting an initial transient in
the case v0 – vþ, we have that sS � v�1

þ . Since we do not expect
cells to arrest in an oxygen-rich environment we require P tð Þ � 0
when sSðtÞ � v�1

þ . Consequently we set T � v�1
þ . As in Eq. (8a), we

assume that, once oxygen levels rise above the critical value c�, cells
can repair any damage they have accumulated and re-enter the cell-
cycle at a rate A2:

A2ðtÞ ¼ a2H�ðcðtÞ � c�Þ; ð8eÞ
where a2 is a non-negative constant and � ¼ 0:01% oxygen as in Eq.
(8a).
6

3.1. Model reduction to a system of Delay Differential Equations
(DDEs)

Here we show how Eqs. (1) can be rewritten as a system of
ODEs coupled to a (state-dependent) DDE with a non-constant
delay sSðtÞ which we view as a state variable. Given that the veloc-
ity v is always positive, shocks can not form and a straightforward
application of the method of characteristics to Eq. (1c) yields

Sðx; tÞ ¼
S0 x� R t

0 vð‘Þd‘
� �

;
R t
0 vð‘Þd‘ 6 x� 1;

ð1�Q1Þk1G1þK1C1
v jt�sðt;xÞ;

R t
0 vð‘Þd‘ > x� 1;

8<: ð9Þ

where the function s ¼ sðt; xÞ is implicitly defined by:

x� 1 ¼
Z t

t�sðt;xÞ
vð‘Þd‘; if

Z t

0
vð‘Þd‘ > x� 1; ð10Þ

and indicates the amount of time a cell with DNA content x at time t
has spent in the S compartment.

As illustrated in Fig. 4, the condition
R t
0 vð‘Þd‘ ¼ x� 1 divides

the ðt; xÞ-plane into two regions depending on whether the charac-
teristics propagate from the boundary data curve (orange curve) or
the initial data curve (green curve). When t > t� (i.e. when Sð2; tÞ is
influenced by the boundary data) the total time spent in the S com-
partment is given by sSðtÞ ¼ sðt;2Þ. Using Eq. (10), we find that sS is
implicitly defined by:

1 ¼
Z t

t�sSðtÞ
vð‘Þd‘; if t > t�; ð11aÞ

where t� is defined implicitly by the integral equationZ t�

0
vð‘Þd‘ ¼ 1: ð11bÞ

However, more information about the behaviour of cells prior to
the beginning of the experiment is needed to estimate sSðtÞ for
0 6 t < t�. Let us consider a cell that exits the S phase at time
t < t�. Then, at time t ¼ 0, its DNA content was:

x0ðtÞ ¼ 2�
Z t

0
vð‘Þd‘; ð12Þ

as we can write sS ¼ t þ s0, where t denotes the time spent in the S
compartment since the beginning of the experiment and s0 the time
spent in the S phase prior to the beginning of the experiment. The
functional form of s0 will depend on the conditions in which the
cells were grown for t < 0. It is therefore part of the initial data that



Fig. 5. Schematic representation of the 5-compartment model with delay (see Eqs.
(17)) derived by solving Eq. (1) via the method of characteristics. The black nodes
correspond to the conservation of the cell fluxes, where the input is redistributed
with probabilities PðsSÞ (QiðcÞ; i ¼ 1;2) and 1� PðsSÞ (1� QiðcÞ) in CðaÞ

2 (C1/C
ðbÞ
2 ) and

G2 (‘‘delay” compartment sS/G1.), respectively.
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must be specified in order to fully define the model. In §4, we will
show that if cells are cultured in an oxygen-rich environment for
t < 0, then s0 depends only on the DNA content x0ðtÞ (i.e.
s0ðtÞ ¼ s0ðx0ðtÞÞ). In summary we have:

sSðtÞ ¼ t þ s0ðtÞ; 0 6 t < t�: ð13Þ
Differentiating Eq. (11a) with respect to time, and given Eq.

(13), we deduce that the variable sSðtÞ satisfies:
dsS
dt

¼ 1� vðtÞ
vðt � sSÞ ; t P t�; ð14aÞ

with sS tð Þ ¼ t þ s0 tð Þ; 0 6 t 6 t�: ð14bÞ

3.2. Summary of the cell-cycle model with delay

Before presenting the full model, we perform the following re-
scaling:

bGi ¼ Gi

N0
; bC1 ¼ C1

N0
; bC ðkÞ

2 ¼ CðkÞ
2

N0
; bN ¼ N

N0
: ð15Þ

Since our model is linear, this re-scaling does not affect the form
of the governing equations; it only alters the initial conditions. We
further assume that cells are initially actively cycling (i.e. none of
them is arrested) and DNA synthesis is proceeding at maximum
speed so that:

v0 ¼ vþ; C1;0 ¼ 0; CðkÞ
2;0 ¼ 0; f i;0 ¼ Gi;0

N0
; i 2 1;2f g; ð16Þ

where f i;0, with i 2 1;2f g, denote the cell fractions at time t ¼ 0. As
discussed in §4, this is a reasonable assumption if cells are cultured
in oxygen-rich environments prior to the start of the experiments.

Applying Eq. (15) to Eqs. (1)–(3), using Eqs. (7)–(8), (9) and (14)
and dropping the hat notation, the governing equations become

dG1

dt
¼ 2ðk2G2 þK2ðtÞCðbÞ

2 þA2ðtÞCðaÞ
2 Þ � k1G1; t > 0; ð17aÞ

dC1

dt
¼ Q1ðtÞk1G1 �K1ðtÞC1; t > 0; ð17bÞ

dG2

dt
¼ �k2G2 þ 1�P tð Þð Þ I t � sS tð Þ; tð Þ t > 0; ð17cÞ

dC að Þ
2

dt
¼ P tð ÞI t � sS tð Þ; tð Þ �A2 tð ÞC að Þ

2 ; t > 0; ð17dÞ
dCðbÞ

2

dt
¼ Q2ðtÞk2G2 �K2ðtÞCðbÞ

2 ; t > 0; ð17eÞ
dN
dt

¼ k2G2 þK2ðtÞCðbÞ
2 þA2ðtÞCðaÞ

2 ; t > 0; ð17fÞ
dv
dt

¼ �R� v � v�ð Þ; cðtÞ < c�;

Rþ vþ � vð Þ; cðtÞ P c�

�
; t > 0; ð17gÞ

dsS
dt

¼ vðt � sSÞ � vðtÞ
vðt � sSÞ ; t P t� ð17hÞ

wherein t� is implicitly defined by Eq. (11b) and

I s; tð Þ ¼
v tð Þs0 2� R t

0 v ‘ð Þd‘
� �

; t < t�;

v tð Þ 1�Q1 sð Þð Þk1G1 sð ÞþK1 sð ÞC1 sð Þ
v sð Þ ; t P t�;

8<: ð17iÞ

KiðtÞ ¼ Ki H�ðcðtÞ � c�Þ; i 2 1;2f g; ð17jÞ
A2ðtÞ ¼ a2H�ðcðtÞ � c�Þ; ð17kÞ
QiðtÞ ¼ qi H�ðc� � cðtÞÞ; i 2 1;2f gð17lÞ
P tð Þ ¼ pH�p sS tð Þ � Tð Þ; ð17mÞ

and

vð0Þ ¼ vþ; sSðnÞ ¼ nþ s0ðnÞ; 0 6 n 6 t�;

Nð0Þ ¼ 1; C1ð0Þ ¼ 0;

Gið0Þ ¼ f i;0; CðkÞ
2 ð0Þ ¼ 0; k 2 a; bf g:

ð17nÞ
7

In Eq. (17c), Iðt � ssðtÞ; tÞ denotes the flux of cells exiting the S
compartment at time t, i.e., Iðt � ssðtÞ; tÞ ¼ vðtÞSð2; tÞ where S satis-
fies Eq. (9). To close the system, it remains to specify the distribu-
tion s0ðxÞ ¼ sðx; t ¼ 0Þ ¼ S0=N0 and the function s0 (see §3.1). The
former is subject to the constraint:Z 2

1
s0ðxÞdx ¼ f s;0 ¼ 1� f 1;0 � f 2;0: ð18Þ

In Fig. 5, we present a schematic summary of the model (as
in Fig. 3) where the S compartment is replaced by the time
delay sS.

As listed in Table 2, our model has 12 parameters. As dis-
cussed in §2, we fix c� ¼ 1% oxygen in line with experimental
evidence. Further, based on the experimental estimates of the
rate of DNA synthesis in Pires et al. (2010), we expect v� to
be small. Since the limit v� ! 0 is non-singular, it can be shown
that the solution is not sensitive to the precise value of v� pro-
vided that v� � Oð10�3Þ (results not shown). We therefore fix

v� ¼ 0:005hr�1, which is sufficiently small to exhibit the correct
qualitative behaviour. With c� ¼ 1 and v� ¼ 0:005, there are ten
unknown parameters, which we split into two classes. While h=
[k1;vþ; k2] comprises parameters associated with oxygen-
independent mechanisms, H=[Rþ;R�;K1; q1; p; T;a2;K2; q2] con-
tains parameters associated with oxygen-dependent mecha-
nisms. Given the large number of unknown parameters and
the expected variability for different cell lines, we here focus
on the RKO cancer cell line and the data in Fig. 2 to estimate
the model parameters. Discussion on how we estimate the
model parameters is postponed to §6. First, we present some
characteristic predictions of our model obtained by solving Eqs.
(17) numerically using the Python ddeint package to integrate
delay-differential equations.

4. Cell-cycle progression in a static normoxic environment

Let us first consider the case in which cells are exposed to
a constant, oxygen-rich environment (i.e., cðtÞ � �c � c�). Given
Eqs. (17g)-(17h), we have that v � vþ and sS � v�1

þ . In this

case, Qi � 0; P � 0 and C1ðtÞ ¼ CðaÞ
2 ðtÞ ¼ CðbÞ

2 ðtÞ � 0 for all t > 0,
so that there are no arrested cells in the population. We con-
clude that when c � �c > c�, Eqs. (17) reduce to the following
system:



Table 2
Summary of the parameters that appear in Eqs. (1)–(8), together with their typical
values for the RKO cancer cell line.

Description Typical value
(s)

c� oxygen tension at which RNR activity is impaired
leading to dNTP shortage

� 1%O2

v� minimum velocity of DNA synthesis 5 10�3 hr�1

vþ maximum velocity of DNA synthesis 0.083 hr�1

k1 rate at which cells exit G1 0.195 hr�1

k2 rate at which cells exit G2 0.22 hr�1

K1 rate at which cells leave C1 0:0� 2:5 hr�1

q1 probability of a cell arresting in C1 in RH 0:0� 1:0
a2 rate at which damaged cells leave CðaÞ

2
0:0–2:0 hr�1

T threshold for transition to CðaÞ
2 checkpoint 15� 20 hr

p maximum probability of a cell arresting in CðaÞ
2

0:0� 1:0

K2 rate at which cells leave CðbÞ
2

0:0� 2:5 hr�1

q2 probability of a cell arresting in CðbÞ
2 in RH 0:0� 1:0

Rþ rate of change of v when c > c� 10�3 � 2:0 hr�1

R� rate of change of v when c < c� 10�3 � 2:0 hr�1 Fig. 6. Numerical simulations of Eqs. (19) for two sets of initial conditions: (a)
s0 � 0; f 2;0 � 0 and f 1;0 ¼ 1; (b) s0 � 0; f 2;0 � 1 and f 1;0 ¼ 0. For both simulations,
the parameters k1; k2 and vþ are set as in Table 2. In panels (a.1) and (b.1), we plot
the cell-cycle dynamics with cumulative plots of the cell fractions f m with
m 2 1; s;2f g; in panels (a.2) and (b.2) we show instead the predicted time evolution
of the model variables G1;G2 and N on a semi-logarithmic scale.

Fig. 7. Comparison of the population proliferation rate x (see Eq. (4)) for the two
scenarios in Fig. 6. We see that on the long time scale, the proliferation rate settles
to a constant value, k, independently of the initial conditions chosen.
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dG1

dt
¼ 2k2G2 � k1G1; t > 0; ð19aÞ

dG2

dt
¼ �k2G2 þ k1G1ðt � v�1

þ Þ; t > 0; ð19bÞ
dN
dt

¼ k2G2; t > 0; ð19cÞ

subject to

G1ðnÞ ¼
f 1;0; n ¼ 0;

vþk
�1
1 s0 2þ nvþð Þ; �v�1

þ < n < 0;

(
Nð0Þ ¼ 1; G2ð0Þ ¼ f 2;0;

ð19dÞ

where s0 satisfies Eq. (18).
We note that Eqs. (19) are analogous to models previously pro-

posed in the literature, such as the model by Basse et al. (Basse
et al., 2003; Basse et al., 2004) when dispersion is neglected. Since
Eqs. (19) are linear with a constant delay, they can be solved
exactly via superposition of exponential functions eKi t where Ki

(i ¼ 1;2; . . .) are the complex roots of the characteristic polynomial
(see Eq. (A.3) in Appendix A). In the case of DDEs, the characteristic
polynomial is a transcendental equation with an infinite number of
roots so that the computation of Ki is non-trivial. To investigate the
transient dynamics, it is therefore more convenient to solve Eqs.
(19) numerically. In Fig. 6 we present numerical solutions for
two sets of initial conditions: cells are initially synchronised in
either the G1 (Fig. 6(a)) or G2 (Fig. 6(b)) compartment. This corre-
sponds to setting s0 � 0 with f 1;0 ¼ 1 and f 2;0 ¼ 0 (for panel (a)),
or f 2;0 ¼ 1 and f 1;0 ¼ 0 (for panel (b)).

As shown in Fig. 6, the evolution of the cell fractions f m in pan-
els (a.1) and (b.1) differs only up to time t � 20 hr; after this first
transient the cell fractions evolve to constant values, denoted by
�f m, which are independent of the initial conditions. When looking
at Fig. 6(a.2)-(b.2), we see that, from time t > 20 hr, the variables
have a similar qualitative behaviour, but their values remain
higher for scenario (b) than for scenario (a). While cells in scenario
(b) start proliferating at the beginning of the simulations, cells in
scenario (a) are delayed since they need to complete the S phase
before they can replicate. Once cells enter the G2 compartment,
we see an increase in the cell number N. We also note that from
time t > 60 hr, for both scenarios, NðtÞ;G1ðtÞ and G2ðtÞ increase
exponentially at a constant rate. This agrees with the results in
Fig. 7, which show that the population proliferation rate xðtÞ
8

(see Eq. (4)) asymptotes to a constant value k for both sets of
simulations.

Fig. 8 shows the evolution of the distribution sðx; tÞ. We note
that in Fig. 8(a), cells are initially highly synchronised in the S com-
partment, with the formation of a front that propagates at velocity
vþ (note the steep gradient in the profiles at times t ¼ 5 and
t ¼ 10). This is because of the discontinuity in the initial data for
G1 (when f 1;0 ¼ 1 and S0 � 0;G1ðnÞ in Eqs. (19) is discontinuous
at n ¼ 0). The discontinuity propagates along the x axis but it
quickly smooths out due to the de-synchronisation of cells in the
G1 and G2 compartments. By contrast, in Fig. 8(b), there is no dis-
continuity in the initial data for G1 and therefore the profile of s
is smoother. Despite these large differences in the distributions
at early times, s eventually evolves to the same stationary distribu-
tion (in Fig. 8, the curves for t ¼ 60 and t ¼ 80 are almost indistin-
guishable) and the time scales required to approach the stationary
distribution for the two initial conditions are comparable.

Following the notation introduced in Simms et al. (2012), we
term the asymptotic solution of the reduced model (19) a phase
stationary solution (PSS) to indicate that, in this regime, the cell
fractions f 1; f s and f 2, and the distribution s remain constant in
time. This is similar to predictions from other models in the liter-
ature (Basse et al., 2003; Basse et al., 2005; Begg et al., 2008;
Crivelli et al., 2012; Simms et al., 2012) in the context of unper-
turbed growth; this regime is usually referred to as balanced, or



Fig. 8. Evolution of the distribution of cells in the S compartment with respect to x.
We estimate the distribution sðx; tÞ by numerically solving Eq. (9) for the two cases
in Fig. 6: (a) initial synchronisation in G1 (as in Fig. 6a) and (b) initial synchroni-
sation in G2 (as in Fig. 6b). We compare the long time behaviour with the
analytically computed solution from the phase stationary solution �sðxÞ (see black
dashed line). Here the colour scheme in (a) and (b) is the same.
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asynchronous, exponential growth (Basse et al., 2004; Bell, 1968).
As mentioned previously, we can write the solution to Eqs. (19)
as a superposition of exponential functions eKi t . At long times,
the behaviour is dominated by the exponential whose eigenvalue
Ki has the largest real part (here denoted by k). It is possible to
prove that this eigenvalue k is real and positive (see Appendix A
for details). We conclude that for t � 1 the system approaches a
regime of exponential growth (as observed in the numerical results
in Fig. 6) in which the model variables take the form:

G1;2ðtÞ � �f 1;2 nNekt ;

NðtÞ � nNekt ;

Sðx; tÞ � k1�f 1v�1
þ e�kv�1

þ ðx�1ÞnNekt ;

t � 1: ð20Þ

where �f 1;2 P 0 and nN > 0 are constant. Substituting Eqs. (20) into
Eqs. (5), we obtain that for t � 1; f mðtÞ ! �f m form 2 1; s;2f g. There-
fore �f 1; �f s and �f 2 indicate, respectively, the stationary values of cell
fractions in the G1, S and G2/M phases of the cycle. The distribution
of cells, sðx; tÞ, converges to the stationary distribution
�sðxÞ ¼ v�1

þ k1�f 1e�kv�1
þ ðx�1Þ, which is monotonically decreasing in x

(see black dashed line in Fig. 8). This indicates that, for t � 1, cells
in S phase are more likely to be starting DNA synthesis (with x � 1)
rather than close to completing it (with x � 2). We note that the
longer the duration of the S phase, or equivalently the smaller vþ,
the steeper is the �sðxÞ curve and, therefore, the larger is the number
of cells in Ps that are concentrated around x � 1. In the limit where
the population growth rate k is much smaller than the rate of DNA
synthesis, i.e. kv�1

þ ! 0, the distribution �sðxÞ flattens and cells are
distributed uniformly throughout the S phase.

We remark that balanced exponential growth is valid when
non-linear effects (due to competition) can be neglected. This is
the case in the given experimental settings where cells are grown
in a nutrient-rich environment in the absence of contact inhibition
(Basse et al., 2003; Simms et al., 2012).
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5. Cell-cycle progression in a dynamic environment

Having discussed the model predictions for a well-oxygenated
environment, we now investigate the behaviour it exhibits under
radio-biological hypoxia (RH). We start by comparing how contin-
uous (E1) and cyclic RH (E2) affect RKO cells originally in a regime
of exponential growth (i.e., the phase stationary solution computed
in §4). To replicate the oxygen dynamics in the experiments from
Bader et al. (2021), we use the following functional form for the
oxygen levels c ¼ cðtÞ at time t > 0:

cðtÞ ¼ cþ þ ðcþ � cRHÞ
X
i¼1

H�ðt � tðRÞi Þ � H�ðt � tðHÞi Þ
h i

; ð21Þ

where H� is defined in Eq. (8c), tðHÞi and tðRÞi are the times at which
oxygen levels decrease and increase across the threshold c ¼ c�,

respectively. By fixing tðRÞi ¼ 4ði� 1Þ þ 2 and t Hð Þ
i ¼ 4 i� 1ð Þ; cRH �

0:1% oxygen and cþ ¼ 2% oxygen, we can reproduce the
2hr + 2hr cycle corresponding to experiment E2 in Fig. 2. Fixing

tðHÞ1 ¼ 0 and tðRÞ1 ¼ 1, we obtain the constant RH (E1) conditions with
c < c� for t > 0.

Initial conditions. Under standard culture conditions, cells
in vitro are typically in a regime of balanced growth. We therefore
initiate our simulations by assuming that cells are growing accord-
ing to Eqs. (20). Recalling that we have re-scaled the model so that
Nð0Þ ¼ 1, we have the following initial conditions:

G1 0ð Þ ¼ �f 1; s0 xð Þ ¼ ssk1�f 1e�kss x�1ð Þ;

G2 0ð Þ ¼ �f 2; C1 0ð Þ ¼ 0; C kð Þ
2 0ð Þ ¼ 0:

ð22aÞ

Finally, to complete Eqs. (14), we must specify the function s0
(see §3.1). Since we assume DNA is synthesised at a constant rate
vþ for t < 0, it is straightforward to show that cells with DNA con-
tent x at time t ¼ 0 have spent a period s0ðsÞ ¼ s�1

vþ
in the S phase.

Using Eq. (12), we have that

s0ðtÞ ¼ 1
vþ

1�
Z t

0
vð‘Þd‘

� �
; t 6 0: ð22bÞ
5.1. Numerical results

We start by considering scenario E1 where cells are exposed to
constant RH for about 15 hr (see Fig. 9a and pink curve in Fig. 10).
As mentioned in §2, at longer times, cells start dying and our model
stops being valid, therefore we run simulations only up to this
time. Fig. 10(a.1) shows that f 1ðtÞ rapidly increases in the first
5 h, while it appears to settle to a value of � 50% at longer times.
This suggests that cells tend to accumulate in the G1 phase. By con-
trast, both f sðtÞ and f 2ðtÞ decrease. While f sðtÞ decreases monoton-
ically over time, the decrease in f 2ðtÞ is delayed by a couple of
hours, during which time its value remains approximately con-
stant. Focusing now on the evolution of the number of cells in each
model compartment (see Fig. 9(a.3)), we see that the number of
cells in the C1 compartment increases monotonically, but the rate
of increase tends to slow after about 10 h. By contrast, G1ðtÞ slightly
increases in the first few hours (� 4 hr) while it decreases rapidly
at later times. Similarly, the G2 compartment starts to empty only
after a couple of hours from the beginning of the simulation (see
Fig. 10(a.2)). As the velocity v decreases (see Fig. 10(b)), the flux
of cells out of the S phase (see Eqs. (17)) also decreases, contribut-

ing to the reduction in G2ðtÞ. The number of cells in CðbÞ
2 increases

over time as expected; however the accumulation of arrested cells

in CðbÞ
2 is negligible when compared to the large increase in C1ðtÞ.

Even though sS quickly increases above the threshold T � 17 (see

Fig. 10(d)), very few cells accumulate in CðaÞ
2 . They, instead, remain



Fig. 9. Numerical simulations of cell-cycle evolution as predicted by Eqs. (17) and
(21)–(22) in constant RH (a) and cyclic RH (b). The top row illustrates the evolution
of the oxygen levels c in the two simulations, where the light blue and red areas
indicate, respectively, the times at which c < c� and c > c� . The cell-cycle dynamics
are shown in the middle row panels where we plot the evolution of cell fractions
over time in the form of a cumulative diagram. The white lines indicate the
composition at time t ¼ 0, i.e., the phase stationary solution �f 1; �f s and �f 2. Panels
(a.2) and (b.2) show the predicted evolution of cell numbers for the model
compartments contained within the P2 phase: G2ðtÞ; CðaÞ

2 ðtÞ and CðbÞ
2 ðtÞ. Panels (a.3)

and (b.3) show the predicted evolution of cell numbers for the model compart-
ments contained within the P1 phase: G1ðtÞ and C1ðtÞ. The parameters k1; v� and k2
are as in Table 2 while the remaining parameter values are the estimated mean
parameter values for model M0 reported in Table C.9.

Fig. 10. We compare the predicted population dynamics for the two simulations in
Fig. 9: (a) population proliferation rate x as defined by Eq. (4), (b) the total cell
number N, (c) the DNA synthesis velocity v and (d) the duration of the S phase sS .
The parameters are chosen as in Fig. 9.
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trapped in the S phase due to the reduction in the rate of DNA syn-

thesis. Given G2 tð Þ, the activation of the C að Þ
2 , C bð Þ

2 checkpoint com-
partments, the overall proliferation rate decreases monotonically
(see Fig. 10)) and drives the gradual flattening of the population
growth curve for NðtÞ (see Fig. 10(c)). Note that the steep decrease
10
in x at time t ¼ 0 in Fig. 10(a) is due to the rapid activation of the

CðbÞ
2 checkpoint.
In the case of cyclic RH (E2), the dynamics are quite different. As

shown in Fig. 9(b), while initially f sðtÞ increases and f 2ðtÞ
decreases, the opposite occurs at later times (t � 25 hr) when
f 2ðtÞ increases while f 1ðtÞ decreases. Overall, the fraction f 1ðtÞ
decreases, albeit non-monotonically, so that, at the end of the sim-
ulation, its value is almost negligible (i.e., 0 < f 1 
 1). Looking at
the evolution of the number of cells in each compartment illus-
trated in Fig. 9(b.2)-(b.3), we see that cells transiently accumulate
in the C1 compartment during exposure to RH (light blue curve)
and resume cycling during re-oxygenation. A similar trend is

observed for CðbÞ
2 but the number of cells that accumulate is negli-

gible. The evolution of G2 and G1 is qualitatively similar; both
remain approximately constant up to t � 15 hr, after which time

they start to decrease. At the same time, the CðaÞ
2 checkpoint is acti-

vated (Fig. 10(d) shows that sSðtÞ � T ¼ 17:03 hr so that P � p=2 for

t � 15 hr). Since the CðaÞ
2 checkpoint prevents cells from replicating,

its activation results in a rapid decrease in the population prolifer-
ation rate x (see the purple curve in Fig. 10(a)-(b)). The rapid peri-
odic change in x is, instead, due to the activation/deactivation of

the CðbÞ
2 compartment. Under cyclic conditions, the rate of DNA syn-

thesis falls below vþ but remains well above its minimum value
v� � 5 10�3. Despite the marked fluctuations in the velocity
v; sS increases almost steadily (albeit at a lower rate than for E1)
until it plateaus at a maximum value of � 22 hours.

As shown in Fig. 11, constant and cyclic RH also affect the evo-
lution of the distribution sðx; tÞ. Under constant RH (E1, see pink
curves), cells tend to accumulate near x � 1. Due to the low rate
of DNA synthesis, the profile appears approximately stationary.
In particular, comparison of the pink curves in panels (b) and (c)
suggests that the discontinuity in the profile has barely moved.
While for scenario E1; s x; tð Þ is characterised by a single slow-
moving front, for scenario E2 (see purple curves) the front is fol-
lowed by a series of asymmetric spikes which propagate along
the x-axis with velocity v (see Fig. 9(e)). Each spike corresponds
to cells in the C1 compartment quickly re-entering the cell-cycle
transitioning S phase after re-oxygenation; these cells remain
highly synchronised as they proceed through the S phase. Since
there is no re-oxygenation in E1, spikes are not observed. Focusing
on the purple curve in Fig. 11(c), and moving from left (x ¼ 1) to
right (x ¼ 2), the peak value decreases (as the spikes become
wider). However, at later times (see Fig. 11(e)), the left-most spikes
have lower peaks due to the depletion of cells in the P1 population
(see Fig. 9).

Overall, our results suggest that, while both constant and cyclic
RH lead to a slow down of proliferation, they do so via distinct bio-
logical mechanisms. In the first case, cells arrest in the C1 compart-
ment and DNA synthesis is almost completely inhibited. On the
other hand, under cyclic hypoxia (E2), DNA synthesis proceeds,
albeit at a lower rate. This leads to an increase in sS and cell accu-
mulation in the S phase. Despite being able to complete the S

phase, cells later arrest in the CðaÞ
2 checkpoint. This, however, is evi-

dent only at long times (� 24 hr), when we see a large accumula-
tion of diploid cells. Our findings are in line with the experimental
data in Fig. 2 (which are taken from Bader et al., 2021), indicating
that our model can capture the experimentally observed cell-cycle
dynamics.

Next, we use our model to investigate modes of cyclic RH not
yet tested in the laboratory. For example, in Fig. 12, we fix the
length of the RH phase to 2 hr and compare the growth curves
for different durations of reoxygenation. We find that when the
reoxygenation periods are significantly longer than the time cells
spend in RH, cells have time to recover and continue proliferating,



Fig. 11. Evolution of the DNA distribution, sðx; tÞ, computed by numerically solving Eq. (9) for the two cases in Fig. 9: acute RH (pink curve-E1) and cyclic RH (purple curve-E2).
The parameters are chosen as in Fig. 9.

Fig. 12. Evolution of the total cell number NðtÞ for different oxygen cycles as
predicted by Eqs. (17). While the time spent in RH is constant for all experiments
(i.e., 2 hr), we change the length of the reoxygenation phase (from 2 hr as in Fig. 9(b)
to 8 hr). We also include, as a control case, the PSS (black dashed line). Parameters
are chosen as in Fig. 9.
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albeit at a lower rate. As shown in Fig. 13, even when cyclic RH
does not significantly reduce proliferation (i.e., cycles 2 + 6.5 and
2 + 8 in Fig. 12), it can still affect the cell-cycle distribution when
compared to the predictions for the phase stationary solution (rep-
resented by the dashed line). For the example in Fig. 13(a), cyclic
RH eventually leads to f sðtÞ being above its initial value �f s. This is
relevant when thinking about cell-cycle specific treatment. Since
cyclic RH changes the distribution of cells along the cycle, it can
impair or favour treatment efficacy. For example, we know that
cells in different phases of the cell-cycle have different responses
to radiotherapy (Pawlik and Keyomarsi, 2004). In this case, cells
in the G2/M phase have been shown to be the most sensitive to
radiotherapy (Pawlik and Keyomarsi, 2004). Referring to Fig. 13
(a), we note that persistent exposure to cyclic hypoxia biases the
cell-cycle distribution to the S phase. As such, it could decrease
the overall sensitivity of cells to RT, even during reoxygenation,
when oxygen levels do not directly increase cell radio-resistance.
When considering longer re-oxygenation periods, such as in
Fig. 13. Evolution of the cell fraction f m (see solid lines) with m 2 1; s;2f g as
predicted by the model for two different cyclic protocols in Fig. 12: (a) 2 hr (< 0:2%)
+ 6.5 hr (2%) or (b) 2 hr (< 0:2%) + 8 hr (2%). We compare the dynamics in cyclic RH
with the PSS (�f m) indicated by the dotted line. The parameters are chosen as in
Fig. 9.
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Fig. 13(b), we observe larger fluctuations in the cell fractions.
Towards the end of the re-oxygenation phase, f 2 is just above the
value �f 2. This suggests that applying treatment at this time could
improve treatment efficacy. However, if treatment is not timed
accurately and is applied when f 2 is at its minimum, or when cells
are in RH, then cyclic hypoxia could, instead, favour radio-
resistance. This highlights the possible use of mathematical models
to predict cell-cycle dynamics and how this can affect treatment
outcomes when testing protocols in vitro accounting also for other
mechanisms (such as oxygen) that can affect treatment outcomes.
In order to achieve this, robust calibration of the model to experi-
mental data is needed.
5.2. A class of models: comparison of different modelling assumptions

The model defined by Eqs. (17) is complex in its response to
variable oxygen levels. While we have shown that the model
agrees qualitatively with the experimental data, it is unclear
whether all four mechanisms introduced in §2 are necessary to
explain the experimental observations. To answer this question,
we construct a class of models, M, obtained by systematically
reducing the complexity of the full model. A list of the models con-
sidered is presented in Table 3. While all models reduce to Eqs. (19)
under normoxia, they differ in their response to RH. The alternative
models are derived from the full model, namedM0, by fixing either

C1 � 0 (M1), C
ðaÞ
2 � 0 (M2) or/and C bð Þ

2 � 0 (M3 and M4). Here mod-
els M1 to M4 test which of the checkpoint compartments are
needed to describe the experimental data. The last two rows of
Table 3 list the unknown model parameters associated with each
model; while all models share the parameters h, they vary in the
number of parameters H associated with RH. In particular, the
number of unknown parameters associated with model Mk

decreases as k increases (i.e., as the model complexity reduces).
As we will detail in §6, we calibrate all models to the data in
Fig. 2, and in Fig. 14 and Fig. 15, we compare the resulting fits. In
doing so we consider the predictions from the full model M0

(see white dotted line in the plots) as representative of the exper-
imental observations.

In Fig. 14, we compare model predictions when cells are
exposed to constant RH (E1). In this case all models, except M1,
predict that f 1 increases in line with the experimental observations
from Bader et al. (2021). In contrast, model M1 (Fig. 14(c)) is
incompatible with the experimental data, predicting a monotonic
decrease in f 1ðtÞ and cell accumulation in S phase (observe the
large increase in f sðtÞ over time). This suggests that under constant
RH, the C1 checkpoint plays a key role. By contrast, since the sim-
pler model M4 predicts the same trends as those observed for

model M0, we deduce that both C2 checkpoints (i.e., CðaÞ
2 and CðbÞ

2 )
can be neglected. Moving on to Fig. 15, we find that neglecting
the C1 checkpoint does not significantly impact predictions under
cyclic RH. Indeed, Fig. 15(a) shows that model M1 is in qualitative



Table 3
Schematics showing the biological mechanisms (see §2 for the explanation of the mechanisms (1)-(4)) included in each model M belonging to the class of models M. We also
indicate the list of unknown parameter sets h and H associated with each model Mk where the first set determines the phase stationary solution, while the second set plays a role
in the oxygen dependent mechanisms (Mech 1)-(Mech 4). The full model,M0, has the largest number of parameters (i.e. higher complexity) but it accounts for all the mechanisms
we expect to play a role in cell-cycle dynamics under cyclic hypoxia.

Mech 1 True True True True True
Mech 2 True False (C1 � 0) True True True
Mech 3 True True False (CðaÞ

2 � 0) True (a2 ¼ 0) False(CðaÞ
2 � 0)

Mech 4 True True True False (CðbÞ
2 � 0) False(CðbÞ

2 � 0)
h [k1; vþ; k2] [k1; vþ; k2] [k1;vþ; k2] [k1; vþ; k2] [k1;vþ; k2]
H K1; q1;Rþ;R�;p; T;a2; q2;K2½ � Rþ;R�; p; T;a2; q2;K2½ � K1; q1;Rþ ;R�; q2;K2½ � K1; q1;Rþ;R� ;p; T½ � K1; q1;Rþ;R�½ �

Fig. 14. Comparison of the cell-cycle dynamics predicted by solving numerically the models M1–M4 listed in Table 3 for constant RH (scenario E1). We here use the best fit
obtained for each model. The white dotted lines in the panels indicate the evolution predicted by model M0, used here as a reference. The parameters k1; v� and k2 are as in
Table 2, while the oxygen-dependent parameters H are taken to be the estimated mean values reported in Table C.9.

Fig. 15. Comparison of the cell-cycle dynamics predicted by solving numerically the models M1–M4 listed in Table 3 for cyclic RH (scenario E2). We here use the
characteristic fits obtained for each model (see Table in C). The white dotted lines in the panels indicate the evolution predicted by model M0, used here as a reference. The
parameters k1; v� and k2 are as in Table 2, while the oxygen-dependent parameters H are taken to be the estimated mean values reported in Table C.9.
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agreement with model M0. While M1 does not capture the rapid
fluctuations in f 1ðtÞ predicted by M0, the overall trend is the same,
with f 1ðtÞ decreasing after each cycle. Focusing on Figs. 15(b) and
15(d), we see good agreement with M0 until t � 10 hr. At later
times, both models M2 and M4 underestimate the values of f 2
12
and fail to capture the late accumulation of cells in the G2/M phase
observed experimentally (see Fig. 2). Interestingly, the predictions
of model M2 are similar to those of model M4 (where both C2

checkpoints are neglected). This is because, when the model is fit-

ted to the data, the probability q2 of cells arresting in CðbÞ
2 is esti-
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mated to be small, taking the value q2 ¼ 0:08. This suggests that

including mitotic arrest due to lack of oxygen via the CðbÞ
2 check-

point does not help to explain the experimental observations.
Given that model M3 matches the expected behaviour, we con-

clude that the CðaÞ
2 checkpoint is needed for the model to explain

the cell-cycle dynamics observed under cyclic RH conditions. This
suggests that memory effects are more likely to be driving cell
arrest under cyclic RH than instantaneous sensing of low oxygen
levels. On the contrary, memory effects can be neglected under
conditions of acute chronic RH.

From the results in Figs. 14 and 15 it is apparent that the models
M1;M2 and M4 are unable to recapitulate experimental observa-
tions. In contrast, the predictions from M0 and, the far simpler
model, M3 are both in agreement with the experimental data.
Choosing which model between M0 and M3 is best supported by
experimental observation is, therefore, not straightforward and
requires consideration of other metrics, in addition to how well
they fit the experimental data. These questions will be addressed
in the next section, where we implement Bayesian model selection.

6. Parameter fitting and model selection

So far, we have presented model predictions for point estimates
of the model parameter values. In this section, we explain how
such estimates were obtained and investigate how the results in
§5 change when we account for uncertainty in the estimates of
‘‘oxygen-dependent” parameters. We start by using the data from
the balanced exponential growth experiments (E0) to determine
the ‘‘oxygen-independent” parameters h using the results from
§4. As mentioned in §5.2, all models M 2 M reduce to the same
set of equations (Eqs. (19)) in normoxia. As such, they share the
same value h. We then focus on estimating the remaining parame-
ters H, which determine the system response to dynamic oxygen
conditions. Here we will compare different modelling assumptions
by applying model selection methods. We start by fitting each
model Mk in Table 3 to experimental data from both constant
(E1) and cyclic (E2) RH simultaneously, using Bayesian inference
and Monte Carlo methods to estimate the posterior distribution,
pps, for the parameters H (more details follow). We then select
the ‘‘best” candidate model by using the deviance information
criterion (DIC) as an estimate of model performance, and briefly
discuss parameter identifiability based on posterior profiles.

6.1. Estimation of oxygen independent parameters

We recall from §4, that the regime of unperturbed exponential
growth is characterised by the value of the constants ð�f 1;�f 2; kÞ. As
explained further in Appendix A, these constants uniquely define
the values of the parameters ðk1; k2;vþÞ as given by Eqs. (A.7). In
practice, we can estimate the stationary values �f 1 and �f 2 using flow
cytometry data. However, additional data are needed to determine
the proliferation rate k. This parameter can be related to the pop-
ulation doubling time, Tdoub (Basse et al., 2003), which is known
for most cell lines when cultured in standard media and in the
absence of competition (i.e., low confluence). It is straightforward
to show that Tdoub ¼ k�1 ln 2.
Table 4
Estimates of the cell-cycle parameters for the RKO cell line obtained using the phase stati

Transition rates [hr�1] Average time in the compa

G1 k1 ¼ 0:195 s1 � k�1
1 � 5:14

S vþ ¼ 0:083 sS ¼ v�1
þ � 12

G2/M k2 ¼ 0:22 s2 � k�1
2 � 4:54
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Given that, prior to any of the experiments in Bader et al.
(2021), the cells were cultured at 21% O2, with re-plating in order
to minimise any effects due to contact inhibition, we assume that
initially the cells are undergoing exponential growth. We can,
therefore, use the cell fractions data reported at time t ¼ 0 in
Fig. 2 to estimate the values of �f 1 and �f 2. For simplicity, we suppose
that median values provide a good approximation to the ‘true’ cell
fractions so that �f 1 � 0:29 and �f 2 � 0:15. In this way, we can obtain
point estimates for ~h which facilitates the identification of the

remaining model parameters ~H. In previous experiments, the dou-
bling time of RKO cells has been estimated to be about 21 hr
(Witzel et al., 2015). The corresponding parameter estimates (ob-
tained using Eq. (A.7)) are listed in Table 4 together with estimates
of the duration of each cell cycle phase (given by the inverse of the
rates of k1; k2 and vþ (Basse et al., 2003)). We note that the RKO cell
line is characterised by a particularly long S phase with cells
spending, on average, as much time in S phase as in the G1 and
G2/M phases combined.
6.2. Calibration of the candidate models to time-series flow-cytometry
data

The second step concerns estimation of the parametersHwhich
are associated with the oxygen-dependent mechanisms. Here we
use Bayesian inference (Lambert, 2018), which allows us to
account for measurement errors and to assess uncertainty in the
parameter estimates.

Given the small amount of data available, we calibrate the
model by pooling all the data available from both the constant
RH (E1) and the cyclic RH (E2) experiments. We therefore postpone
model validation until more data will be available. In Fig. 2, for
each time point, we reported the mean and standard deviation
over multiple runs of the experiments; however, for the estimation
of H we consider individual experimental measurements, instead
of summary statistics. The complete data set can be found in

Appendix B. We denote by F i;jð Þ
m the i-th measurement of the frac-

tion of cells in the subpopulation Fm ðm 2 1; s;2f g performed at
time tði;jÞ during experiment Ej with j 2 1;2f g. Given that F1; Fs

and F2 are not independent (recall Fs ¼ 1� F1 � F2), we only con-
sider observations for F1 and F2 in the fitting. We collect the data

in the set E ¼ t i;1ð Þ; F1
i;1ð Þ; F2

ði;1Þ
� �n oL1

i¼1
[ t i;2ð Þ; F1

i;2ð Þ; F2
ði;2Þ

� �n oL2

i¼1
,

where L1 ¼ 4 and L2 ¼ 14 are the number of measurements col-
lected in experiments E1 and E2, respectively.
The observation model. Let us now denote by f m t;H;M; Ej

� �
(with m 2 1;2f g) the value of the cell fractions at time t for the
experimental scenario Ej predicted by the model M 2 M for
parameter values H. We here consider the experimental observa-

tions F i;jð Þ
m to be noisy realisations of the model solutions,

f m t i;jð Þ;H;M; Ej
� �

. We assume that the observation errors are inde-
pendent, additive and normally distributed with zero mean and
variance r2

m. Furthermore, we consider rm to be constant in time
and to be the same for both constant (E1) and cyclic (E2) experi-
ments. Instead of specifying the values of the variance r1 and r2,
we treat them as unknown parameters that are learnt from the
onary solution (PSS) and the experimental data from Bader et al. (2021).

rtment [hr] Cell fractions (from Bader et al., 2021)

�f 1 ¼ 0:29
�f s ¼ 0:56
�f 2 ¼ 0:15
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data. Since the cell fractions are normalised, we assume that r1

and r2 are uniformly distributed in 0;1½ � (i.e.,
p rð Þ � U 0;1ð Þ  U 0;1ð Þ).

The likelihood function LM EjHð Þ represents the probability of
observing the experimental data E under the model M with
parameter values H. Based on the assumptions outlined above,
LM reads:

LM EjH;rð Þ ¼
Y2
m¼1

Y2
j¼1

YLj
i¼1

/ F i;jð Þ
m ; f m t i;jð Þ;H;M; Ej

� �
;r2

m

� �
; ð23Þ

where r ¼ r1;r2½ �, and / is the normal probability density with
mean f m t;H;M; Ej

� �
and variance r2

m.
Calibration and model selection. Given the model M from the
class M, any prior information on its parameter values is captured
by the prior distribution, pM Hð Þ. In the absence of prior informa-
tion about the values of the model parameters H, we assume that
each model parameter (i.e., Hi for i ¼ 1; . . . ;j Mð Þ), is uniformly
distributed on the intervals H i; �Hi

	 

, where the extremes of the

intervals are taken from Table 2; hence pM Hð Þ is given by:

pM Hð Þ ¼
Yj Mð Þ

i¼1

�Hi �H i
� ��1

1XM
Hð Þ; ð24Þ

where 1XM
is the indicator function for the support of the uniform

distribution, i.e., XM ¼ H1; �H1
	 
 . . . Hj Mð Þ; �Hj Mð Þ

	 

.

Using Bayes’ Theorem, we can update our prior distributions
(pM Hð Þ;p rð Þ) in light of the experimental data available:

pM H;rjEð Þ ¼ pM Hð Þp rð ÞLM EjH;rð Þ
p Eð Þ ; ð25aÞ

where p Eð Þ is a normalising factor and pM H;rjEð Þ is the posterior
distribution for model M.

Due to the dimensions of our parameter space, it is not possible
to compute Eq. (25a) analytically. Instead we rely on Markov Chain
Monte Carlo (MCMC) methods to estimate pM H;rjEð Þ using the
python package PINTS (Probabilistic Inference on Noisy Time-
Series) for Bayesian inference (Clerx et al., 2019). More details on
the numerical technique are included in Appendix C.

For model selection among the class of models M, we compute
the deviance information criterion (DIC) (Gelman et al., 2013;
Lambert, 2018). The DIC represents a trade-off between model
complexity (as measured by the over-fitting bias kDIC) and model
accuracy (as measured by the likelihood). Given a model M, the
DIC is defined as follows (Lambert, 2018):

DIC Mð Þ ¼ 2kDIC Mð Þ � 2 ln L̂M

� �
; ð26aÞ

with kDIC Mð Þ ¼ 2Var lnLMjE½ �; ð26bÞ

where L̂M ¼ LM EjĤ; r̂
� �

is the likelihood value estimated at the

expected value of the unknown parameters (i.e., Ĥ and r̂) whose
components are given by

Ĥi ¼
Z

0;1½ �2

Z
XM

HipM H;rjEð ÞdHdr; i ¼ 1; . . .j Mð Þ; ð26cÞ

r̂i ¼
Z

0;1½ �2

Z
XM

ripM H;rjEð ÞdHdr; i ¼ 1;2: ð26dÞ

In Eq. (26b) Var is the variance of the log-likelihood, lnLM, here
approximated via sampling from the estimated posterior. When
comparing models, we are interested in the relative value of the
DIC, and favour the model with the smaller DIC. We note that
the DIC penalises models with large values of kDIC , to account for
the fact that complex models are more likely to fit data well. More
complex models tend to have more parameters which can lead to
higher posterior uncertainty if the model is too complex for the
14
data (i.e., it is over-fitted) (Lambert, 2018). This results in a larger
variability in the expected log-likelihood (i.e., larger kDIC). In other
words, the term kDIC in Eq. (26a) corrects for over-fitting.

For a model M, predictive posterior estimates are obtained by

sampling 800 parameter sets, H ið Þ;r ið Þ
� �

, from the estimated poste-

rior pM H;rjEð Þ. For each set, we run the modelM forwards to gen-

erate 800 predictive curves for each fraction f ið Þ
m tð Þ with m 2 1;2f g

and i ¼ 1; . . . ;800. This gives posterior distributions for the ‘‘true”
cell fraction. To obtain posterior distributions for the measured cell

fractions F ið Þ
m tð Þ, we add to the simulated cell fractions f ið Þ

m tð Þ the cor-
responding measurement errors em tð Þ � N 0;r2

m

� �
. We then esti-

mate F ið Þ
s as F ið Þ

s ¼ 1� F ið Þ
1 � F ið Þ

2 and f ið Þ
s as f ið Þ

s ¼ 1� f ið Þ
1 � f ið Þ

2 . At
each time point, we compute the mean of the 800 predictive curves
(for either the ‘‘true” or measured fractions) and the corresponding
68%- and 95%-confidence intervals. For the plots in §5, we used the
expected values Ĥ (see Eqs. (26c)) as representative of characteris-
tic model fits. Additional results on the estimated posterior distri-
butions can be found in Appendix C.
6.2.1. Numerical results
The estimated DICs for the models M 2 M are reported in

Table 5. Based on these estimates, model M0 has the lowest DIC
and is, therefore, the ‘‘best” model in the class M. As expected from
the results presented in §5.2, M1;M2 and M4 all exhibit poor per-
formance. In this case, the difference in the estimated DICs is
rooted in the value of L̂M, which is markedly reduced suggesting
that these three models fail to fit the experimental data. We con-

clude that including the C1 and CðaÞ
2 compartments (i.e. cell-cycle

arrest in the G1 and G2 phases) is necessary for our model to repro-
duce the experimentally observed cell-cycle dynamics. On the con-

trary, adding the CðbÞ
2 compartment does not seem to play a

relevant role in explaining the experimental data.

We see that model M3, which neglects the compartment CðbÞ
2 , is

only slightly worse then M0. The two models yield similar values
of L̂M and similar estimated values of kDIC . This suggests that the

additional complexity due to the introduction of the CðbÞ
2 compart-

ment plays only a minor role in explaining the cell-cycle dynamics
reported experimentally. While we will employ model M0 in the
remainder of the paper, additional experiments and data are
needed to determine whether arrest of cells in G2/M due to low

oxygen levels (as captured by the compartment CðbÞ
2 ) is biologically

relevant or might be an artefact of measurement errors and the
small number of data points currently available. This interpreta-
tion is confirmed by the profile of the marginal posterior for q2

(see Fig. 18), whose mean value is approximately q2 ¼ 0:16, indi-

cating a very small probability of cells arresting in CðbÞ
2 . This is in

contrast to the value of q1, for which the posterior distribution
peaks at q1 � 1. We conclude that the instantaneous response of
cells to low oxygen levels is to arrest in the G1 phase while they
still proceed to mitosis.
Candidate modelM0 is in good agreement with the experimental data.
Our analysis shows that model M0 gives the best fit to the exper-
imental data. Referring to the posterior predictions in Fig. 16, we
note that M0 captures the experimental data from both experi-
ments E1 and E2, with all experimental data points falling within
the 95%-confidence interval of the posterior predictions for the
‘‘measured” fractions, F1; Fs and F2.

Interestingly, the model predicts that a2, the rate at which cells

exit the CðaÞ
2 compartment, is small, with the posterior distribution

on this parameter (see Fig. 18(g)) being narrowly skewed towards
a2 ¼ 0. This is in line with our expectation since the RKO cancer
cell line under consideration is known to be p53-competent. This



Table 5
Comparison based on the deviation information criterion (DIC) of the models in classM that were introduced in §5.2. The last column indicates the relative DIC score with respect
to model M0, i.e., DDIC = DICðMÞ-DICðM0Þ.

kDIC ln L̂M

� �
DIC DDIC

M0 5.87 67.98 �124.22 0
M1 6.31 41.82 �71.01 49.21
M2 4.74 46.14 �82.79 37.43
M3 5.85 65.99 �120.27 3.95
M4 4.25 45.84 �83.18 37.04

Fig. 16. Posterior prediction distribution of the selected model M0 for (left) chronic
RH and (right) cyclic RH. For both scenarios we plot the predicted measured
fractions FmðtÞ with m 2 1; s;2f g and compare them with the experimental data
(dots). For each model output, we plot the expected values, together with the 68%-
and 95%-confidence intervals, as indicated by the dark and light shaded areas,
respectively.

Fig. 17. Posterior prediction for the distribution Df as defined by Eq. (26a) for cyclic
RH (E2). The dark line indicates the average over 800 parameter sets sampled from
the estimated posterior, while the shaded grey area indicates the 68% confidence
interval. At each time point, we compare the theoretical prediction (bottom panels)
with the experimentally measured distribution from Fig. 3 in Bader et al. (2021)
(top panels). Fluorescence readings of PI ¼ 200 and PI ¼ 400 correspond, respec-
tively, to x � 1 and x � 2. This comparison is qualitative, as the vertical axes for the
theoretical (bottom panels) and experimental (top panels) distributions are
different since Df is re-scaled by the number of cells NðtÞ, while the experimental
output is in terms of absolute cell counts.
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may not be true for other cell lines, particularly if they are p53-
deficient, given the role of p53 in mediating G2 arrest in several
cancer cells (Taylor and Stark, 2001).

Fig. 17 shows that M0 can also capture the qualitative shape of
the flow cytometric distribution (Df ) reported in Bader et al.
(2021), which indicates cell number as a function of PI-
fluorescence intensity (see Fig. 1). We note that while the experi-
mental observations relate to only one realisation, we illustrate
the expected profile over several model realisations. Here we esti-
mate Df using output from the numerical solution of Eqs. (17) as
follows: based on Basse et al., (2005), we assume that a population
of cells with the same DNA content x gives rise to a Gaussian-like
flow cytometric output (see Fig. 1); consequently, we model the
flow cytometric output Df as

Df ðPI; tÞ ¼
Z 2

1
hðPIjxÞDðx; tÞdx; ð26aÞ

where

Dðx; tÞ ¼ f 1ðtÞdðx� 1Þ þ sðx; tÞ þ f 2ðtÞdðx� 2Þ; ð26bÞ

and dðx� yÞ is the delta function, (i.e., d ¼ 1 if x ¼ y and d ¼ 0
otherwise). The term hðPIjxÞ in Eq. (26a) is the probability of
15
recording a fluorescence intensity PI for a cell with DNA content x
and has the form

hðPIjxÞ ¼ 1ffiffiffiffiffiffiffi
2p

p
acðxÞ exp �ðPI� axÞ2

2a2cðxÞ2
" #

: ð26cÞ

In Eq. (26c), we assume that the mean PI fluorescence is propor-
tional to the DNA content x, with constant of proportionality
a ¼ 200 PI, so that x ¼ 1 corresponds to a fluorescence intensity
PI ¼ 200. Following Basse et al., (2005) again, we suppose that
the variance c depends linearly on x (i.e., c ¼ ðc2 � c1Þðx� 1Þ þ c1,
with c1;2 being the variances associated with DNA contents of
x ¼ 1 and x ¼ 2, respectively). In general, c1 and c2 will depend
on the cell line of interest. Since here we are interested in qualita-
tive comparisons, we set c1 ¼ 0:025 and c2 ¼ 0:04, which gives
good agreement with the G1 and G2/M peak width.

Given that the calibration only uses information about cell frac-
tions, the agreement between our theoretical estimates for Df and
the experimental observations is encouraging (see Fig. 17). How-
ever, there are some non-negligible discrepancies, particularly at
time t ¼ 20 hr. The model predicts a higher percentage of cells in
late S phase, so that the peak corresponding to PI ¼ 400 is not iso-
lated; in contrast the experimental profile tends to flatten in the
vicinity of PI � 350, so that the peak at PI � 400 is isolated. The dis-
crepancies between model predictions and experimentally
observed DNA profiles suggest that aspects of the biology that
can affect the full flow cytometry profile might be missing from



Fig. 18. Marginal posterior distributions pM0 HjEð Þ for the model parameters H 2 K1; q1;Rþ;R�; p; T;a2; q2;K2f g and the error parameters pM0 rijEð Þ for i ¼ 1;2. The red
vertical line indicates the mean value as reported in Table C.9. We see that for most parameters the posterior distribution has a narrow support. This is not the case for
K1 and K2 (see panels (a) and (i)) where the broader support of the posterior is a sign of practical non-identifiability.
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the model. For example, our model neglects variability in the DNA
synthesis velocity which, while not significantly affecting sum-
mary statistics such as cell fractions, could have a significant
impact on the profile of the flow cytometry output Df . This feature
could be added into the model by using a similar framework to the
one proposed by Basse et al. (2003). Alternatively, the DNA profile
observed experimentally might be explained by assuming that the
transition of cells in and out of the C1 compartment might be
delayed in response to changes in oxygen levels. This would sug-
gest that cells maintain some sort of inertia and would further
question the standard assumption in the literature that cells
respond instantaneously to oxygen levels. Further analysis is
needed to determine which (if any) of the proposed explanations
accounts for the observed discrepancy. Since we are interested in
capturing the overall cell-cycle dynamics, we postpone such inves-
tigations to future work.

Model Identifiability. We end our discussion on model calibra-
tion by briefly considering practical identifiability of the unknown
parameters. Following Daly et al., (2018) and Hines et al., (2014),
we define a parameter as practically identifiable if we can con-
strain its value to a reasonably small region of parameter space,
i.e., the posterior distribution has compact support.

The estimated marginal posterior distributions (presented in
Fig. 18) have a bell-like shape, with a unique, well-defined, maxi-
mum for most parameters. However, the posterior distributions
for parameters K1 and K2 have a broad support and tend to flatten
at large values, where K1 or K2ð Þ > 1. This indicates greater uncer-
tainty in the estimation of K1 and K2. From Eq. (8a), we note that K1

and K2 are only relevant in data from experiment E2 (i.e., when
oxygen levels c are above the threshold c�). If we consider, for

example, the first time at which this happens (i.e., time tðRÞ1 ¼ 2

hr), then, over the period t Rð Þ
1 ¼ 2 hr < t < t Hð Þ

2 ¼ 4 hr, QiðtÞ � 0

and the evolution of C1ðtÞ (and similarly CðbÞ
2 ) can be determined

explicitly by solving Eq. (17b) to obtain:
1 1 2
Fig. 19. Posterior estimates for the cell fractions f m for the two cyclic protocols
considered in Fig. 13: (a) cyclic RH with 2 hr in RH + 6.5 hr in an oxygenated
environment; (b) cyclic RH with 2 hr in RH + 8 hr in an oxygenated environment.
We plot mean estimates and indicate the 68%- and 95%-confidence intervals by the
shaded regions.
C1ðtÞ ¼ C1ðtðRÞÞe�K1ðt�tðRÞ1 Þ; t 2 ðtðRÞ; tðHÞÞ: ð27Þ

Thus, when the first measurement is taken,

C1ðtðHÞ2 Þ ¼ C1ðtðRÞ1 Þe�2K1 . If K1 > 1, then e�2K1 
 1 as the compart-
ment C1 rapidly empties after re-oxygenation. Therefore, unless

C1 is very large, C1ðtðHÞ2 Þ � 0 independently of the specific value of
K1 > 1. In order to resolve the dynamics at this fast time-scale
we would need to collect experimental data at an earlier time

point, say t�, for which t� � tðRÞ1 < K�1
1 ; alternatively, we could

choose an oxygen cycle for which a larger number of cells accumu-
late in the C1 compartment. This could be achieved by prolonging
the period for which the cells are exposed to severe hypoxia (i.e.,
c < c�). While the same argument holds for K2, since only a small

number of cells enter the CðbÞ
2 compartment during RH, we expect

the estimation of K2 to be more difficult since it is associated with
the dynamics of a small number of cells in the total population.
16
7. Model predictions in the presence of uncertainty

To conclude, we use the calibrated model from §6 to make pre-
dictions on cell-cycle dynamics in different environmental condi-
tions. We start by considering the oxygen cycles in Fig. 13 but
now account for uncertainty in our parameter estimates.

For the 2hr + 6.5hr cycle in Fig. 19(a), in the absence of uncer-
tainty, we predicted a systematic increase in the fraction of cells

in S phase, with no activation of the CðaÞ
2 compartment (see

Fig. 13(a)). When uncertainty is taken into account, we find large
variability in model predictions at longer times (t > 25 hr). In par-
ticular, the 68%-confidence interval encompasses the possibility of
f sðtÞ both increasing or decreasing when t � 1 compared to its ini-

tial values. Further, activation of CðaÞ
2 cannot be ruled out, as indi-

cated by the value of f 2ð80Þ, which ranges between 0/f 2ð80Þ/0:7
(see Fig. 19(a.3)). Despite the large uncertainty in the value of
f 2ðtÞ, the confidence interval on f 1ðtÞ remains reasonably small.
We observe similar behaviour for cycles with a longer re-
oxygenation phase (see 2hr + 8hr cycle in Fig. 19(b)). Again, uncer-
tainty in f s and f 2 increases over time, even though it is less pro-
nounced than in Fig. 19(a). The 68%-confidence interval allows

for the possibility of activation of the CðaÞ
2 checkpoint (see increase

in f 2 as t � 1) even though this is less probable than in the scenario
depicted by Fig. 19(a). For both oxygen cycles considered, the
uncertainty in the cell-cycle distribution is reflected in the predic-
tions for the number of cells NðtÞ (see Fig. 20). This is particularly
evident in Fig. 20(a) where Nð80Þ, the number of cells at the final
time, t ¼ 80 hr, ranges between 2:0/Nð80Þ/12:5.

Based on the results in Fig. 19, we conclude that we can use our
calibrated model to predict cell-cycle dynamics on short time
scales (0 < t < 25 hr); thereafter the increased uncertainty pre-



Fig. 20. Posterior estimates for the total cell number NðtÞ for the two cyclic
protocols in Fig. 19: (a) cyclic RH with 2 hr in RH + 6.5 hr in an oxygenated
environment; (b) cyclic RH with 2 hr in RH + 8 hr in an oxygenated environment.
We plot mean estimates and indicate the 68% and 95%-confidence intervals by the
shaded regions.

Fig. 21. Numerically-estimated values of the cell fractions f m and cell number N for
different cyclic protocols. (a) Schematic illustrating the oxygen protocols used in
the numerical simulations. (b)-(e) We report posterior estimates for the model
variables at 8 time points: 3 in the cyclic phase (see grey shaded area) and 5 in the
reoxygenation phase (see light pink area); for each variable we report the expected
value based on the estimated posterior (coloured dots) and the corresponding 68%-
confidence interval indicated by the vertical lines. Different colours correspond to
different oxygen dynamics, i.e., a different choice of ta (see panel (a) for the
definition of ta).
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vents us from making reliable predictions for the cell-cycle distri-
bution. However, the predicted uncertainty is still informative
when considering experimental design. In this case, the objective
is twofold. On the one hand, we want to identify experiments that
could facilitate model validation. From this point of view, we focus
on times at which the uncertainty in our predictions is small (e.g.,
on the short time scale for experiments in Fig. 19). On the other
hand, we aim also to propose experiments that could improve
the accuracy of model parameter estimates. In this case, our atten-
tion focuses on scenarios where uncertainty in the model predic-
tions is large and, therefore, new measurements can refine
parameter estimates (such as for the long time dynamics in
Fig. 19). From this point of view, a scenario like Fig. 19(a) is ade-
quate since it can account for both the validation and refinement
steps. Our model also suggests that, if such experiments were per-
formed, information about the total number of cells NðtÞ may
improve model calibration, given the large variation predicted in
its value at the end of the protocol.

Experimentally, it might be difficult to study scenarios for
which oxygen levels change on timescales faster than two hours
due to the time required for oxygen levels to equilibrate in vitro
(Place et al., 2017). This, however, is not a limitation of our model.
Indeed, we can consider what happens when a 4 hr cycle (as in E2)
is split into asymmetric periods of RH and re-oxygenation by set-

ting tðRÞi ¼ tðHÞi þ ta and tðHÞi ¼ 4ði� 1Þ in Eq. (21), where ta 2 ð0;4Þ.
If ta > 2, then the cells spend more time exposed to low oxygen
levels (c < c�) than to normal values (c > c�); the opposite holds
when 0 < ta < 2. As illustrated in Fig. 21(a), we ran numerical sim-
ulations up to t ¼ 100 hr, during which cells were exposed to cyclic
RH for the first 28 hr and then reoxygenated at constant 2% O2. We
report predictions of the true cell fractions, f m with m 2 1; s;2f g
and total cell number, N, at 8 time points.

The results from these numerical simulations are summarised
in Fig. 21. Focusing for the moment on the first 28 hr when cells
are exposed to cyclic RH, we observe that, at all time points consid-
ered, the larger the value of ta the lower is the total number of cells,
N (see Fig. 21(e)). When ta ¼ 2:5 hr (see light green dots), DNA syn-
thesis is so slow during cyclic RH that at t ¼ 28 hr only a small frac-
tion of cells has completed duplication and entered the G2/M
phase. As a result, the fraction f s is larger than for the smaller val-
ues of ta and the fraction f 2 is smaller. In this case, during the cyclic
RH phase, the variability in the model predictions remains small
(even smaller than for the case ta ¼ 2 hr, which was used for the
in vitro experiments). Therefore, our model predicts that, on short
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time scales (� 28 hr), cycles with larger ta values favour cell accu-
mulation in the S phase. In particular, exposing cells to cycles with
ta ¼ 2:5 hr for 20 hr may be sufficient to synchronise them in the S
phase of the cell-cycle. By contrast, when we decrease the value of
ta, our model predicts only a 5% increase in the fraction of cells in S
phase. We note, however, that for smaller values of ta (e.g., ta ¼ 1
hr or ta ¼ 1:25 hr), there is greater uncertainty in the predictions
of f 1 and f 2 at t ¼ 28 hr, due to the uncertainty in whether the

CðaÞ
2 checkpoint will be activated or not (results not shown). This,

again, hints at the need to refine our parameter estimates by per-
forming new experiments (such as the cycle experiment in Fig. 19)
to obtain more accurate predictions for environmental conditions
that deviate from those used here to calibrate our model. From this
point of view, we notice that, overall, uncertainty increases after
cells are reoxygenated (i.e., t > 28 hr). This suggests that reoxy-
genation experiments might be more helpful for parameter infer-
ence rather than prolonged exposure to cyclic RH. Focusing on
cell fractions f 1; f s and f 2, we notice that uncertainty in the predic-
tions increases after reoxygenation up to t � 40 hr. For t > 40 hr,
the cell-cycle distribution tends to relax back to the PSS solution
(see §4) so that at the population level the memory of exposure
to cyclic hypoxia disappears. On the contrary, we note that uncer-
tainty in the total number of cells monotonically increases after
reoxygenation. This is because, after being reoxygenated for a suf-
ficiently long time, the cell population grows exponentially and so
does the uncertainty in its predictions. We note further that, over
time, differences in the cell number N associated with different val-
ues of ta also increase, serving as a signature of the different cell-
cycle dynamics during exposure to cyclic RH.
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8. Discussion and future work

In this paper, we have presented a five-compartment model for
the cell-cycle which accounts for cell response to variable oxygen
levels. We have focused on the impact of dNTP shortages (in con-
ditions of radio-biological hypoxia) on rates of DNA synthesis. This
was achieved by introducing a variable rate, vðtÞ, of DNA synthesis
and allowing transient cell-cycle arrest in the late G1 and G2
phases by transition to two checkpoint compartments: C1 and

CðbÞ
2 , respectively. A second checkpoint compartment, CðaÞ

2 , accounts
for cell-cycle arrest in the G2 phase due to accumulation of repli-
cation stress and damage. Under constant oxygen-rich conditions
the model reduces to a linear, three-compartment model and ana-
lytic expressions for the long time dynamics can be derived (see
§4). This analysis predicts that, in the absence of competition, cells
evolve to a regime of balanced exponential growth, a result which
is consistent with other cell-cycle models (Basse et al., 2003; Basse
et al., 2005; Begg et al., 2008; Crivelli et al., 2012; Simms et al.,
2012). The main novelty of our work is the investigation of the
cell-cycle dynamics in cyclic hypoxia (see §5). We show first that
the model can recapitulate the experimental data from Bader
et al. (2021). We then explore different oxygen dynamics and, in
so doing, show different ways in which cyclic hypoxia can dis-
regulate cell-cycle dynamics and lead to a redistribution of cells
across the phases of the cell-cycle. This is of relevance when think-
ing about cell-cycle specific treatment, for which changes in cell-
cycle distribution (even if they are transient), can have a large
impact on treatment efficacy. Further, we identify scenarios in
which cyclic hypoxia leads to almost complete inhibition of prolif-
eration, and scenarios in which proliferation is only slightly slowed
down. In order to use our model as a predictive tool, accurate and
robust predictions are needed. In the remainder of the paper, we
therefore showed how our modelling framework can be used to
predict cell-cycle dynamics and inform the design of in vitro exper-
iments (see §3). We started by deriving a class of candidate models
ðMÞ based on Eqs. (17) by systematically decreasing model com-
plexity (i.e., the number of unknown parameters). Here our aim
was to test different assumptions on the mechanisms driving cell
response to cyclic hypoxia. In §6, we used Bayesianmodel selection
to identify the best candidate model amongst the ones proposed
and showed that this model can indeed recapitulate the dynamic
data from Bader et al. (2021). Furthermore, by constructing a class
of models and applying Bayesian modelling selection, we were able

to systematically show that the inclusion of the C1 and C að Þ
2 com-

partments is necessary to capture the experimentally observed
cell-cycle dynamics. We find, however, that the checkpoint com-

partment C bð Þ
2 is not essential and can be neglected without signif-

icantly impacting the agreement between the model and the data.
These results suggest memory effects, instead of an instantaneous
response to oxygen levels, drive cell arrest in G2/M under acute
exposure to cyclic RH. According to our model, damage accumu-
lated prior to entering the G2 phase determines later arrest in this
phase. In §7, we used our calibrated model to revisit the results
from §5 where we account for uncertainty in parameter estimates.
While the model makes precise predictions on short time scales
(t � 30 hr), we observed a large uncertainty in the cell-cycle
dynamics at longer times. We therefore discussed how our model
could be used to inform the efficient and effective design of future
experiments to refine our parameter estimates, as well as to vali-
date predictions of the calibrated model.

In this work we showed that our model can recapitulate the
response to cyclic hypoxia of a specific cancer cell line (i.e., RKO
cancer cell line). For this cell line, our model predicts that both con-
stant and cyclic radio-biological hypoxia (RH) perturb the cell-
cycle dynamics, but in different ways. In constant RH, cells tend
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to accumulate in the late G1 phase and proliferation is rapidly
halted. During cyclic RH, we predict, instead, a more diverse range
of responses depending on the oxygen dynamics. We can identify
regimes where proliferation is inhibited due to accumulation of
cells in the G2/M phase. By contrast, when the duration of the
re-oxygenation phase is increased, population growth is only
mildly slowed down and the fractions of cells in the S phase is
up-regulated. Additional data are needed to test whether our find-
ings can be generalised to other cell lines and howmuch variability
there is in their response to similar cyclic protocols. Nonetheless,
based on these observations, an interesting future research direc-
tion emerges, namely, investigating the role that cyclic RH can
have on the response to cell-cycle dependent treatment, such as
radiotherapy. Given that cyclic RH can change the distribution of
cells in the different phases of the cell-cycle, we expect a differen-
tial response to radiotherapy. This could be investigated by extend-
ing our model to include radiotherapy and to account for changes
in radio-sensitivity in different phases of the cell-cycle. From this
point of view, a natural question is whether cell-cycle redistribu-
tion is sufficient to explain the increase in radio-resistance due
to cyclic hypoxia, as reported in the literature (Hines et al., 2014;
Hsieh et al., 2010; Hsieh et al., 2012).

In this paper, our focus was on constructing a minimal model to
describe the influence of cyclic hypoxia on the cell-cycle, which
could be validated against existing experimental data. This guided
our assumption that the rates R� at which cells adjust their rate of
DNA synthesis, v, to be constant. In practice, R� may also depend
on the level of damage and replication stress accumulated by the
cell during cyclic hypoxia. Our model could easily be extended to
account for these effects, but at the cost of increasing the number
of unknown model parameters. In silico hypothesis testing (using a
Bayesian framework, as in §6), could be used to compare different
modelling assumptions (i.e., constant vs variable rates), and to
investigate the design of future experiments that can distinguish
between alternative mathematical models.

In several instances we have mentioned that DNA damage plays
a key role in mediating cell-cycle progression and cell-cycle arrest
in cyclic hypoxia. However, for simplicity, we have accounted for it
only implicitly. In principle, our model could be extended by intro-
ducing DNA damage as an additional structural variable to describe
cell state. Introducing DNA damage into the model would enable
us to account for radiotherapy in a more realistic manner. Analo-
gously to re-oxygenation, radiotherapy also causes DNA damage.
Such a model extension could be used to investigate whether cyclic
hypoxia selects for radio-resistant clones which are less sensitive
to damage accumulation. Further model extensions could account
for spatial heterogeneity, and bring the model closer to in vivo con-
ditions. In this light, we view our work as a first step towards
developing a theoretical framework for investigating cyclic
hypoxia and its effect on cell-cycle progression, particularly in
the context of solid tumours.
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Appendix A. Exponential steady state uniqueness

Starting from Eqs. (19), we note that the evolution of the number of
cells, N, decouples from the equations for G1 and G2 so that we can
consider the reduced model:

dG1

dt
¼2k2G2 � k1G1; ðA:1aÞ

dG2

dt
¼� k2G2 þ k1G1ðt � sSÞ: ðA:1bÞ

Since Eqs. (A.1) form a system of linear delay differential equa-
tions, their solutions can be written as a superposition of exponen-
tial functions eKt with corresponding eigenvalues K 2 C. We
therefore know that the long time behaviour of the system will
be dominated by the eigenvalue K with largest real part, here
denoted by k. Unlike for ordinary differential equations, the num-
ber of eigenvalues K for a delay differential equation is infinite
and they are defined by the characteristic equation:

detðAðKÞ �KIÞ ¼ 0; AðKÞ ¼ �k1 2k2
k1e�KsS �k2

� 
ðA:2Þ

where I is the identity matrix in R
22. Evaluating the determinant

explicitly we obtain the following transcendental equation, whose
roots correspond to the eigenvalues K of Eqs. (A.1):

PðKÞ � �ðKþ k1ÞðKþ k2Þ þ 2k1k2e�Kss ¼ 0: ðA:3Þ
It can be shown that this system has at least one root with

ReðKÞ > 0 so that the solution will blow up in time, i.e.
limt!1G1;G2 ¼ 1. We also have that the spectrum of eigenvalues
is bounded above, in the sense that there exists an upper limit to
the values of ReðKÞ. This is analogous to the system investigated
by Crivelli et al. (2012). Lemma 1 summarises some of their results
as adapted to our model.

Lemma 1. For any value of k1 > 0; k2 > 0 and ss > 0, the right-
most root of PðKÞ as defined by Eq. (A.3) is real and positive.
Proof. Let us first consider the existence of a real and positive root
K ¼ K0. This is straightforward to prove since PðKÞ is continuous
and Pð0Þ > 0, while limK!1PðKÞ < 0. Given that for
K > 0; dP=dK < 0, i.e. P is strictly monotonically decreasing, we
have that the zero K ¼ K0 is unique. This implies that for any
choice of parameters, the trivial steady state ð0;0Þ is unstable.

Let us now consider the complex solution K ¼ KR þ iKI for the
function P, where KI 2 R n 0f g:
19
ðKR þ iKI þ k1ÞðKR þ iKI þ k2Þ ¼ 2k1k2e�ðKRþiKIÞss : ðA:4Þ
Taking absolute values of the above we obtain that:

2k1k2e�KRss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððKR þ k1Þ2 þK2

I ÞððKR þ k2Þ2 þK2
I Þ

q
) 2k1k2e�KRss > ðKR þ k1ÞðKR þ k2Þ;

ðA:5Þ

which implies that PðKRÞ > 0 ¼ PðK0Þ, where K0 is the unique real
root of PðKÞ. Since P is strictly monotonically decreasing, we have
that KR < K0. We therefore have that the rightmost eigenvalue is
real and it is positive.

Based on Lemma 1, we know that for any choice of model
parameters, under unperturbed growth, cells will eventually reach
a regime in which they grow exponentially. This is a common
result of many cell-cycle models for in vitro systems and it is usu-
ally referred to as balanced, or asynchronous, exponential growth:

G1;2ðtÞ � n1;2e
kt ; t � 1; ðA:6aÞ

where n1;2 are positive constants. Having characterised the long
time behaviour of G1ðtÞ and G2ðtÞ, let us discuss what this implies
for the other model variables, i.e. the distribution Sðx; tÞ and the
total number of cells, N. Using Eq. (9) we find that, in the case of
unperturbed growth and assuming t > ss, the long time distribution
Sðx; tÞ takes the form:

Sðx; tÞ � ssk1
n1
nn

e�kssðx�1Þnne
kt ; t � 1; ðA:6bÞ

which can be written by separating the DNA and time components,
as Sðx; tÞ � �sðxÞnnekt . This implies that the population Ps also grows

exponentially, PsðtÞ ¼ nsekt where ns ¼ nn
R 2
1
�s xð Þdx. Combining this

with Eq. (A.6a), we can compute the total number of cells and the
cell fractions:

NðtÞ � ðn1 þ n2 þ nsÞekt ¼ nNe
kt ; t � 1; ðA:6cÞ

f jðtÞ � �f j ¼
nj
nN

; j 2 1; s;2f g; t � 1: ðA:6dÞ

We therefore find that the long time behaviour is characterised
by a stationary DNA-distribution, �sðxÞ, of cells in the S phase, and
constant cell fractions, �f j. Following Simms et al. (2012) we will
denote this specific regime as the phase stationary solution to high-
light the fact that the fraction of cells in each phase of the cycle
remains constant.

We now discuss how this phase stationary solution of the
model can be used to estimate the model parameters. Assume that
the cells are left growing in an unperturbed environment for suffi-
ciently long time so as to reach the regime of balanced exponential
growth. Provided that we know the fraction of cells, �f j, and prolif-
eration rate, k, of the population of cells (which can be approxi-
mated using the doubling time as given in the main text,
Tdoub ¼ k�1 ln 2), we can uniquely identify the parameters k1; k2; ss
in the model. Let us substitute the solution (A.6) into Eqs. (19)
and, upon re-writing GiðtÞ ¼ �f inNe

kt , we obtain the following alge-
braic system:

k�f 2 ¼ �k2�f 2 þ �f 1k1e�ssk; ðA:7aÞ
k�f 1 ¼ 2k2�f 2 � k1�f 1; ðA:7bÞ
k ¼ k2�f 2: ðA:7cÞ

Looking at Eq. (A.7c) it is apparent that k2 is uniquely identified
and it is positive. Substituting k2 into Eq. (A.7b), we obtain an equa-
tion for k1:

k1 ¼ 2� �f 1
�f 1

k; ðA:8Þ



Table B.8
Raw experimental data for the cell-cycle dynamics of RKO cancer cells when exposed
to cyclic RH (E2).

Time [hr] F1 Fs F2

4 0.330630725 0.546067179 0.120037907
4 0.266513378 0.632211538 0.098035117
4 0.297175141 0.534011299 0.164971751
8 0.220709571 0.731332508 0.044657591
8 0.191676374 0.754315366 0.050937202
20 0.159383033 0.702313625 0.133676093
20 0.093743547 0.777617179 0.125954987
20 0.144138373 0.711189408 0.140935298
20 0.100658314 0.726587386 0.168825653
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where we note that k1 > 0 since, by definition, �f 1 � 1. Substituting
now the forms of k1 and k2 into (A.7a) we obtain an expression for
ss:

ss ¼ 1
k
ln

2� �f 1
�f 2 þ 1

 !
ðA:9Þ

where the physical constraint �f 1 þ �f 2 � 1 guarantees that the loga-
rithm is always positive. Hence, given the measurements of
�f 1;�f 2 and ss we can uniquely identify the constant parameters
appearing in the model (19) for unperturbed growth.
20 0.184611856 0.635248251 0.171998624
20 0.145497026 0.713785047 0.13700085
28 0.060079664 0.712547024 0.21132994
28 0.044509303 0.647087438 0.29916089
28 0.03960499 0.676611227 0.280665281
Appendix B. Experimental data

Here we present the raw-data for the cell-cycle dynamics in
RKO cancer cells as measured in the experiments from Bader
et al. (2021) discussed in §2 of the main text. Table B.6 summarises
the value of the cell fractions in normoxia (E0), while Table B.7 and
Table B.8 represent the time series data obtained when cells are
exposed to constant (E1) and cyclic (E2) RH, respectively.
Table B.6
Raw experimental data for the stationary cell-cycle dynamics of RKO cancer cells
when exposed to normoxia (E0) for sufficiently long time.

F1 Fs F2

0.291222313 0.557013946 0.151763741
0.297764120 0.533750132 0.168485748
0.276288660 0.602061856 0.121649485
0.391933816 0.475698035 0.132368149
0.270000000 0.540000000 0.190000000
0.353889645 0.498481834 0.147628521
0.296387429 0.515714126 0.187898445
0.289529012 0.571414043 0.139056945
0.291841004 0.560669456 0.147489540

Table B.7
Raw experimental data for the cell-cycle dynamics of RKO cancer cells when exposed
to constant RH (E1).

Time [hr] F1 Fs F2

4 0.491356731 0.297537978 0.207438449
4 0.497400877 0.36815819 0.131485068
8 0.513138837 0.334160977 0.147941237
8 0.563423645 0.325328407 0.104679803
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Appendix C. MCMC sampling algorithm and results

In order to estimate the posterior distribution (see Eq. (24a)),
we use Markov Chain Monte Carlo (MCMC) methods, employing
the freely available implementation in the python package PINTS
(Clerx et al., 2019). As suggested by Johnstone et al. (2016), prior
to starting our MCMC routine, we compute a good initial guess
by maximizing the likelihood function LM (see Eq. (23b)). Based
on Eq. (24a) and the choice of a uniform prior, maximising the pos-
terior is equivalent to maximising the likelihood function. Sam-
pling random initial guesses from the prior distribution ppr , we
solve the optimisation problem for the log-likelihood using the
CMA-ES algorithm (Clerx et al., 2019; Hansen et al., 2003). We then
use the output of the optimization routine to initiate the MCMC
simulation (we compute, in total, three chains). We sample from
the posterior distribution by using HaarioBardenet MCMC, which
is a Metropolis–Hastings algorithm with adaptive covariance,
where the first 8000 iterations are performed without adaptation
(as suggested by Johnstone et al., 2016). We compute up to
30000 iterations for each chain and discard the first 10000 as
‘‘warm-up”. As in Collis et al. (2017), we assess the convergence

of the MCMC chains by estimating bR (Lambert, 2018, Chapter

13), where we accept the sampled posterior if bR < 1:05 (note thatbR ! 1 as the algorithm converges).
In Figs. 22–26, we show the estimated posterior distributions

for our class of models M (see Table 3). Summary statistics of the
marginal posterior distributions are listed in Table C.9. For the
point estimates of parameter values in §5, we use the mean of
the marginal posterior distributions (see Table C.9).



Fig. 22. Approximation of the joint (surface plot) and marginal (last row) posterior distributions for model M0 from Table 3 (see schematic in top-right corner). The
distributions were obtained by using the MCMC samples generated as discussed in the text above. In the surface plots for the joint distributions, yellow areas correspond to
high posterior probability and blue areas correspond to low probability (see colour-bar on the right). In the last row, the red vertical line indicates the mean of the marginal
posterior distribution as reported in Table C.9, where additional summary statistics extrapolated from the marginal distribution are also given. Note also that in the last row
the y-axes are scaled differently.
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Fig. 23. Approximation of the joint (surface plot) and marginal (last row) posterior distributions for model M1 from Table 3 (see schematic in top-right corner). The
distributions were obtained by using the MCMC samples generated as discussed in the text above. In the surface plots for the joint distributions, yellow areas correspond to
high posterior probability and blue areas correspond to low probability (see colour-bar on the right). In the last row, the red vertical line indicates the mean of the marginal
posterior distribution as reported in Table C.9, where additional summary statistics extrapolated from the marginal distribution are also given. Note also that in the last row
the y-axes are scaled differently.

G.L. Celora, S.B. Bader, E.M. Hammond et al. Journal of Theoretical Biology 545 (2022) 111104

22



Fig. 24. Approximation of the joint (surface plot) and marginal (last row) posterior distributions for model M2 from Table 3 (see schematic in top-right corner). The
distributions were obtained by using the MCMC samples generated as discussed in the text above. In the surface plots for the joint distributions, yellow areas correspond to
high posterior probability and blue areas correspond to low probability (see colour-bar on the right). In the last row, the red vertical line indicates the mean of the marginal
posterior distribution as reported in Table C.9, where additional summary statistics extrapolated from the marginal distribution are also given. Note also that in the last row
the y-axes are scaled differently.
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Fig. 25. Approximation of the joint (surface plot) and marginal (last row) posterior distributions for model M3 from Table 3 (see schematic in top-right corner). The
distributions were obtained by using the MCMC samples generated as discussed in the text above. In the surface plots for the joint distributions, yellow areas correspond to
high posterior probability and blue areas correspond to low probability (see colour-bar on the right). In the last row, the red vertical line indicates the mean of the marginal
posterior distribution as reported in Table C.9, where additional summary statistics extrapolated from the marginal distribution are also given. Note also that in the last row
the y-axes are scaled differently.
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Fig. 26. Approximation of the joint (surface plot) and marginal (last row) posterior distributions for model M4 from Table 3 (see schematic in top-right corner). The
distributions were obtained by using the MCMC samples generated as discussed in the text above. In the surface plots for the joint distributions, yellow areas correspond to
high posterior probability and blue areas correspond to low probability (see colour-bar on the right). In the last row, the red vertical line indicates the mean of the marginal
posterior distribution as reported in Table C.9, where additional summary statistics extrapolated from the marginal distribution are also given. Note also that in the last row
the y-axes are scaled differently.
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Table C.9
Summary statistics for the marginal posterior distributions for the family of models M listed in Table 3 in §5.2. Here we report the mean and standard deviation together with the
quantiles (Qi) of the distribution. The final column shows the value of bR used to estimate the convergence of the MCMC algorithm, where convergence corresponds to bR < 1:05.

Model mean std Q25% Q50% Q75% bR
M0 Rþ 0.22 0.08 0.16 0.21 0.26 1.01

R� 0.26 0.07 0.21 0.26 0.30 1.02
K1 1.69 0.47 1.34 1.70 2.08 1.01
q1 0.95 0.04 0.93 0.96 0.98 1.02
p 0.87 0.09 0.81 0.89 0.94 1.02
T 16.47 0.92 15.91 16.52 17.11 1.01
a2 0.02 0.01 0.01 0.02 0.03 1.03
q2 0.16 0.07 0.11 0.16 0.21 1.01
K2 1.48 0.64 1.00 1.53 2.03 1.01
r1 0.04 0.01 0.04 0.04 0.04 1.02
r2 0.04 0.01 0.04 0.04 0.04 1.01

M1 Rþ 0.51 0.30 0.29 0.45 0.65 1.01
R� 0.55 0.35 0.29 0.46 0.72 1.02
p 0.74 0.16 0.62 0.74 0.87 1.01
T 15.92 1.17 15.08 15.96 16.74 1.01
a2 0.05 0.03 0.02 0.05 0.07 1.04
q2 0.37 0.17 0.24 0.36 0.49 1.02
K2 1.47 0.59 1.01 1.50 1.94 1.01
r1 0.18 0.03 0.16 0.17 0.20 1.02
r2 0.04 0.01 0.03 0.04 0.04 1.02

M2 Rþ 0.15 0.14 0.06 0.12 0.19 1.05
R� 0.42 0.21 0.28 0.38 0.49 1.04
K1 1.61 0.51 1.20 1.63 2.04 1.01
q1 0.89 0.06 0.86 0.90 0.94 1.01
q2 0.08 0.06 0.04 0.08 0.12 1.02
K2 1.00 0.57 0.53 0.98 1.48 1.01
r1 0.04 0.01 0.04 0.04 0.05 1.02
r2 0.12 0.02 0.10 0.12 0.13 1.01

M3 Rþ 0.26 0.12 0.17 0.25 0.33 1.00
R� 0.30 0.13 0.22 0.28 0.58 1.00
K1 1.53 0.50 1.13 1.50 1.94 1.00
q1 0.90 0.06 0.86 0.91 0.95 1.00
p 0.83 0.11 0.76 0.85 0.91 1.00
T 16.93 1.18 16.21 17.05 17.78 1.00
r1 0.04 0.01 0.03 0.04 0.04 1.00
r2 0.05 0.01 0.04 0.05 0.05 1.00

M4 Rþ 0.21 0.19 0.08 0.16 0.27 1.04
R� 0.53 0.31 0.32 0.45 0.66 1.03
K1 1.63 0.53 1.22 1.66 2.08 1.01
q1 0.93 0.05 0.89 0.93 0.97 1.01
r1 0.04 0.01 0.04 0.04 0.05 1.01
r2 0.12 0.02 0.11 0.12 0.14 1.01
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