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Abstract
The processes underpinning solid tumour growth involve the interactions between var-
ious healthy and tumour tissue components and the vasculature, and can be affected
in different ways by cancer treatment. In particular, the growth-limiting mechanisms
at play may influence tumour responses to treatment. In this paper, we propose a sim-
ple ordinary differential equation model of solid tumour growth to investigate how
tumour-specific mechanisms of growth arrest may affect tumour response to different
combination cancer therapies. We consider the interactions of tumour cells with the
physical space in which they proliferate and a nutrient supplied by the tumour vas-
culature, with the aim of representing two distinct growth arrest mechanisms. More
specifically, we wish to consider growth arrest due to (1) nutrient deficiency, which
corresponds to balancing cell proliferation and death rates, and (2) competition for
space, which corresponds to cessation of proliferation without cell death. We perform
numerical simulations of the model and a steady-state analysis to determine the pos-
sible tumour growth scenarios described by the model. We find that there are three
distinct growth regimes: the nutrient- and spatially limited regimes and a bi-stable
regime, in which both growth arrest mechanisms are simultaneously active. Thus,
the proposed model has the features required to investigate and distinguish tumour
responses to different cancer treatments.
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1 Introduction

Solid tumour growth is a complex process involving interactions between multiple
different cell types, e.g. healthy, tumour and immune cells, as well as other tissue
components such as the extra-cellular matrix and the vasculature. Each of these, and
their interactions, can be affected in different ways by anti-cancer therapies, which has
prompted extensive experimental and theoretical research on tumour growth dynamics.
In particular, many mathematical models, of varying complexity, have been proposed
to describe tumour growth. These models typically include a single, or a grouping
of, growth-limiting process(es) which can significantly influence treatment response.
In this paper, we propose an ordinary differential equation (ODE) model of tumour
growth that distinguishes between two alternative mechanisms for growth arrest of a
tumour population. In this way, our simple model lends itself to future studies of the
effectiveness of different combination cancer therapies.
Tumour growth dynamics. Tumour growth is typically separated into two stages: the
avascular and the vascular stages (Chaplain 1996). During the avascular phase, all
tumour cells initially proliferate by consuming nutrients that diffuse fromblood vessels
in neighbouring healthy tissue, resulting in an initial exponential growth of the tumour.
As the tumour’s size increases and cell numbers grow, the outermost cells begin to form
a proliferative rim while those in the central regions gradually become quiescent (i.e.
alive, but non-proliferative) as their access to crucial nutrients is cut off. This results in
linear growth of the tumour. Quiescent cells eventually die due to prolonged nutrient
deprivation, forming a necrotic core within the tumour that decays at a certain rate.
Thus, an avascular tumour gradually approaches a diffusion-limited, equilibrium size
as the rate of growth due to cell proliferation in the well-oxygenated outer rim balances
with the rate of cell degradation in the nutrient-starved necrotic region. In order to
progress, the tumour must develop its own vasculature via angiogenesis (Chaplain
1996), which triggers the growth of new blood vessels towards the tumour. Once
vascularised, a tumour can access the nutrients necessary for further, rapid growth and
discard metabolic waste. Blood vessels additionally provide a means for tumour cells
to travel to other tissues, where they may establish secondary tumours or metastases.
Mathematical models of tumour growth and their growth-limiting mechanisms. Both
stages of tumour growth have been modelled, either independently or in combination,
using a range of approaches. This includes phenomenological ODE models as well as
more detailed, spatially resolved models such as partial differential equation (PDE)
models, discrete, individual-based models (IBMs) and hybrid models combining dif-
ferential equations and IBMs. For detailed reviews of spatially averaged continuum
models, see Murphy et al. (2016), and, of spatially resolved continuum, discrete and
hybrid models of tumour growth, see Araujo and McElwain (2004), Byrne (2012),
Roose et al. (2007), Cristini and Lowengrub (2010), Martins et al. (2007), and Deis-
boeck et al. (2011), respectively.

A common characteristic of most of these models is their focus on describing
either a single growth-limiting process or a group of growth-limiting processes, whose
effects cannot be distinguished. For example, some phenomenological ODE models
(e.g. Gompertz, logistic, etc. (Murphy et al. 2016)) predict the growth of an avascular
tumour to a constant (in time) limiting size, called the carrying capacity. The latter
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can be defined in different ways: the available free space for the tumour to occupy
(Liu et al. 2021), the volume that can be reached given nutrient availability (Zahid
et al. 2021), among others (Milzman et al. 2021). Regardless of the precise defini-
tion of this carrying capacity, a single mechanism for growth arrest of the tumour is
explicitly considered: a tumour reaches steady state as the proportion of proliferating
cells converges to zero (with no explicit cell death). This also holds for ODE models
that incorporate a time-dependent carrying capacity, e.g. the model of vascular tumour
growth developed by Hahnfeldt et al. (1999), which assumes a time-dependent carry-
ing capacity to account for dynamic changes in the vascular support available to the
tumour.

In terms of spatially resolved models, the seminal model developed by Greenspan
(1972) describes diffusion-limited (avascular) tumour growth, where the tumour
reaches an equilibrium size as the death of cells in nutrient-poor regions balances
the birth of cells in nutrient-rich regions. This same single growth arrest mechanism
is also described by the multiphase model of avascular tumour growth developed
by Lewin et al. (2020). Further, the model of vascular tumour growth developed by
Panovska et al. (2007), which comprises a coupled system of nonlinear PDEs, also
depicts a tumour that reaches an equilibrium size as cell death and cell birth balance
one another. However, they consider mechanical constraints to tumour growth (which
limit cell proliferation) in addition to those imposed by nutrient availability (which
lead to cell death), i.e. they incorporate several growth-limiting processes, but their
effects are combined from a mathematical perspective. In contrast to the aforemen-
tioned spatially resolved, continuummodels, Enderling et al. (2006) extend the model
of tumour invasion developed by Anderson (2005) to represent a tumour which attains
an equilibrium size as the remaining available space for tumour cells decreases to zero.
In particular, they predict growth arrest due to a cessation of proliferation, with no
cell death. As a final example, Drasdo and Höhme (2005) developed a discrete model
of in vitro tumour growth which describes the growth of monolayers and multicel-
lular spheroids. The key growth-limiting factor for monolayers is contact inhibition,
whereas it is nutrient deficiency for spheroids. Despite the differences between these
two growth-limiting processes, they both can lead to a tumour reaching an equilibrium
size due to the balance of cell proliferation and cell death.

The above brief and non-exhaustive summary illustrates that a significant amount
of research has focused on developing models of solid tumour growth of increasing
biological complexity. Yet, they all typically share the common feature of describing
a single mechanism by which a tumour population may reach a steady state, i.e. via
cessation of cell proliferation without any cell death or via the balancing of cell prolif-
eration and cell death. The question of how to strike the balance between the biological
detail of amathematical model, which constrains it, and its suitability formaking clini-
cally relevant predictions (e.g. through data fitting and parameter estimation) therefore
poses itself.
Structure of the paper. In the present paper,we aim to derive amodel of vascular tumour
growth that retains the simplicity of phenomenological models, while providing addi-
tional mechanistic insight and capturing the key behaviour of more complex models.
We focus on vascular tumours as, in practice, tumours are likely to have reached this
stage by the time they are detected. Further, the effect of various treatments on the

123



   80 Page 4 of 24 C. Colson et al.

vasculature can be significant, especially when considering combination treatments.
Amain feature we seek for our model is that it can distinguish between two alternative
growth-limiting mechanisms:

1. growth arrest in response to nutrient deficiency, which translates into the balancing
of cell proliferation and death,

2. growth arrest in response to competition for space, which translates into a cessation
of all proliferation, with no cell death.

As a result, the model provides a means to understand howmechanisms of growth lim-
itation may affect tumour responses to treatment, particularly when both mechanisms
are simultaneously active.

This paper is structured as follows. In Sect. 2, we derive a new ODE model of
vascular tumour growth. We investigate the model behaviour in Sect. 3 by performing
numerical simulations and a steady-state analysis. The paper concludes in Sect. 4,
where we discuss our findings and avenues for future work.

2 TheMathematical Model

In this section, we present a new model of vascular tumour growth, which considers
the interactions of a tumour with the physical space in which it is growing and a
nutrient supplied by the tumour vasculature. Our first key simplifying assumption is
that the vascular volume remains constant during tumour growth. In particular, we
neglect angiogenesis and vascular remodelling and view the vascular volume, V , as a
model parameter (rather than a dynamic variable) which influences the availability of
nutrient and space and, thus, the tumour’s carrying capacity. Wemake this simplifying
assumption in order to limit the complexity of theODEmodel we are proposing, which
enables us to focus on our aim of describing two different growth-limitingmechanisms
using a model that exhibits rich solution structure despite its simplicity. We will come
back to this point in the Discussion.

Now, denoting the tumour cell volume by T and the nutrient concentration by c,
we propose the following system of time-dependent ODEs:

dT

dt
= q∗

2 cT (Smax − (T + V ))
︸ ︷︷ ︸

rate of
tumour cell proliferation

− [

δ∗
1(c

∗
min − c)

]

H(c∗
min − c)T

︸ ︷︷ ︸

rate of
cell death due to nutrient starvation

, (1)

dc

dt
= g∗(c∗

max − c)V
︸ ︷︷ ︸

rate of
nutrient delivery

− q∗
1 cT

︸ ︷︷ ︸

baseline rate of
nutrient consumption

− q∗
3 cT (Smax − (T + V ))

︸ ︷︷ ︸

additional rate of
nutrient consumption for proliferation

, (2)

where

V ≡ V ∗
0 :=V (0) and H(x) =

{

1, if x ≥ 0,

0, if x < 0.
(3)

Our model is based on the following assumptions:
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• There is a fixed amount of physical space, Smax, which can be occupied by T and
V ; the available free space is S = Smax − (T + V ).

• Tumour cells, T , need space and nutrient in order to proliferate. We assume that
they proliferate at a rate proportional to the nutrient concentration, c, and the
amount of free space available, S, with constant of proportionality q∗

2 > 0.
• Below a fixed nutrient concentration, c∗

min, satisfying 0 < c∗
min < c∗

max, tumour
cells die of nutrient starvation at a rate that is a monotonically decreasing function
of c for 0 ≤ c < c∗

min such that (i) no tumour cells die at c = c∗
min and (ii) when

c = 0 the death rate of tumour cells attains its maximal value of δ∗
1c

∗
min, where

δ∗
1 > 0 is a constant of proportionality. We refer to c∗

min as the threshold for severe
hypoxia, which is defined as a state of oxygen deficiency.

• A nutrient, c, chosen to be oxygen, is supplied by the tumour vasculature, V , at
a rate that is a monotonically decreasing function of c for 0 ≤ c ≤ c∗

max such
that (i) no oxygen is supplied once the oxygen concentration in the tumour attains
the value c∗

max > 0 and (ii) the maximal supply rate of oxygen is attained when
c = 0 and is equal to g∗c∗

max, with g∗ > 0. Here, c∗
max represents the oxygen

concentration in the vasculature (note that, from (2), c ≤ c∗
max) and g∗ represents

the rate of oxygen exchange per unit volume area of blood vessels.
• Tumour cells consume c for maintenance at a rate proportional to c, with rate
constant q∗

1 > 0. They also consume c for proliferation at a rate proportional to the

proliferation rate, with a conversion factor k∗ > 0 defined such that q∗
3 = q∗

2
k∗ > 0.

In order to reduce the number of parameters in our model, we non-dimensionalise
the system (1)–(3) by introducing the following scalings:

̂T = T

Smax
, ̂S = S

Smax
, ̂V = V

Smax
, ĉ = c

c∗
max

, t̂ = τ t .

Recalling that V ≡ V ∗
0 and dropping hats for notational convenience, we obtain

the following system:

dT

dt
= q2cT (1 − (T + V0)) − δ1(cmin − c)H(cmin − c)T (4)

dc

dt
= g(1 − c)V0 − q1cT − q3cT (1 − (T + V0)), (5)

where

V0 = V ∗
0

Smax
, q1 = q∗

1 Smax

τ
, q3 = q∗

3 S
2
max

τ
, q2 = q∗

2 Smaxc∗
max

τ
,

cmin = c∗
min

c∗
max

, δ1 = δ∗
1c

∗
max

τ
, g = g∗Smax

τ
.

(6)
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Table 1 List of dimensionless parameters and values assigned to them for the purpose of the model analysis
and numerical simulations

Parameter Definition Value(s)

cmin Anoxic oxygen threshold 10−2

g Rate of oxygen exchange per unit vascular volume 5

k Conversation factor 10−2

q1 O2 consumption rate for maintenance [10−2, 10]
q3 O2 consumption rate for proliferation [10−2, 10]
q2 Proliferation rate q3/k

δ1 Rate of death by nutrient starvation q2

V0 Initial vascular volume (0, 5 × 10−3]

Given that we defined k∗ > 0 such that q∗
3 = q∗

2
k∗ , we can define k > 0 such that

q3 = q2
k , where

k = c∗
max

Smax
k∗. (7)

3 InvestigatingModel Behaviour

3.1 Numerical Simulations: Tumour Growth Curves

In this section, we present numerical simulations of the tumour growth model (4)–(5).
Numerical setup. We solve the ODE system (4)–(5) for t ∈ (0, T ], where T > 0,
using ODE45, a single-step MATLAB built-in solver for non-stiff ODEs that is based
on an explicit Runge–Kutta (4,5) formula, the Dormand–Prince pair. We impose the
initial conditions (T (0), c(0)) = (0.05, 1). We choose T (0) = 0.05 so that the tumour
is initially much smaller than the available free space (i.e. 0 < T � 1), but also large
enough to be vascular with V0 ∈ (0, 0.005]. The choice of c(0) = 1 is so that we
consider tumours which are, initially, well oxygenated.

The focus of this work is on characterising the qualitative behaviour of the model
and assessing its suitability for benchmarking combination cancer treatments. As such,
accurately estimating parameter values by fitting the model to experimental data is
beyond the scope of this work. We instead combine parameter values from different
sources in the literature and preliminary numerical simulations to fix the values of
cmin, g and k. Further, we consider a biologically realistic range of possible values for
the remaining parameters. Our dimensionless parameter choices, listed in Table 1, are
motivated by the arguments included in “Appendix A1”.

Remark 1 A key simplifying assumption we make in defining the model parameters
is that the dimensionless rate of cell death due to nutrient starvation, δ1, is equal to
the dimensionless rate of cell proliferation, q2. This enables us to reduce the number
of system parameters, making it more tractable. We motivate this assumption with
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experimental evidence which suggests that tumour cell proliferation and death rates
can be highly correlated for some tumours (Leoncini et al. 1993; Liu et al. 2001;
Vaquero et al. 2004). This would suggest that these parameters are proportional to
each other. Our numerical and analytical studies reveal that the key results in this
paper are not affected by the value of this constant of proportionality (results not
shown) and we, therefore, set it equal to 1.

Simulating tumour growth. For fixed values of q1 and q3, we observe how tumour
growth dynamics change as we vary the initial vascular volume, V0. The results pre-
sented in Fig. 1 show that the model exhibits initial exponential or linear growth
followed by a growth slow down as the tumour reaches a limiting size. These dynam-
ics are characteristic of both experimental data and existing phenomenological models
(Drasdo and Höhme 2005; Koziol et al. 2020; Murphy et al. 2016).

We note also that the tumour-specific parameters q1, q3 and V0 appear to determine
the tumour’s limiting size, which can vary quite significantly from one parameter set
to another (Figs. 1c, e). In particular, studying Fig. 1d, f, which represent the evolution
of the logarithm of the oxygen concentration in the tumour, c, alongside Fig. 1c, e,
suggests that the large differences between tumour limiting sizes arise as a result of
whether c is above or below the oxygen threshold for severe hypoxia, cmin. This hints
at the existence of different growth regimes, which could be characterised by different
growth-limiting mechanisms. We investigate this further by performing a steady-state
analysis, which is presented in the following section.

3.2 Steady-State Analysis

We now perform a steady-state analysis for the system (4)–(5) in order to understand
how varying q1, q3 and V0, the oxygen consumption rates for proliferation and main-
tenance and the initial vascular volume, respectively, impacts the equilibrium tumour
volume attained in the long term. The model dynamics are different depending on
whether we are in a nutrient-rich regime, i.e. cmin ≤ c ≤ 1, or in a nutrient-poor
regime, i.e. 0 ≤ c < cmin. We therefore investigate the existence and stability of
steady-state solutions in each of these regimes separately, referring to steady states
satisfying cmin ≤ c ≤ 1 as spatially limited (SL), while steady states satisfying
0 ≤ c < cmin are called nutrient-limited (NL).

3.2.1 Steady-State Solutions: Existence andMultiplicity

Spatially Limited Steady States. In this case, the nutrient is plentiful (i.e. cmin ≤ c ≤ 1)
and we find the steady-state solutions by solving:

{

q2cT (1 − (T + V0)) = 0, (8a)

g(1 − c)V0 − q1cT − q3cT (1 − (T + V0)) = 0. (8b)
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Fig. 1 We solve Eqs. (4)–(5) for t ∈ (0, 105] subject to the initial conditions (T (0), c(0)) = (0.05, 1). In
plots (a, b), (c, d) and (e, f), we fix (q1, q3) = (0.1, 1), (q1, q3) = (0.5, 5) and (q1, q3) = (1, 10), respectively,
and vary V0 ∈ {0.001, 0.002, 0.003, 0.004, 0.005}. In (a, c, e), we plot the time evolution of the tumour
volume, T (t); in (b, d, f), we depict the evolution of the logarithm of the oxygen concentration, c(t).
In (a) and (c), we also include a magnified view of the growth curves as they approach their respective
steady states. All tumours grow to a limiting size, which appears to be a decreasing function of q1 and q3.
Further, the tumour steady state appears to be an increasing function of V0 when the steady-state oxygen
concentration is below cmin, and a decreasing function of V0 otherwise. In contrast, the steady-state oxygen
concentration always increases with V0
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Since 0 < V0 < 1, it is straightforward to show that there are two steady states:

SS1 : (T ∗
1 , c∗

1) = (0, 1), (9)

SS2 : (T ∗
2 , c∗

2) =
(

1 − V0,
V0

V0 + (q1/g)(1 − V0)

)

. (10)

Clearly, SS1 is an admissible steady state, and the condition on V0 implies that T ∗
2 =

1 − V0 > 0 for SS2. For c∗
2 to lie in the appropriate nutrient regime, we require

c∗
2 ≥ cmin (as c∗

2 < 1 follows trivially). This condition is satisfied when the following
relationship holds:

V0 ≥ 1
g
q1

(1−cmin)
cmin

+ 1
. (11)

Now, steady state SS1 represents a tumour-free state, which exists for all combina-
tions of parameters. In contrast, steady state SS2 represents tumours which occupy all
of the available free space; their growth is limited by space availability, and at steady
state, there is neither cell proliferation nor death. For g and cmin fixed, the inequality
(11) implies that SS2 exists if V0 is bounded below by an increasing function of q1. In
other words, if the tumour vasculature can support the tumour’s maintenance needs at
equilibrium, then SS2 exists.
Nutrient-Limited Steady States. In this case, there is a nutrient shortage (i.e. 0 ≤ c <

cmin) and we determine the steady-state values by solving:

{

q2cT (1 − (T + V0)) − δ1(cmin − c)T = 0, (12a)

g(1 − c)V0 − q1cT − q3cT (1 − (T + V0)) = 0. (12b)

The trivial steady state for T implies that, as V0 > 0, the steady state for c must
be 1. However, this is not a valid steady state in the NL regime, since 1 = c > cmin.
Therefore, we suppose T > 0 and find solutions of (12a)–(12b) by determining the
intersection points of the T - and c-nullclines. Using (12a), we find that the nonzero
T -nullcline is given by:

T (c) = (1 − V0) − δ1

q2

(cmin

c
− 1

)

, (13)

which, given that we assume δ1 = q2, reduces to

T (c) = (1 − V0) −
(cmin

c
− 1

)

. (14)

To determine the c-nullcline, we solve the quadratic equation (12b) for T and find it
has two branches:

T±(c) = q1 + q3(1 − V0) ± √

(q1 + q3(1 − V0))2 − 4q3gV0(1 − c)/c

2q3
. (15)
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We can now determine the steady-state values for c by equating (14) and each
branch in (15) and solving for c± corresponding to T±. We find:

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

c± = cmin(X ∓ √

X2 + 4q3Y )

2Y
, if V0 	= 2(q3 − q1)

g + q3 − q1
, (16a)

c− = cmin(q3(g + q3 − q1))

2 g
cmin

(q1 − q3) − g(q1 − 3q3) + (q1 − q3)2
, if V0 = 2(q3 − q1)

g + q3 − q1
, (16b)

where

⎧

⎨

⎩

X = q1 − 3q3 +
(

g
cmin

+ q3
)

V0,

Y = 2(q1 − q3) + (g + q3 − q1)V0.
(17)

We note here that we obtain a unique steady-state value for c (i.e. (16b)) when the
curve T (c) defined by (14) intersects only one of the branches T±(c) defined by (15).
In particular, T (c) intersects T−(c).

Finally, this implies that there are up to two NL steady states:

SS3 : (T ∗
3 , c∗

3) = (T (c−), c−) (18)

SS4 : (T ∗
4 , c∗

4) = (T (c+), c+) , if V0 	= 2(q3 − q1)

g + q3 − q1
, (19)

where T (c) is defined by (14) and c± are defined by (16a)–(16b).
Similarly to the SL steady states, in order to exist and be physically realistic, SS3

and SS4 must satisfy 0 ≤ T ≤ 1 − V0 and 0 ≤ c < cmin. Given the expression for
T (c) provided in (14) and assuming that 0 ≤ c < cmin, we have T (c) < 1−V0 for any
parameter combination. Due to the complexity of the expressions for the steady states
SS3 and SS4, extensive algebraic manipulation is required to determine the regions
in parameter space in which the remaining conditions hold. We therefore fix g = 5
and cmin = 0.01 and use Mathematica to determine the regions in (V0, q3)-space
for different fixed values of q1 in which SS3 and SS4 exist as admissible steady-state
solutions.We illustrate these regions in Fig. 2 and we also include the regions in which
SS1 and SS2 are admissible, as defined previously.

Remark 2 Figure 2 corresponds to specific values of g and cmin. We can, however,
obtain qualitatively similar results for different values of these parameters. In particu-
lar, for q1 fixed, increasing g shifts the regions of existence of each steady state to the
left, which decreases the size of the regions in which both SS1 and SS3 and all steady
states exist and increases the size of the region in which both SS1 and SS2 exist. In
contrast, for q1 fixed, increasing cmin shifts the regions of existence of each steady
state to the right, which increases the size of the regions in which both SS1 and SS3
and all steady states exist and decreases the size of the region in which both SS1 and
SS2 exist.

123



Combining Mechanisms of Growth Arrest in Solid Tumours: A… Page 11 of 24    80 

Fig. 2 The plots (a)–(d) represent the regions of existence for the steady states SS1–SS4 of the system
(4)–(5) in (V0, q3)-space for q1 ∈ {0.05, 0.1, 0.5, 1}, respectively. The solid and dashed red lines represent
the boundaries between the three distinct regions that can be observed

Steady states SS3 and SS4, which always satisfy SS3 < SS4, represent tumours that
are not SL (i.e. 0 < T (c) < 1−V0); their growth is limited by nutrient availability, and
at steady state, the rates of cell proliferation and death are nonzero and balance. From
Fig. 2, we see that, for fixed g and cmin, SS3 exists when (i) there is no non-trivial SL
steady state, i.e. V0 cannot sustain a SL tumour’s oxygen requirements formaintenance
or (ii) there is a non-trivial SL steady state, i.e. V0 can sustain a SL tumour’s oxygen
requirements for maintenance, but the oxygen requirements for proliferation (q3) are
high. In contrast, for fixed g and cmin, SS4 only exists in case (ii).

3.2.2 Stability Analysis

In the previous section, we defined the model’s steady-state values and their regions of
existence in (V0, q1, q3)-space for fixed g and cmin. We now investigate their stability.
Spatially Limited Steady States.We first perform a linear stability analysis for steady
states SS1 and SS2; we compute the Jacobian of the system (4)–(5) when cmin ≤ c ≤ 1
at each steady state and find the corresponding eigenvalues. The Jacobians of the
system evaluated at SS1 and SS2 are, respectively:
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J |SS1 =
(

q2(1 − V0) 0
−q1 − q3(1 − V0) −gV0

)

, (20)

J |SS2 =
( −q2V0(1−V0)

V0+(q1/g)(1−V0)
0

[q3(1 − V0) − q1] V0
V0+(q1/g)(1−V0)

−gV0 − q1(1 − V0)

)

. (21)

It is straightforward to obtain the eigenvalues (λ1, λ2) and (μ1, μ2) for the Jacobians
evaluated at SS1 and SS2, respectively:

{

λ1 = q2(1 − V0) > 0,

λ2 = −gV0 < 0,

⎧

⎨

⎩

μ1 = −q2(1 − V0)V0
V0 + (q1/g)(1 − V0)

< 0,

μ2 = −gV0 − q1(1 − V0) < 0.
(22)

Since q1, q2 > 0 and 0 < V0 < 1, it is clear that steady state SS1 is unstable and
steady state SS2 is stable. Thus, in the SL regime, tumour elimination is not possible
and the tumour persists.
Nutrient-Limited Steady States. We can perform a similar stability analysis for SS3
and SS4. The Jacobian of the system (4)–(5) when 0 ≤ c < cmin is:

J |(T ∗,c∗) =
(

q2c∗(1 − 2T ∗ − V0) − δ1(cmin − c∗) q2T ∗(1 − T ∗ − V0) + δ1T ∗
−q1 − q3(1 − 2T ∗ − V0) −gV0 − q1T ∗ − q3T ∗(1 − T ∗ − V0)

)

. (23)

Using the fact that Eqs. (12a)–(12b) hold at both steady states SS3 and SS4, it is
straightforward to show that J11 < 0, J22 < 0 and J12 > 0 for J |SS3 and J |SS4 (for all
possible parameter sets). However, determining the sign of J21 for either SS3 or SS4
is complicated given the algebraic complexity of the expressions of T and c for these
steady states. Therefore, we establish the sign of J21 in specific cases by performing
phase plane analyses. Figure 3 contains two phase portraits for sets of parameters that,
respectively, correspond to a region of parameter space where the only NL steady state
is SS3 and where the two NL steady states exist (see Fig. 2). We can deduce from these
phase portraits that, for these parameter sets, J21 < 0 for SS3, whereas J21 > 0 for
SS4. Phase portraits for other parameter sets (not shown) suggest that the sign of J21
remains the same for both steady states, irrespective of the values of the parameters.

Given the signs of each component of the Jacobian evaluated, respectively, at SS3
and SS4, we now discuss the stability of these two steady states. First of all, since
J11 < 0 and J22 < 0 for SS3 and SS4, the trace of the Jacobian is negative for
both steady states. For SS3, the determinant of the Jacobian is positive, which implies
that SS3 is stable. In contrast, for SS4, the determinant could be positive or negative
depending on the parameter values (since J11 J22 > 0 and J12 J21 > 0). We therefore
cannot confirmwhether SS4 is stable or not, but the phase portrait in Fig. 3b shows that
SS4 is unstable for that specific parameter set. Constructing phase portraits for other
parameter sets (not shown) suggests that SS4 is unstable, irrespective of parameter
values. We therefore conclude that SS3 is stable, and make the conjecture that SS4 is
unstable.
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Fig. 3 Phase portrait for Eqs. (4)–(5), where (a) (V0, q1, q3) = (0.0005, 0.5, 5) and (b) (V0, q3, q1) =
(0.0015, 0.5, 5). From (a) and (b), we can find the sign of the component J21 of the Jacobian (23) evaluated
at SS3 and SS4: J21 is, respectively, negative and positive. Since, for SS3, we also have J11, J22 < 0 and
J12 > 0, this implies that SS3 is stable. In contrast, we cannot definitively determine the stability of SS4
using the signs of the components of the Jacobian. However, we can see from the trajectories in b that SS4
is unstable

3.3 The Existence of Three Tumour Growth Regimes

In the two previous sections, we defined the steady-state solutions for Eqs. (4)–(5),
determining where they exist in parameter space, and we also found their respective
stabilities. These results enable us to understand how the choice of parameters influ-
ences the equilibrium tumour size(s) that can be attained in the long term. To illustrate
this, we constructed bifurcation diagrams which show how the stable and unstable
steady-state solutions for T change as V0 varies, for fixed values of q1 and q3. These
are presented in Fig. 4.

We see that, if q3 is smaller than q1 = 0.1, then the system evolves to a SL or NL
steady state and there is no bi-stability. In contrast, if q3 is sufficiently large relative
to q1 = 0.1, then a bi-stable region exists in addition to those mono-stable regions in
which T automatically attains either a SL or a NL steady state. As q3 increases, the
region of bi-stability increases in size. This is consistent with Fig. 2, which presents the
regions of existence of each steady state and also shows that bi-stability only occurs
if q1 is sufficiently small relative to q3.

Combining all of the preceding results, we conclude that, depending on (V0, q1, q3),
there are three possible scenarios for tumour growth, which we illustrate in Fig. 5:

1. Spatially limited growth: the tumour has access to sufficient nutrient to keep
growing until it runs out of physical space to occupy; growth stops due to density-
dependent inhibition which stops cell proliferation without any cell death.

2. Nutrient-limited growth: the tumour grows until the birth of new cells balances the
death of cells due to nutrient starvation; growth stops due to nutrient-dependent
inhibition.

3. Bi-stability: the system is bi-stable and the tumour can grow to a NL or SL steady
state, depending on the initial conditions. By considering trajectories in the phase
plane, it is possible to show that, given initial conditions that satisfy 0 < T (0) � 1,
the tumour will grow to a NL steady state (for example, see Fig. 5b).
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Fig. 4 Bifurcation diagrams showinghow the steady-state values for T change asV0 varies for (a) (q1, q3) =
(0.1, 0.01), (b) (q1, q3) = (0.1, 0.1), (c) (q1, q3) = (0.1, 1) and (d) (q1, q3) = (0.1, 10). We observe that,
given q1 sufficiently small (here, q1 = 0.1), the existence of the bi-stable regime depends on q3 being
sufficiently large relative to q1

4 Discussion

Understanding tumour growth dynamics is essential for investigating tumour response
to treatment. This is why developing tumour growth models and extending them to
study treatment response has been at the forefront of mathematical oncology research
for many years. As increasing numbers of models are proposed, a key question is how
to balance the biological detail of a model with its analytical tractability and suitability
for data fitting and parameter estimation. We have attempted to strike that balance by
proposing an ODE model of vascular tumour growth which retains the simplicity of
phenomenological models while incorporating some mechanistic details. In addition,
a key goal was to develop a model that incorporates two alternative mechanisms for
tumour growth arrest.

By studying the behaviour of the model (4)–(5) numerically, we found that the
desired qualitative growth trends are preserved: we observed exponential and/or linear
growth, followed by convergence to a parameter-dependent limiting size. Our steady-
state analysis further revealed that, depending on the oxygen consumption rates and
the initial vascular volume, the model exhibits three distinct tumour growth regimes.
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Fig. 5 In (a), we represent the three tumour growth regimes in (V0, q3)-space for q1 = 0.1. In (b), we
numerically solve the system (4)–(5) for t ∈ (0, 105] subject to the initial conditions (T (0), c(0)) =
(0.05, 1) and plot the evolution of the tumour volume in time. We set (V0, q1, q3) corresponding to points
A, B and C in (a), i.e. (V0, q3, q1) = (0.005, 0.15, 0.1), (V0, q3, q1) = (0.014, 0.8, 0.1) and (V0, q3, q1) =
(0.035, 0.5, 0.1), respectively. We observe that a tumour characterised by parameter set A grows to a SL
steady state, while the tumours characterised by parameter sets B and C both grow to a NL steady state

These regimes are characterised by two different growth-limiting processes: growth
arrest due to cell proliferation balancing cell death due to nutrient starvation vs. growth
arrest without cell death where cells stop proliferating due to space constraints.

Despite the simplicity of the model, we expect that it can provide additional insight
compared to other models of tumour growth, which typically only represent a single
growth-limiting mechanism (Drasdo and Höhme 2005; Greenspan 1972; Hahnfeldt
et al. 1999;Lewin et al. 2020;Murphy et al. 2016; Panovska et al. 2007). This is because
the mechanisms responsible for growth arrest may influence how a tumour responds to
a particular treatment.We illustrate this belowwith two simple examples that motivate
how our model can be used to study tumour response to various treatments. We first
consider a treatment, here called treatment 1, that causes oxygen-independent vascular
damage and damage-induced angiogenesis (e.g. high hyperthermia). In particular, this
treatment can significantly alter the vascular volume, V , whichwas held constant in the
tumour growthmodel presented in this paper. Since the tumour steady state depends on
the oxygen consumption rates, q3 and q1, and the vascular volume, V ≡ V0, changes to
the vascular volume will affect the steady-state tumour volume. This may, in turn, also
change the tumour’s growth regime (i.e. nutrient-limited (NL), bi-stable or spatially
limited (SL)) and the mechanism driving growth arrest.

To illustrate this, let us assume that V is a monotonically decreasing function of the
dose D of treatment 1. Then, as D increases, the value of V in the model Eqs. (4)–(5)
changes so that the tumour traverses regions of parameter space in ways that depend
on the initial vascular volume, V0, as well as other model parameters (see Fig. 6a). This
can result in the systemmoving through different sequences of steady-state behaviour.
We demonstrate this using the bifurcation diagrams in Fig. 6, which show how the
tumour steady-state volume depends on the vascular volume, for fixed (q3, q1). On
the one hand, tumours initially in NL or bi-stable regimes exhibit an immediate and
gradual decrease in tumour steady-state volume as V decreases (Fig. 6b, A0 to A1, and
Fig. 6c, B0 to B1). In these cases, the steady-state solutions remain on the NL steady-
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Fig. 6 We illustrate how tumours that belong to different growth regimes respond to treatment 1, under the
assumption that the vascular volume, V , is a monotonically decreasing function of the dose, D, of treatment
1. In (a), we show how a nutrient-limited (NL) tumour, a tumour in a bi-stable regime and a spatially limited
(SL) tumour, respectively characterised by the parameters (V0, q1, q3) = (0.0022, 1, 1), (V0, q1, q3) =
(0.0022, 1, 5) and (V0, q1, q3) = (0.0045, 1, 9), traverse the parameter space as V decreases in response to
the application of increasing doses of treatment 1. A0, B0 and C0 respectively represent the pre-treatment
position of these three tumours in parameter space. In (b)–(d), we respectively show, using bifurcation
diagrams, how the steady-state volumes of these three tumours change in response to the same treatment.
We see that, for the tumours initially in NL (b) and bi-stable (c) regimes, their steady-state volumes both
decrease gradually with V . For the tumour initially in a SL regime (d), decreasing V initially leads to a
slight increase in tumour steady-state volume. However, a sufficiently large decrease in V can cause a large
and rapid reduction in tumour steady-state volume that is followed by a continued, gradual decrease

state branch of the bifurcation diagrams in Fig. 6b, c as V decreases. On the other hand,
the steady-state size of a tumour initially in a SL regime increases marginally as V
decreases towards a threshold value (Fig. 6d,C0 toC1). Once this value is reached, the
tumour undergoes a rapid and large reduction in steady-state volume as it switches to
the NL regime (Fig. 6d,C1 toC2). As V continues to decrease, the tumour undergoes a
more gradual, sustained decrease in steady-state volume, remaining in the NL regime
(Fig. 6d, C2 to C3) and behaving similarly to tumours that are initially in bi-stable or
NL regimes. In this case, the steady-state solution can jump from the SL steady-state
branch to the NL steady-state branch of the bifurcation diagram in Fig. 6d, provided
that treatment 1 elicits a sufficiently large decrease in V .
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These possible variations of tumour steady-state values and growth regimes in
response to treatment 1 highlight how such a treatment can be effective at reducing
long-term tumour burden, especially in the case of SL tumours. In particular, the
preceding analysis emphasises that treatment of SL tumours should be designed to
drive the system into the NL regime, where the larger spatially limited tumour steady
state does not exist and the tumour is guaranteed to evolve to a reduced volume. It
would therefore be interesting to consider the effect of combining treatment 1 with
another treatment such as chemotherapy that, say, causes tumour cell damage. How-
ever, elucidating tumour response to such a combined treatment would require us to
consider the dynamics of the tumour cells and vasculature and their interactions. In
particular, we would need to extend our model to include a further ODE to account
for the dynamics of V : this is beyond the scope of the present work. Even so, we can
illustrate the potential of our current model for studying combination treatments using
the following example.

Suppose that we combine a treatment, here called treatment 2, which causes
tumour cell damage in an oxygen-dependent manner (e.g. radiotherapy) with another
treatment, here called treatment 3,which can re-oxygenate the tumour (e.g.mild hyper-
thermia). Treatment 2 alone causes a decrease in tumour volume, whose magnitude
depends on how cell death due to the treatment and nutrient deficiency compares to
cell proliferation. By increasing the oxygen concentration in the tumour, treatment 3
has three key effects: (i) increasing the cell kill caused by treatment 2, (ii) increasing
the proliferation rate of tumour cells and (iii) decreasing the rate of cell death due to
nutrient deficiency (if the death rate is nonzero). Thus, applying treatment 3 before
treatment 2, we predict a synergistic benefit of combining the treatments if the mag-
nitude of the decrease in tumour volume is larger than that achieved by treatment 2
alone. We illustrate this scenario in Fig. 7.

Given the effects of re-oxygenation previously described, we claim thatNL tumours
are more likely to respond poorly to this combination treatment than SL tumours. Sup-
pose that we have two tumours at steady state, one NL and one SL. Recall that, at
equilibrium, the rates of cell proliferation and cell death balance for NL tumours and
nutrient availability is growth rate limiting, whereas for SL tumours equilibrium is
achieved when mechanical constraints halt cell proliferation throughout the entire
tumour mass, i.e. nutrient is not limiting and there is no cell death. Re-oxygenation
(treatment 3) perturbs theNLsteady state, but not theSLsteady state.More specifically,
re-oxygenation allows cell proliferation to outweigh cell death due to nutrient defi-
ciency, and therefore, theNL tumour can grow past its pre-treatment volume before the
cell-damaging treatment (treatment 2) is applied. As a result of this additional tumour
growth due to treatment 3, the increase in cell kill by treatment 2 due to re-oxygenation
may not be sufficient to enhance the tumour’s response compared to treatment 2 alone.
Thus, the combination treatment may fail. In contrast, re-oxygenating the SL tumour
increases the average oxygen concentration in the tumour without affecting the rates
of cell proliferation and cell death as they both remain zero. By doing so, treatment
3 only increases cell kill by treatment 2, which increases the efficacy of treatment
2 and ensures that there is a benefit of combining the treatments. We illustrate the
expected responses of steady-state NL and SL tumours to treatment 2 alone and to a
combination of treatment 3 followed by treatment 2 in Fig. 8.
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Fig. 7 Schematic diagram showing a possible outcome of combining treatment 2, which causes oxygen-
dependent cell damage, with treatment 3, which re-oxygenates the tumour, affects cell proliferation, cell
death due to nutrient deprivation and cell kill due to treatment 2. The combination of these effects determines
the overall outcome of treatment. In the case considered here, the magnitude of the effects of treatment 3
on the individual aspects of growth and death are such that we observe an increase in tumour cell death as
a result of combining the two treatments. However, as shown in Fig. 8, this may not always be the case

Fig. 8 We compare the response of a steady-state NL and a steady-state SL tumour to treatment 2 alone
and to a combination of treatment 3 followed by treatment 2. The two schematic diagrams show how
combining treatment 2,which causes oxygen-dependent cell damage,with treatment 3,which re-oxygenates
the tumour, affects cell proliferation, cell death due to nutrient deprivation and cell kill due to treatment 2.
The combination of these effects then determines the overall outcome of treatment. In the case of the NL
tumour, we observe a decrease in tumour cell death as a result of combining the two treatments, whereas,
for the SL tumour, we observe an increase in tumour cell death as a result of combining the two treatments.
For the cases considered here, the combination treatment is therefore only beneficial in the case of the SL
tumour
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Treating tumours that are not at steady state, we also expect to observe a percent-
age increase in tumour growth due to re-oxygenation that is larger in NL than SL
tumours: while the growth rates of NL and SL tumours both increase due to enhanced
proliferation, that of NL tumours is further increased by a decrease in cell loss. As
previously explained for NL tumours at steady state, a sufficiently large increase in
tumour growth following treatment 3 can negatively impact the success of the com-
bined treatment. All of the preceding considerations imply that, by using the tumour
growth model presented in this paper to study tumour response to this combination
treatment, we can expect varying treatment outcomes depending on tumour type and
growth-limiting mechanism.

As mentioned in the Introduction, our simple model exhibits complex behaviour
that lends itself to investigating and distinguishing between the response of different
tumours to a range of combination cancer therapies. While we have illustrated this
briefly with the two preceding hypothetical scenarios, a detailed investigation into
how this model can be exploited to address specific combination treatments will be
presented in a future paper. More specifically, we aim to extend the tumour growth
model to incorporate tumour response to different treatments and then use the resulting
dynamic model to conduct an in-depth study of treatment outcome. In particular, we
seek to explore whether the response to treatment is sensitive to the mechanisms
underpinning tumour growth and to the form of tumour growth assumed. If so, we
may also be able to discern the underlying mechanisms from observed responses
to treatment. Moreover, our simplifying assumption that vascularisation is constant
allowed us to analyse the system in depth and find behaviours that depend critically
on the level of vascularisation. Hence, future work will incorporate more realistic
vascular dynamics. The extensions of the study presented here will help to identify
optimal, patient-specific treatment combinations and to increase our understanding of
high variability in treatment response between patients.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11538-022-01034-2.

Acknowledgements We would like to thank Prof. Gail ter Haar and Dr. Sarah Brüningk for helpful dis-
cussions about the biological realism of our modelling approach.

Author Contributions All authors conceived and designed the study, CC executed the study and all authors
contributed to the writing of the manuscript.

Funding C.C. is supported by funding from the Engineering and Physical Sciences Research Council
(EPSRC).

Declarations

Code availability MATLAB code to numerically solve the model are available in the Supplementary Mate-
rial.

Conflict of interest We declare we have no conflict of interest.

123

https://doi.org/10.1007/s11538-022-01034-2
https://doi.org/10.1007/s11538-022-01034-2


   80 Page 20 of 24 C. Colson et al.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Defining the Parameter Regime of Interest

Here we justify our dimensionless parameter choices, which are summarised in Table
1, by referring to dimensional parameter values.

We first define a range of values for the vascular volume V0. Assuming that the
average diameter of a cell is 20µm, we estimate that the maximum number of cells
that can occupy 1 mm3 of space is 1.25 × 105 (Ardaseva 2020). Now, the Krogh
cylinder model shows that oxygen can diffuse up to 100− 200µm. Using the average
cell size and cylindrical geometry, we estimate that a section of blood vessel of length
20µm can supply oxygen to a number of cells in the range [100, 300]. In particular,
given that the average diameter of a capillary is 8µm (Müller et al. 2008) and using
cylindrical geometryonce again,we further estimate that 1×10−6 mm3 of bloodvessel
can provide oxygen for a volume of cells in the range [8 × 10−4, 2.4 × 10−3] mm3.
Therefore, a biologically realistic range for V0 such that the tumourmay be sufficiently
oxygenated is [10−4, 5×10−3]. Since tumour vasculature is usually less effective than
healthy vasculature (Carmeliet and Jain 2000), we consider V0 ∈ (0, 5 × 10−3].

We now determine cmin, k and g. To do so, we first estimate Smax = 10−6 m3 in
accordance with the average size of vascular tumours in mice (Faustino-Rocha et al.
2013; Wu et al. 2013). Moreover, the average oxygen partial pressure in peripheral
normal tissues is approximately pmax = 38 mmHg (Ortiz-Prado et al. 2019), and
therefore, using Henry’s Law to convert pmax into a concentration, it is straightforward
to calculate cmax = 2.1×10−3 kg m−3. Now, hypoxia is attained when oxygen levels
fall below 8 mmHg (McKeown 2014). Unlike normal tissue cells, tumour cells can
survive in such hypoxic conditions and only start to die in severely hypoxic conditions,
which range from 0.75 mmHg to 0.075 mmHg depending on the tumour (McKeown
2014). Hence, we take the average of these two values, and using Henry’s Law again,
we have c∗

min = 2.26 × 10−5 kg m−3. This implies that

cmin = c∗
min

c∗
max

= 2.26

2.1
× 10−2 ≈ 10−2, (A1)

and we therefore set cmin = 10−2.
In addition, we expect that the rate of oxygen exchange per unit volume area of

blood vessels, g∗ ( m−3min−1), depends on a variety of factors, including the quality
of the vascular network, which can lead to highly heterogeneous tumour perfusion
rates (Gillies et al. 1999), and surface areas of oxygen exchange. Since our model
does not account for these details, we fix g∗ so that, for average values of the oxygen
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consumption rates,we have SL tumours for V0 ≥ 5×10−3 andNLor bi-stable tumours
for V0 ≤ 1 × 10−4 (recall that, for V0 ∈ [10−4, 5 × 10−3], the vasculature should
be sufficient to supply oxygen to the whole tumour). Based on preliminary numerical
simulations (not shown), we set g∗ = 5× 106 m−3min−1. Setting the timescale to be
τ = 1 min−1, we thus have

g = g∗Smax

τ
= 5. (A2)

Finally, k∗ (m6 kg−1) is the parameter that relates the constant for oxygen consump-
tion for proliferation, q∗

3 , and the constant for proliferation, q∗
2 . Since cells consume

oxygen faster than they proliferate, we expect q∗
2 < q∗

3 . As the value of k∗ is not
readily available in the literature, we performed preliminary numerical simulations
(not shown) to find a value of k∗ that gives realistic growth dynamics. As a result, we

fix k∗ = 10−5

2.1 m6 kg−1 and this implies that

k = c∗
max

Smax
k∗ = 2.1 × 10−3 × 10−5 kg m−3m6 kg−1

2.1 × 10−6 m3 = 10−2. (A3)

We now estimate the oxygen consumption rates, the proliferation rate and the death
rate. Biological observations suggest that the death and proliferation rates of tumour
cells are highly correlated in some tumours: the faster the growth, the larger the death
rate (Leoncini et al. 1993; Liu et al. 2001; Vaquero et al. 2004). This suggests that
these rates are proportional to each other and we make the simplifying assumption
that the dimensionless parameters δ1 and q2 satisfy δ1 = q2 in order to reduce the
number of parameters in the model. We note here that this assumption does not affect
the qualitative behaviour of the model summarised in the paper, and in particular, the
three tumour growth regimes are preserved.

Now, we estimate δ∗
1 ( m3 kg−1 min−1) as

δ∗
1 ∈

(

1.2 × 10−6

0.75 × 2.1 × 10−5
,

1.2 × 10−4

0.75 × 2.1 × 10−5

)

min−1

kgm−3 , (A4)

where the numerators of both fractions correspond to death rates found in the liter-
ature (Lewin et al. 2018; Schaller and Meyer-Hermann 2006) and the denominator
corresponds to the average oxygen concentration below cmin (this scaling allows us to
obtain the correct units for δ∗

1). We then have:

δ∗
1 ∈

(

7.6 × 10−2, 7.6
)

m3 kg−1 min−1, (A5)

which we non-dimensionalise according to (6) to obtain:

δ1 ∈ (1.6 × 10−4, 1.6 × 10−2). (A6)
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Now, since q2 = δ1 by assumption, we have

q2 ∈ (1.6 × 10−4, 1.6 × 10−2), (A7)

and this gives us the following dimensionless ranges for q3 = q2/k:

q3 ∈ (1.6 × 10−2, 1.6). (A8)

We further justify the range of values determined for q3 by considering experimen-
tally determined values for the rate of oxygen consumption by cells. Wagner et al.
(2011) conduct their own experiments as well as review results from other authors and
they report oxygen consumption rates in the range [6×10−5, 6×10−3] kg m−3min−1.
These constant consumption rates correspond to the oxygen uptake of cells in a well-
oxygenated medium, i.e. where the rate of oxygen consumption is at its maximum.
Given the volume of the tumours in their experiments and the maximal oxygen con-
centration they set, we can find the following estimate for the range of q∗

1 :

q∗
1 ∈ (2.1 × 104, 2.1 × 107) m−3min−1. (A9)

Given (6) and Smax = 10−6, this implies that

q1 ∈ (2.1 × 10−2, 21). (A10)

Here, we determine a range of values for q1 using consumption rates that correspond
to overall oxygen consumption, i.e. they do not distinguish between consumption for
proliferation and for maintenance. In practice, q1 would therefore be smaller than the
values in (A10). In view of this, we recover the dimensionless parameter ranges in
Table 1 by rounding down to the closest order ofmagnitude the upper and lower bounds
of the parameter ranges we found. We note once more that, since this paper focuses
on demonstrating the qualitative behaviour of the model (4)–(5), defining plausible
ranges for parameter values is sufficient.
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