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Abstract 

The suprachiasmatic nucleus (SCN) is believed to contain the main generator of circadian rhythmicity in mammals. 
In order to obtain further functional details of this, electrophysiological extracellular measurements in vitro were made. 
By means of an interspike interval distribution analysis, it is shown that there is a novel kind of neuronal firing pattern: 
the harmonic pattern. From these observations, we have developed a theoretical model based on possible filtering pro- 
cesses occurring during synaptic transmission. The model suflices to infer that regular ultradian oscillators could be 
an emergent property of circuit interactions of cells in the suprachiasmatic nucleus. 

Keywords: Rhythms; Suprachiasmatic nucleus; Electrophysiology; Model 

1. Introduction 

During the last 30 years the suprachiasmatic nu- 
cleus (SCN) of the anterior hypothalamus has 
become one of the most studied regions of the cen- 
tral nervous system, due to strong evidence show- 
ing that the circadian timing system is intrinsic to 
this region (for a review see [1,2]). Over the last 
decade in vitro studies with the brain slice tech- 
nique in the SCN has resulted in rapid progress in 
determining the endogenous clock properties of 
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the cluster of neurons and glia that comprise the 
SCN [3]. 

Based on frequency histograms 3 types of firing 
patterns have been described in SCN neurons: 
regular, irregular and bursting, all arising in the 
same sample simultaneously [4,5]. Although the 
average firing rate recorded from SCN neurons 
seems to maintain a circadian rhythm [6-91, little 
is known about why the firing patterns differ 
greatly between cells at a given time. 

Previous studies, using interspike interval distri- 
bution analysis (IIDA), have shown that some 
SCN neurons show a regular firing pattern that is 
well fitted with a single narrow Gaussian function 
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and, therefore, can be considered as nearly ideal 
oscillators [5,10]. It has also been shown that the 
IIDA from those neurons exhibiting an irregular 
firing pattern can be fitted by a log-norm function 
[51. 

In this paper the presence of a new interspike in- 

regular patterns from totally random firings. 
Hence, the experimental data are explained in a 
coherent way. 

2. Experimental procedure 

terval distribution pattern in the rat SCN in vitro 
is reported. A careful analysis of the different 
measured patterns leads to a new classification, 
which enables one to envisage a model that ex- 
plains the functional relationship between the dif- 
ferent neuron behaviours revealed by the experi- 
ment. This theoretical model consists of a filtering 
of neural responses that leads to the generation of 

In vitro electrophysiological recordings of single 
neurons in the SCN of 30 adult male Wistar rats 
(150-200 g) were performed. The animals were 
housed on a 12:12-h light-dark cycle for 2 weeks 
with food and water ad libitum. At different circa- 
dian times through the day, each animal was 
beheaded under the lighting condition correspon- 
ding to that time, the brain was quickly removed 
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Fig. 1. Examples of recorded frequency of spikes in 4 different neuronal firing patterns in the SCN (left hand side), and the correspon- 

ding interspike interval distribution (right hand side). (a) Regular pattern, (b) irregular pattern, (c) bursting pattern, and (d) harmonic 
pattern. 
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and dipped in ice-cooled Krebs solution (pH 
7.3-7.4, 300 mOsmo1) [9]. The pH was finely 
tuned by adjusting the NaHCO concentration at 
the desired temperature, and the osmolarity was 
kept constant by modifying the NaCl proportion. 
Using a tissue chopper, slices of 400 pm were cor- 
onally sectioned from the hypothalamic region, 
containing the SCN. Once in the recording 
chamber, the slices were preincubated for 30 min 
in Krebs solution at 37”C, before recording the ex- 
tracellular activity of single neurons. Recordings 
were made with glass micropipettes filled with 2M 
NaCl (4 to 10 MQ). During the experiments the 
slices were perfused continuously at a rate of 3 
ml/min with Krebs solution kept at 37°C and 
bubbled with 95% 0, and 5% COz. 

Firing patterns from both SCN were recorded 
for a total of 472 single cells. Of these, there were 
10 to 20 cells per slice. Each cell was monitored 
with an oscilloscope for about 5 min to attain 
stability, and then recorded for at least 2 min on 
a magnetic tape. The data were stored and analyz- 
ed by means of a computerized system, which is 
able to discriminate random signals and to digitize 
the spikes, making frequency and interval distribu- 
tion histograms. In order to have a wide and un- 
biased statistical sample, the recording electrode 
was advanced in steps of 50 pm and kept in such 
a position for at least 5 min before moving it to the 
next position. This procedure allows recording 
from a number of neurons which were initially si- 
lent when the electrode was first placed. Particular 
care was taken to discriminate the individual 
recordings by either the frequency and the shape 
of the responses, or by the location of the cells in 
the SCN. 

3. Experimental results 

All the cells recorded could be assigned to one 
of 4 typical types, according to their firing pattern 
and IIDA. Fig. 1 illustrates an example from each 
of the 4 groups. Fig. la represents a cell that fires 
regularly, that is, there is only one interspike inter- 
val of - 100 ms with a very small deviation. In Fig. 
1 b there is a totally irregular pattern, showing a 
broad distribution of interspike intervals, and in 
Fig. lc there is an example of a cell that is quiet for 

Table 1 
Firing rates (mean f  S.D.) from the different neuronal pat- 
terns classified according to the bin rate and the IIDA 

Neuron type Firing frequency Fraction of 
P-W total (%) 

Bin rate Regular* 5.94 f  1.89 23.1 
Irregular 3.60 f  2.56 69.9 
Bursting 2.59 f  1.89 6.4 

IIDA Tuned** 6.32 * 2.12 18.0 
Random** 3.38 CIZ 2.45 65.9 
Harmonic** 4.46 f  2.64 16.1 

Total number of cells = 472. 
Overall mean frequency rate = 4.09 & 2.61. 

‘Scheffe test P < 0.05 with respect to the remaining patterns, 
F=46.41. 

**Scheffe test P < 0.05 among the 3 patterns, F = 35.43. 

periods greater than 1 s and then exhibits bursting, 
for small intervals of time. It is difficult to distin- 
guish this type of cell from the previous one from 
the corresponding IIDA. All these patterns have 
been reported previously [4,5,10]. The neuron in 
Fig. Id shows an irregular firing pattern and a 
broad distribution of interspike intervals, but the 
response is grouped around multiples of a basic in- 
terval, and the weight of each group of harmonics 
follows roughly the envelop of the random distri- 
bution of Fig. lb. This latter pattern was reported 
in a recent abstract [ 111. 

For reasons that will become apparent later, 
based on the IIDA one should consider only 3 
qualitatively different patterns: the random broad 
asymmetrical patterns, as in Figs. lb and Ic, the 
harmonic patterns, as in Fig. Id, and the tuned 
patterns, as in Fig. la. The descriptive statistics on 
the firing rates from each neuronal type and from 
the total population are presented in Table 1. For 
comparison purposes the neurons were classified 
with either criteria (firing pattern or IIDA). The 
proportion of each neuronal type varied according 
to the criteria used for classification. When the 
IIDA was used, a decrease in the proportion of 
regular firing neurons (tuned) and an increase in 
the harmonic ones were observed. 

It is worth mentioning that the harmonic pat- 
terns differ among themselves not only in the inter- 
val of the fundamental harmonic, but also in the 
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Fig. 2. Four examples of harmonic patterns, as the one shown 
in Fig. Id, with decreasing intensity of the long time interval 
peaks. These sorts of patterns suggest a filtering mechanism of 
the signals. 

relative weight of the subsequent harmonic peaks, 
in such a way that one could think of a systematic 
approach to perfect tuning. The patterns of 4 cells 
are shown in Fig. 2 to illustrate this idea. 

4. Theoretical model 

The following model suggests a possible mecha- 
nism by which one could obtain ideal oscillators 
(tuned rhythmic cells) from a random distribution 
of signals. There are 3 basic assumptions: 

(1) There are a large number of neurons in the 
SCN which fire spontaneously, completely at 
random. These cells act as a source of stimuli 
to excite other cells. In other words these cells 
are able to generate their own action poten- 
tials, without the need of an external input, 
rather like the automatism found in myocardi- 
al cells. However, these cells are irregular, 
whereas myocardial cells have a strictly regu- 
lar firing pattern. 

(2) There is another type of neuron which primar- 
ily responds to external signals coming from 
cells interconnected in a network. We shall 
call these cells ‘filters’. The stimuli received by 
one of these cells could come directly from a 
source cell or another filter cell, since in the 
network there would be paths in series and in 
parallel. We show later that it is not necessary 
to assume a particular network for the model 
to work. 

(3) The interneuronal transmission of signals is 
carried out by means of a medium characteriz- 
ed by a transmittance and an absorbance. 
These characteristics could be changed by the 
action of an external agent, (e.g. chemical, 
topological, etc.). Those terms have a precise 
meaning in optics, when talking about con- 
duction of signals through a medium [ 121. In 
the present context the transmittance and the 
absorbance are related to the fact that only 
signals with particular frequencies are absorb- 
ed, other frequencies are reflected. 

With these assumptions one could imagine a func- 
tional relationship between the various elements 
defined: if one has a source of firings with a broad 
interspike distribution, one could select a given in- 
terval between subsequent firings by means of an 
appropriate network of neurons that respond with 
different delay times, depending on the character- 
istics of the intercellular transmitters which con- 
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nect them, in a form analogous to a monochrom- 
ator, or optical filter. At the end one should be 
able to filter all intervals, except the chosen one. 

The first assumption can be readily tested. It is 
well known [13] that if there is a large number of 
random events, and that if the probability (p) 
characterizing a given event is small, then the 
probability W,(X) that the event occurs n times in 
N trials is given by the Poisson distribution 

W,(X) = -$ eex 

where X = Np is the mean number of events. In the 
present case, one could safely state that if there are 
neurons that fire totally at random, then the prob- 
ability that a given neuron fires 2 consecutive times 
in exactly an interval of time At is very small, and 
consequently the probability distribution W,(X) is 
given by Eq. 1. In this case h = At/to, where to is a 
characteristic time. At this level one should not 
associate this characteristic time to a biological 
process and it should be taken as a parameter 
given by the experiment. 

Fig. 3a shows a plot obtained by summing up all 
the experimental patterns of types lb and lc in 
Fig. 1, that is, all the patterns of the random type. 
The vertical scale has been normalized by the area 
under the curve and the horizontal axis is the time 
interval X in units of to = 75 ms. This character- 
istic time was given by the maximum of the curve, 
which should be at 2to. In the same figure the the- 
oretical curve W,(X) is plotted as a dashed line in 
order to compare with the experimental data. It is 
seen that the fit is reasonably good, except for a 
peak near zero in the experiments and a somewhat 
large tail at long intervals. 

It is difficult to account for events separated by 
less than 10 ms in the present model. Therefore, 
one might assume that the discrepancy near zero 
has to do with processes occurring in the experi- 
ment and not considered in the model, such as the 
possibility of nearly simultaneous external excita- 
tions and spontaneous firing of some silent cells, 
and we shall not comment further on this. Regar- 
ding the long tails seen in the experiments, one can 
say that a slight modification of the ideal condi- 
tions of randomness, or an insufficient collection 
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Fig. 3. (a) Comparison of the theoretical interval distribution 
W,(h) (dashed line) and the summation of all the measured ir- 
regular and bursting patterns, as the ones shown in Figs. lb and 
Ic (continuous line). The experimental data were taken from 
306 source cells and were normalized to give a unit area under 
the curve, the time interval scale is measured in units of to = 75 
ms. (b) Calculated interval distribution patterns after 1, 2 and 
3 filtering processes (Eq. S), showing that the intensity 
decreases as filters are added. The decreasing intensity after 
subsequent filtering steps has no experimental significance. (c) 
Comparison between the results of the theory, after 3 filtering 
processes and a typical experimental pattern of the kind shown 
in Fig. 2. The data were multiplied by an arbitrary constant to 
tit the intensities. 

of data, can modify the shape of the ideal curve ex- 
actly in this region. In other works [5] this kind of 
spectrum, obtained with a single neuron, has been 
adjusted with a log-norm distribution. It is clear 
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that with a log-norm distribution one can lit an ar- 
bitrary asymmetrical curve very well, however, it is 
preferable to derive the form of the distribution 
from very simple assumptions, as was done here. 

The second step in the model proposes that the 
functional reason for the existence of a source of 
random firings is to select specific time intervals, 
so that there will be some rhythmic signals to be 
used as components of a circadian oscillator 
[ 14,151. The selection of rhythms is naturally ac- 
complished by taking into account the assump- 
tions 2 and 3 in the following way: it seems 
reasonable to assume all neurons form a network, 
and therefore one expects interference between 
signals arriving at a given neuron, depending on 
the paths allowed by the network. Obviously, 
these paths will depend not only on the array, but 
also on the characteristics of the interneuronal me- 
dium, which certainly could be changed at any 
time by other regulating factors. This would ex- 
plain the existence of harmonic and tuned firing 
patterns. The model is illustrated in Fig. 4. 

In order to be specific, let us consider a one- 
dimensional array of 2 media N - M - N (see 
idealization in Fig. 4), each one characterized by a 
transmittance T and an absorbance A, which are 
connected through the relation T + R = 1 - A, 

L L 

where R is the reflectivity of medium M, due to the 
walls separating the 2 media. Then, the trans- 
mitted signal from one side of the sandwich to the 
other is given by the Airy formula [12] 

W T Max 
- = 1 + Fsin2(6/s) wo 

(2) 

where the maximum transmittance is 

Tom, = T2 2= [l- (lfR)] 
(1 -RI 

(3) 

and the contrast factor is F = 4N(l - R). In ail 
problems dealing with interference the important 
quantity is the phase 6. In the present case this 
phase should be related to time delays between dif- 
ferent paths. Let us write the phase as 

6=2n x-g 
s + As 

where the variables h, g and s are times in units of 
lo. The parameter s gives the period of the fluctua- 
tion, and therefore it should be of the order of the 
characteristic time. This quantity could be chang- 
ed by an amount As by modifying the chemistry of 
the medium, or its ‘refractive index’. The quantity 

IA- 

Fig. 4. Sketch showing the idealized filtering process in the model. The source neurons (S) feed the filter ones (Fi), which are intercon- 
nected and after n steps a perfectly tuned cell (0) is obtained. The representative spike distribution for each cell is drawn on top, 
and the inset represents an idealized picture of the synaptic process, which itself is modelled as an optical filter in the form of a sand- 
wich of a medium M between 2 other media N. 
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g takes into account any phase shifts, or time 
delays, due to the walls. 

Let us now consider a series of sandwiches 
N - Mi - N - Mz -... - N - M,, - N, which cor- 
responds to a 1-D transport problem through n 
finite barriers [16]. The problem of various trans- 
port channels in parallel is equally tractable, but 
for the sake of simplicity, consider only the array 
in series. Thus, one obtains a recursive formula 

C-1 
Tn= (1 4,~,)2 

[l + Fn-, sin2(6,- i/2)-’ (5) 

The final output (IV= W,T,) can be very com- 
plicated if the parameters of Eq. 2 vary at each 
step, but the effect of filtering is already present if 
one considers constant parameters, i.e. identical 
media. In Fig. 3b we plot the subsequent output 
after the first, second and third filters. The par- 
ameters used were T= 0.2, A = 0.2, s = 2.0, 
As = 0.2, and g = 0.01, and the input signal was 
given by equation W2(h), multiplied by an ar- 
bitrary factor of 700 to give a reasonable scale. 
These parameters fit some real data extremely 
well. This is shown in Fig. 3c, where an experimen- 
tal pattern is compared with the output of the third 
filter of Fig. 3b. Different shapes of patterns of the 
sort shown in Fig. 2 can be adjusted with different 
number of filters, and the ones in Fig. la can be 
obtained with 5 filters only. Similar filtering, or se- 
lection of frequencies, can be obtained with paths 
in parallel, but the final output depends on the 
particular configuration of the various elements, 
and a calculation of this case would not be very in- 
formative. The important fact is that the tuning of 
the firings does not depend on the specific details 
of the network. 

5. Discussion 

There are different firing patterns in the cells of 
the SCN, although at present, there is not a clear 
relationship between the type of firing pattern and 
any morphological or functional characteristic of 
the neurons. The clear finding of a harmonic type 
of firing pattern immediately suggests that a 
frequency-filtering mechanism, that leads finally 
to perfectly tuned cells, is taking place in the SCN. 

The proposed phenomenological model is able to 
account for the appearance of all patterns 
measured in the SCN single cells, and suggests a 
functional relationship between the different types 
of behavior. 

The main consequence of the model is that one 
is able to obtain a precise clock from not very 
precisely defined components. It is worth mention- 
ing that the selection of a function from an 
originally random process is an efficient and ver- 
satile mechanism frequently found in nature, that 
allows for the function to be performed even if a 
substantial number of the components are damag- 
ed or not working. 

It is important to emphasize that the model does 
not address the question of circadian rhythmicity 
generation. However, we believe that it provides 
new ideas which may be applicable to the study of 
the mechanisms of circadian regulation, and that it 
also serves as a complementary support to 
statistical models and simulations [ 12,13,17]. Pre- 
vious models have suggested that one could get a 
circadian cycle of extreme temporal precision, 
either by an interacting array of oscillators with 
fixed frequency [13,17,18], or without the need of 
precise components [12,19], simply as the usual 
oscillations caused by non-linear behavior found 
in systems out of equilibrium. None of these stud- 
ies, however, has addressed the relationship of the 
model to the actual physiology of any known bio- 
logical oscillator. 

By combining the study of the clock mechanism 
(not addressed in this work) with the study of the 
mechanisms leading to the generation of different 
firing patterns found in the SCN at any given time 
(which could be explained by the model presented 
here) it may be possible to gain further insights on 
the mechanisms of regulation. of circadian rhy- 
thmicity. At this point, however, the connection 
between cellular tiring and the generation of circa- 
dian oscillations, or the appearance of overt 
rhythmicity, is not straightforward, and beyond 
the scope of this paper. 

It seems that the coherent functional picture 
given by the model is in agreement with other 
experimental facts. Firstly, it has been found that 
in a medium without calcium ions the regular fir- 
ing patterns disappear, while the irregular ones 
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persist [20,21]. It is well known [22] that calcium 
ions are essential for the synaptic transmission in 
the SCN, therefore, these experiments support the 
idea that tuned patterns depend on synaptic pro- 
cesses, while the irregular patterns do not, since 
they do not depend on external stimuli from other 
cells. There have been reports of the existence of 
chains of neurons and abundant local circuits 
within the SCN, which are consistent with the 
assumption that the neural networks needed for 
filtering really exist [23,24]. Furthermore, im- 
munohystochemical studies reveal an unusually 
large number of neuroactive substances and intrin- 
sic connections within the SCN [25]. The unusual 
abundance of activated glia in the SCN tissue 
[23,24] could be related to the important function 
of regulating the ionic composition of the extracel- 
lular medium [26,27] and thus could be capable of 
changing the filter parameters. This is important if 
one needs a flexible and adaptable clock. 

The present model could be extended by in- 
vestigating the real meaning of the time parame- 
ters in it. One could suggest an experiment in 
which one changes the chemical composition of 
the extracellular medium, in particular, the con- 
centration of ions that modify the synaptic pro- 
cesses, and compare the.experimental observations 
with the predicted modifications of the harmonic 
patterns. It is encouraging that the value of g 
(which gives the frequency of the filtered signal) is 
O.Olt,, that is 0.75 ms. This is within the limits of 
the measured times a signal takes to cross the 
synaptic junction (0.5-l .O ms). 

The model implies a modulatory mechanism of 
synaptic transmission at the level of the filter neu- 
rons, which could be either internally or externally 
regulated. The first case would imply that the filter 
neuron could have a clock mechanism which 
would affect the process at the level of receptor 
dynamic (number, affinity or coupling to ionic 
channels or second messenger system). In the sec- 
ond case, the filter network would be regulated by 
inputs from other neurons which could affect the 
transmission process either by presynaptic (regula- 
tion of transmitter release) or post-synaptic 
(spatial or temporal summation) processes. In 
both cases the outcome would be interference in 
the transmission of neuronal impulses from the 
source to the output neurons. 
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