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Supplementary material for “Analyzing the effect of cell

626 rearrangement on Delta-Notch pattern formation”

sz In this supplementary material, we provide the materials and methods for the experi-
s2s ents, the proof of the formulae and additional data for the numerical simulations and the

620 experiments.

]

630 A. Materials and methods for experiments

31 Animals - H2B-mCherry transgenic mice were provided by the Laboratory for Animal
622 Resources and Genetic Engineering, RIKEN Center for Developmental Biology [37]. All an-
s33 imals were handled in accordance with Nagoya University Guidelines on Laboratory Animal
s34« Welfare.

es  Cell mixing assay of mouse retinal vasculature - Neonatal mice at postnatal day
63 D (P5) were anesthetized on crushed ice and sacrificed. Eyeballs were removed and placed
s37 in Hanks” Balanced Salt Solution in a 35-mm Petri dish. Using fine forceps, the periorbital
s38 connective tissue was removed from the eyeball. We made a small hole in the cornea using
s30 a 260G injection needle. Starting at the hole in the cornea, the sclera, choroid, and retinal
ss0 pigment epithelia were peeled away. The retina was isolated from its anterior segment using
s microscissors [38] and cut into small pieces to prevent focus drift caused by retinal plane
sz curvature. The retina was embedded in collagen gel solution (500 pl) and 1/1000 IB4-Alexa
e43 o1 a 35-mm Petri dish and incubated for 30 min at room temperature to allow the collagen
sas gel to solidify. The dish was incubated for 30 min at 37°C to further solidify the collagen gel.
ss We added 2 ml of medium [DMEM/F-12 + 10% FBS + 1/5000 isolectin B4 (IB4)-Alexa488
sss + 500 ng/ml FGF2] to the dish and visualized the blood vessels.

ser  We performed time-lapse observations using a BX61 W1 upright microscope (Olympus),
sss CSU-X1 (Yokogawa) with iXon+ EMCCD (Andor)(x 20, 5 min/frame, 12 h).

s0  For cell tracking, we manually tracked the centers of cell nuclei with Fiji [39], using the
ss0 TrackMate plugin [40]. We quantified the relative migration speed of the cell nuclei by
es1 dividing the relative migration length by the observation time. We defined the migration
es2 vector from the coordinates of the cell nuclei at the beginning and end of the imaging. The
es3 relative migration length of a cell is the length of the relative migration vector, which is
ssa calculated by subtracting the migration vector of a cell nucleus by the migration vector of

sss the center of gravity of each cell group.
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s Cell proliferation assay of mouse retinal vasculature - For the proliferation assay
es7 for the endothelial cells in P5 mouse retinal vasculature, 30 pg/g bodyweight of 5-ethynyl-
sss 2’-deoxyuridine (EdU; Thermo Fisher Scientific) was intraperitoneally injected 2 h before
es0 sacrifice. After fixation with 4% paraformaldehyde in phosphate-buffered saline, the whole-
sco mount retinas were processed with a Click-iT EAU Alexa Fluor 488 Imaging Kit (Thermo
se1 Fisher Scientific), in accordance with the manufacturer’s instructions. To distinguish the
ss2 endothelial cells, we performed immunohistochemistry using rabbit anti-Ets-related gene-1
s6s (ERG1) monoclonal antibody (Abcam Ab92513) and Cy3-conjugated donkey anti-rabbit
ss¢ 1gG secondary antibody (Jackson ImmunoResearch).

s lmages were taken using an LSM700 confocal microscope (Zeiss) with ZEN software
s (Zeiss) (x 20).

v We counted the number of ERG1(+) cells and EdU(+) cells in five fields of view, and
ses performed statistical analysis (Student’s t-test) for a fraction of EAU(+) cells in ERG1(+)

e60 cells.
670 B. Experimental assay of cell mixing and proliferation

sn An example of Delta-Notch pattern formation on a one-dimensional line is the expression
e2 pattern of Delta-like ligand 4 (D1l4) mRNA in endothelial cells of the developing vascula-
o3 ture. Delta-like ligand 4 (DI4) is a Notch ligand that is expressed mainly in the blood
er vessels, specifies the tip cells of growing vessels, and promotes arterialization [8, 13, 14]. In
o5 parallel with this specification, cell mixing and proliferation of endothelial cells occur in the
e developing vasculature [23, 24, 32-34].

ez It is reported that, in the retinal arteries of mice, DIl4 positive and negative cells
e7s alternately align, though in veins the expression level is low and almost homogeneous
e (Fig. S12(A)). Our theoretical results suggest that high motility or high proliferation rate
es0 Of cells can contribute to the homogeneous expression pattern. Consistent with this hy-
ss1 pothesis, venous endothelial cells have been reported to have greater motility and higher
s> proliferation rates than arterial cells in the developing vasculature of zebrafish [33, 34]. We
es3 examined whether a similar difference in the motility and proliferation rate is observed in
es4 Tetinal vasculature in mice.

s We examined the motility of the endothelial cells in veins and arteries by using an ex

sss VIvO assay, corresponding to the cell mixing model (5). We enucleated the eyes from the P5
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e mouse and isolated the retina. We cultured the retinal explants and tracked the movement
sss of endothelial cells in the developing retinal vasculature for 12 h (Fig. S12(B)). In veins,
seo endothelial cells actively migrated and exchanged their relative positions, though in the
s00 arteries the motility of the endothelial cells was lower and they rarely exchanged positions
o1 (Figs. S12(C), S12(D)). Cell displacements at 12 h were quantified, and the relative velocity
s02 of endothelial cells, which was calculated by dividing displacement, relative to the center of
s03 gravity of each cell group, by the observation time, was found to be 1.20 pm/h in veins and
604 0.74 pm/h in arteries (Fig. S12(D)). These velocities are significantly different from each
s0s other (p-value = 0.048). Note that the velocities of the ganglion cells were much smaller
s0s than those of the endothelial cells (Fig. S12(D)), supporting the hypothesis that the motion
sor of the endothelial cells is active and did not arise passively from the deformation of the
s0s surrounding tissues.

so  Next, we examined the proliferation rate of endothelial cells in veins and arteries by an in
70 vivo assay, corresponding to the cell proliferation model (7). Proliferation was assessed by
71 EdU incorporation in 2 h in the postnatal mouse retinal vasculature in vivo (Figs. S12(E)
22 and S12(F)). We intraperitoneally injected EAU 2 h before sacrifice and detected EdU in-
703 corporating cells. Since EAU was selectively incorporated by cells in the S phase, we could
704 use this to identify proliferating cells. The fraction of EAU positive cells among endothelial
705 cells, distinguished by the expression of ERG1, was 21.9% in veins and 9.8% in arteries
06 (Fig. S12(F)). These percentages of EAU positive cells are significantly different from each
77 other (p-value = 0.0001).

708 C. Approximation of (21) by a deterministic nonlocal evolution equation

70 The time evolution of the power spectrum (21) can be approximated by a deterministic
710 nonlocal evolution equation by assuming that the number of cells n is sufficiently large.

71 Here, the k-th component of dP in (21) is:
{dP}), = 2Re[A ] {P}, + {WPde”}k

1 & (1—1 k—1
= ZR,Q[)\k—l]Pk_l + (16 Sin _— (— Z Pl 1S1H —)> _ SSiHQ 7T( )Pk:—l
Ly n

L
= A (Oon) P(Or) + L

n—1
1 n 2 Ok
16 sin? (ﬁ ;:0 P(pin) sin? ; ) — 8sin kTP(Hk n)

(S1)
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n2 Here, we set 6y, = 2m(k — 1)/n and ¢;,, = 27(l — 1)/n, and regard the power spectrum Py
73 as a function of by ,,. As n — 00, 0, — 0 and 0 is dense in [0, 27), so that P(6,t) becomes
74 a continuous function of 6 € [0,27) and t € [0,00). Also, the diagonal matrix Re[A] is

ns regarded as a multiplication operator with multiplication factor 2A(#) where

—(a+d)+ /(a+d)? —4(ad + 2ba cos 0))

A(#) = Re 5

(52)

76 Using the fact that the Poisson process LY" /n converges to pt as n — oo, so that dL" /n ~

77 pdt, then, by assuming n — oo,

Opn 50 (0 €[0,21)) (S3)
i ¢ (p €0,2m)) (S4)
1 n—1 (p 1 2 SO
ﬁn;]P(gom) sin? # e, Py i P(¢p) sin® §d<p (SH)
AL e
! pdt. (S6)
n

ns Therefore, (21) is approximated by a system of deterministic nonlocal evolution equations

719 AS:

%P(&,t) = <2A(9) — 8psin’ g) P(0,1)

8 0 2T
+ —p sin? 5/0 P(ip,t)sin® gdgo

- yp(P(Q,t)), <S7>

720 where ), is the operator acting on P(6,t). Therefore, by using the maximum eigenvalue
721 and the corresponding eigenfunction of the operator },, we can derive the expected pattern
722 dynamics.

73 From the Perron-Frobenius theorem and its extension to the integral operator by Jentzsch
4 [41], the eigenvalue y corresponding to the positive eigenfunction P*() > 0 is the maximum
725 eigenvalue of the operator )),. By substituting the eigenvalue y and the corresponding
76 eigenfunction P*(#) of the operator ), into (S7), we have:

~ Zpsin® g fo% P*(¢)sin® £dyp

P*(0) = . S8
©) y + 8psin® § — 2X(0) (58)
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727 Hence we obtain a recursive relation for P*(6):

21 9
/ P*(0) sin? ~df
O 2

8 /2” psin® ¢ fo% P*(p) sin® £dyp
7/ y + 8psin® § — 2X(6)

do. (99)

ns Assuming P*(0) > 0 (V6 € [0,27)), the integral of P*(#)sin*(6/2) is a constant positive
720 value, and we can obtain the eigenvalue y of the operator ), as the solution of the integral

730 equation:

o /27T 8psint(¢/2) " ($10)
0

y + 8psin®(¢/2) — 2X(¢)

7 and the corresponding eigenfunction P*(6) is:

cimn 8psin?(0/2)
Pro) = y + 8psin®(0/2) — 2X(0)

(S11)

72 We can also obtain the balanced frequency p* as the solution of the integral equation

733 that is obtained by substituting y = 0 into (S10) as below:

o /27r 4p* sin®(¢/2)
o Ap*sin®(¢/2) — (o)

734 D. Proof of the trigonometric formulae in Appendix C

do. (S12)

75 In this section, we prove the formulae that are used in Appendix C, namely

n—1 22wl
1 sin® ™ 2 2rk
n(n+1)sin2(”—k—”—l):1+n+lcosn+1' (513)
=0 n+1 n
= 1 sin” 2 2rml n—m+1  2rkm  m+4+1  27k(m+1)
5 ik Ccos = COS + CoS .
—~ n(n+1)sin (e -1 n n+1 n+l n+l n+1

(S14)

726 Here, k,[,m and n are integers, and n > 2, k € [I,n — 1] and m € [1,n — 1].
77 For (S13), we start from the formulae for  # (wl/n) (I is an arbitrary integer) that are

73 obtained in [42, 43]:

n—1 2

1 n
= S15
12:; sin” (z 4+ ) sin®(nz)’ (515)
n—1 7l
cot (x + —) = ncot(nz). (S16)
n

=

o
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730 By substituting x = —wk/(n + 1) into (S15) and (S16), we obtain:

—_

n—

2 7wk
S 279 2

- =N
i (7~ 25

7l 7k 7k
cot | — — = ncot .
n n+1 n+1

Y

~
o

—_

3

=0

70 Here we used the periodicity of sin? x and cot z (period length = ) such that:

sin? [ — nh = sin® | —7k + mh = sin® mh ,
n+1 n+1 n+1
nrk 7k 7k

cot [ — =cot [ —7k + = cot )
n—+1 n+1 n—+1

n—1 l 2 mk_ n—1 _: Tl wk
Z sin? ™ — sin el Sin ( + n_+1)
7r - : ml k
=0 sin n n+1) =0 sin ( n n+1>
n—1 _: ml wk 2k
. S (Z n+1 + n+1)
- ml k
=0 sin ( n n+1)
2k 27rk — 7wk
= N COoSs E
n+1 n n+1

=0

27k . 27k 7k
=n | cos + sin cot
n—+1 n+1 n-+1

722 Here we used the formula:
) ) 1 . .
sin” a — sin” § = §(COS 23 — cos2a) = sin(a + f) sin(a — B),

73 and the trigonometric addition formulae. From (S17) and (S21), we obtain:

=n“+n+ 2ncos .
= SlIl n+1_n) TL+1

744 Therefore, we obtain (S13) by dividing both sides of (S23) by n(n + 1).

us  For (S14), we start from the formula:

)

ol 2rml 1 2ml 2mml
sin® — cos =—(1~—cos— | cos
n n 2 n n
I 2x(m—-1l 1 27ml 1  2w(m+1)I
= ——C€0s ——— + = COs — —COS ———
4 n 2 n 4 n

S6

(S17)

(S18)

—~

S19)

(S20)

(S21)

(S22)

(523)

(S24)



76 and use it to transform the right-hand of (S14) as follows:

1 1 1 1
-D,,— -D,,_1 — -D,, , S25
n+1 (2 47y “) (525)
747 where
1 -1 27rml
== Z - (S26)
=0 n+1 n )
us  We consider the finite summation as belovv:
1 n—1 coS 27711:—n1k — cog 2mml 27rml
Am n Z sin?(Zk — ”—l)
(=0 n+1 n
gy 2mmk (1 i sin? m(H5 — )\ 26in 27rmk: 1 "i sinm (7 — =) cosm( M — =
n+ 1 n =0 Sln?(n:{cl - %l> n =0 sin (n:]-gl - %l)
2rmk 2mmk
= 2cos B,, — 2sin m Con- (S27)
n+1 n—+1

70 Here we used the formula:

2rmk 2mml ) ( k Wl) ) < mk 7rl>
Cos — COoSs = —2sinm + — | sinm - —

n+1 n n+1 n n+1 n
7k 7l 2mmk
=2 sin®m — — ] cos
n+1 n n+1

70 and define

5 1 ! gin? 77”L(n7r—f1 %l)
m . 9
ni s (7 - )
oo 1"71 sinm(n’r—f1 — 7rl)cosm( 7f1 — %l)
m = k ]
r— sin <n7:-1 - %)

s For (S29), we define AB,, as the difference between B,, 1 and B,,:

A[))m = Bm+1 - Bm

1o PGy 5] —eos [20m + 1)k — )]

2n P sin (nTI — )
1 2sin [(2m 4 )G — 5] sin(E — )
2n o sin (nﬂ—ﬁ — %l)

L 1&sin [(2m 4 1) (G - )]

n — sin( 2% — )

($31)

)



72 Here we used the formula:

k l 1 — cos [2m(Zk — =
sin? lm (nﬂ— [ %)] = [ mz(nH il . (S32)

753 We also obtain the difference between AB,, 1 and AB,,:

ol ml 3 Tl
1 sin [(2m + 3)(Z% — )| —sin [(2m + 1 —
AByp1 — AB,, = — Z I >(n+1 n )]ﬁk wz[( )(n+1 )]
n =0 Sln(nJrl - ;)
S S IR R
B sm(nTZfl — %l)
n—1
1 k [
:—ZQCOS[Q(m—l—l)( T _7T_>}
ne= n+1 n
= 0. (S33)

75 The relationship (S33) holds for any m € N. This means that AB,, takes the same value

755 independent of m:

n—1
1
AB,, = ABy =~ 22: 1=1. (S34)
76 Since B1 = 1, we obtain:
m—1
Bn=Bi+> 1=m. (S35)
k=1

sz For (S30), we define AC,, as the difference between C,, 1 and C,,:

AC — Um+1 — Cm

_ 1 s Py - 3] —sin [20m 4+ DG - )]
e Sln2<n7f1 -7

_ 1§ 2eon[(2m 4 (G — 5] sinGEly — )
2n =0 SmQ(erl - %l)

B l n—1 Ccos [(2m + 1)(n+1 - %l)} . (836)
nig o sin(EE %)

s Here we used the formula:

sin |m mk__m cos |m mk__ml zlsin 2m mk__ml : (S37)
n+1l n n+1l n 2 n+1l n
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750 We also obtain the difference between AC,,,1 and AC,,:

ACys — AC, — 1 ”Z_i cos [(2m + 3) (% —%l)} k—cosl[(Qm +1)(ZE — oy
" sin (25 — )
1= —2sin [20m + DGy — 3] sin(GEs — )
n sm(nﬁfl — )
1 : Tk 7l
(29
=0 (938)

760 The relationship (S38) holds for any m € N. Hence AC,, takes the same value independent

761 of m:
n—1 wk ml
1 Ccos(— — = k
Acm:ACO:—Z%:cot = (S39)
n & )
762 Here we used equation (S18). Since C; = cot(mk/(n + 1)), we obtain:
Con = t . S40
e 1 (540)
763 By substituting (S35) and (S40) into (S27), we obtain:
k 2rmk
A, = 2m cos — 9 cob ——— gin T
n—+1 n+1 n+1
- (2m+41)7k
_ g ST
wk
sin i
2rk Atk 2mmk
= —2m — dm [ cOS 4 oS —— 4 -+ + cos ) (S41)
n+1 +1 +1

76« Here we used the relationship:

(Z oS 2/4;7rk> sin mh = % <sinM — sin mk ) ) (S42)

n+1

k=1
76s which is derived from the formula:

2mmk . 7wk 1/ .
CoS sin =—|(sin —m—*+— —sin ——4—
n+1 n+1 2 n+1 n+1

6 From (S41) and (S17), we obtain:

2mmk 2k Ak 2rmk
D,, = 2n — COS ey _ 2m + 4m | cos T + cos T + .-+ cos ™ . (S44)
sin® X n+1 n+1 n+1 n+1
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77 Therefore, we have:

1 1 1 2rmk 2(m + 1)k
§Dm - ZDmfl - Z_le+1 = — (m — 1) COS ” -

s Here we used the formula:

2mmk 2(m — 1)k 2(m + D)7k .o Tk 2mmk
—c0s ————— — cos ————— = 4sin cos :
n+1 n+1 n+1 n+1 n+1

760 Therefore, we obtain (S14) by dividing both sides of (S45) by (n + 1).

S10
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770 E. Analysis of the cis-inhibition model with cell rearrangement

m  Sprinzak et al. [3] proposed the following model that includes cis-inhibition, which is the

72 inhibition of Notch activity by the Delta activity in a single cell:

d D,

—N, = —N,—N,.{(D;) — N,—

dt x BN x x( j>x T kc

d 1 D,

gD = Po D (Nj)y Da = Nomm (S47)
d (N2 (D;),)"

—R, = L —R,.

dt BR/@,@S + (N, (D))"

73 Here, N,., D, and R, are, respectively, the Notch, Delta and a Reporter of Notch signaling
7 activities of the cell x, and (D;) = (Dy—1 + Dyq1)/2 and (N;), = (Ny—1 + Npy1)/2. This
77s reporter represents the transcriptional activity resulting from Delta-Notch binding. We
76 performed numerical simulations and analysis of the model (S47) in a one-dimensional cell
777 array with periodic boundary conditions. We set p = 1 to match the numerical simulations
78 in the original article [3].

7o For the linear stability analysis, the homogeneous steady state (N9, D° R%) in the model

70 (S47) satisfies the equations:

DO
BN—NO—NODO—NOk—zo
1 0 0 MO0 ODO_
6D1+(R0)m D’ —N°D°— N r =0 (S48)
0o
BR (ND> —RO 0

krs + (NODO)
71 By assuming (N, D, R,) = (N°+n,, D°+d,, R°+r,), |n.| < N°, |d,| < D°and |r,| < RY,
72 we can linearize the model (S47):

d ]
Sta(t) = Mua (1) + Ly (1), (549)

e Here, (1) = (na(t), du(t), ro(t)T, Tu(t) = (Up_y + Uns1)/2,

= _D° _N® A0 _m(B)™ 1B
M = ke ke N 1 ((Ro)m+1)2 (850)
BrD ks
(DO?V0+kTS)2 0 —1

784 and
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L=| -D° 0 0. (Sh1)
ks NO
O (k‘rs‘f‘DO?VRO)Q 0
s Then, we obtain:
d 2k
Sr(t) = (M + L cos %) G (t). (S52)

786 Here, @ () is the discrete Fourier transformation of w,(t). The dispersion relation A(k) is
7er derived as the largest eigenvalue of the matrix (M + Lcosk) (Fig. S14(A)).

s Supplementary Figure 14(B) shows that the Sprinzak model [3] also generates the salt
780 and pepper pattern as long as the maximum value of \(k) is positive, showing that the linear
790 stability analysis determines the conditions for pattern formation.

791 For the Sprinzak model with cell mixing and proliferation, we can calculate the balanced
792 frequencies p* and ¢* by solving the eigenvalue problem as in (23) and (39). Figure S14(C)
793 shows that the values of p* and ¢* are in good agreement with the numerically estimated
704 values. These results show that our analysis can be applied to other pattern formation

795 mechanisms.
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Supplementary Table 1.

Parameters Hy

r=40,8 =100 2.03 % 10710
r=40,8 =120 5.74 % 10711
r=40,8 =140 6.46 % 1011
r = 40,8 = 160 5.60 % 10711
r=40,8 =180 5.29 % 10711
r =40, 8 = 200 6.85 % 10~ 11
r=25,3=100 1.88% 10710
r=30,8 =100 1.35 % 10710
r = 35,3 = 100 7.74 %1071

Hy values used to calculate H*. Hj values are calculated from the

numerical simulation of the Collier model (1), shown in Fig. S4.
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Supplementary Figure 1. Plots of the dispersion-relation for the version of the Collier model we
use (1). A(@) is the real part of the larger eigenvalue in (A9) and 6 = 2wk /n. (A) The dispersion-
relation for several values of 3. A(0) is negative for any k when 8 = 50 and takes positive values in
a narrow region around § = 7 when 8 = 100. As [ increases, the region where \(#) takes positive
values broadens. (B) The dispersion-relation for several values of . A similar relationship as for
is obtained, but the region where \(6) takes positive values becomes narrower as r increases. The

other parameters are as in Fig. 2.
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Supplementary Figure 2. Examples of the expression pattern for several values of 8 at ¢ = 10000

in (A) cell mixing model and (B) cell proliferation model.
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Supplementary Figure 3. Examples of the expression pattern for several values of r at t = 10000

in (A) cell mixing model and (B) cell proliferation model.
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Supplementary Figure 4. Time evolution of H(¢) without the cell rearrangement events. (A) The
time evolution of H (t) for different values of 5. (B) The time evolution of H(t) for different values
of r. The inset is the magnification of the domain ¢ € [0,20]. H(¢) initially decreases and the time

at which it starts to increase depends on the values of 8 and r.
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L

Supplementary Figure 5. Plots of the normalized heterogeneity H*(t) against time ¢. The
heterogeneity H*(t) shown in this figure was obtained by averaging the value of H(t) of 400
different simulations, and normalized by Hy for each p and ¢. (A) Time evolution of H*(¢) in the
cell mixing model. H*(t) increases for p < 0.0045 and decreases for p > 0.006. (B) Time evolution
of H*(t) in the cell proliferation model. H*(¢) increases for ¢ < 0.004 and decreases for ¢ > 0.006.

Other parameter values and initial conditions are as in Fig. 2.
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Supplementary Figure 6.

p

Comparison of the different definitions of heterogeneity.

(B)

107!\ o RA b A & Var[D.(#)
e )
100.000 *a ® 2 (Desi = Do)
----------------- T
0.001 .
raY
1078 T
13 a2
2 B A
10 -
0.000 0.002 0004 0006 0008 0.010
Triangles

represent the variance of D, and black dots represent the average of (Dyy1 — D;)? in the cell

mixing model (A) and the cell proliferation model (B). The heterogeneity function H*(t) shown in

this figure was obtained by averaging the H(t) value of 400 different simulations, and normalized

by Hp. The triangles are the values shown in Fig. 3 for ¢ = 1000. The conditions and parameter

values are

as in Fig. 2.
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Supplementary Figure 7. The plot of H*(1000) for different values of 3, corresponding to Fig. 3.

The black dots are the averaged value of H*(1000). The blue line is the fitted line for the data

in the range 10~* < H*(1000) < 10*. We numerically estimated the values of p* and ¢* as the

intersection of the fitted line and H*(1000) = 1.
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Supplementary Figure 8.
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The balanced frequencies p* (A) and ¢* (B) are plotted against the

parameter 7 in the Collier model (1), corresponding to Fig. 4. The blue solid line represents the

values of p such that the maximum eigenvalue of Y}, in (23) is 0, and the black dots represent the

values of p* and ¢* that were estimated as in Figs. 4(C) and 4(F).
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Supplementary Figure 9.
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B

Analytical results for different cell numbers. (A) Solid lines represent

the maximum eigenvalue y derived from the matrix Y, in (23) at different cell numbers (n =

100,500, 1000) and the black dots are the growth rate dIn H(t)/dt estimated from Fig. S1(A),
corresponding to Fig. 4(A). (B) Solid lines represent p* derived from (23) at different cell numbers
(n = 100, 500, 1000), and the black dots represent the p* values that were estimated from Fig. 3(A),
corresponding to Fig. 4(C). (C) Solid lines represent the maximum eigenvalue derived from the
matrix J, (39) at different cell numbers (n = 100,101,500 and 1000), and the black dots are
the growth rate dln H(t)/dt estimated from Fig. S1(B), corresponding to Fig. 4(D). (D) Solid
lines represent the values of ¢* derived from the matrix J; in (39) at different cell numbers (n =
100, 101, 500, 1000), and the black dots represent the ¢* values that were estimated from Fig. 3(B),

corresponding to Fig. 4(F).
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Supplementary Figure 10. The time evolution of H*(¢) up to t = 10000. (A) H*(t) in the cell
mixing model. H*(t) converged to similar order values for different p values less than 0.004, but
the time to reach a steady state value increases as p increases. The black dashed line represents
H*(t) = 1. (B) Product of the maximum eigenvalue y in (23) and the characteristic time ¢*. The
values of the product are similar to each other to within an error margin of 8.2 %. (C) H*(¢) in
the cell proliferation model. H*(¢) converged to similar order values for different p over 0.003, and
the time to reach a steady state value increases as ¢ increases. The black dashed line represents
H*(t) =1. (D) Product of the maximum eigenvalue j in (39) and the characteristic time ¢*. The
values of the product are similar to each other to within an error margin of 7.3 %. We defined the

characteristic time ¢* as the time for H*(¢) to reach H*(10000)/e.
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Supplementary Figure 11. Effect of cell mixing and proliferation on the existing pattern. (A,B)
Example of pattern evolution from the theoretical models that include only cell mixing (A) or
only proliferation (B) and excluding Delta-Notch interaction. For visibility reasons, the first 50
consecutive cells were extracted and shown. We set the salt and pepper pattern as the initial
pattern. Orange cells have the expression value 1 and black cells have the expression value 0. 50
consecutive cells are extracted from the whole length and shown. (C,D) Distribution of the power

spectrum of the pattern shown in (A) and (B), respectively. The average of 500 trials were plotted.
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Supplementary Figure 11. (continued) (E) The eigenvectors corresponding to the maximum eigen-
value of the matrix W in (22) and the matrix ¥ in (37) and (38). The eigenvector of W is uniformly

distributed in [0, 27) and the eigenvector of 3 takes a non-zero value only at k = 0.
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Supplementary Figure 12.  Experimental assay of cell movement and proliferation. (A) DIl4
expression for endothelial cells in the retinal vasculature. Adapted from Claxton et al. [13].
Endothelial cells are visualized by immunostaining for type IV collagen (red), and DIl4 mRNA is
visualized by in situ hybridization (black). Scale bar = 200 pm. DIl4 expressing cells are rarely
observed in veins, while they are alternately aligned in arteries [8, 13, 14]. (B) Scheme of the
experimental setup for retinal organ culture. Disected retina was placed on the bottom of the dish,
and embedded in collagen gel. (C) Tracking of the nuclei of endothelial cells in vein (upper panel)
and artery (lower panel). The lines indicate the paths of individual endothelial cells for 20 min

and the dots indicate the position of the cells at ¢ = 720 min. Scale bar = 100 pm.
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Supplementary Figure 12. (continued) (D) Box chart for the averaged velocities of the endothelial
cells in (B). Endothelial cells move at an average speed of 1.20 nm/h in veins (n = 24, denoted by
“V7), 0.74 nm/h in arteries (n = 13, denoted by “A”) and ganglion cells move at 0.16 pm/h near
veins (n = 10, denoted by “Gv”) and 0.23 pm/h near arteries (n = 10, denoted by “Ga”). Velocity
here, means relative velocity, and calculated by subtracting the migration vector of the center of
gravity of each cell group. P-value between endothelial cells in the veins and in the arteries is 0.048
(Student t-test). (E) Confocal microscopy images of endothelial cells stained for ERG1 (Red) and
EdU (Green) in the retinal vasculature. “V” indicates veins, and “A” indicates arteries. The vessel
type was distinguished by anatomical features such as the avascular zone and the thickness of the
vessel. Scale bar = 100 pm. (F) Bar chart of the fraction of the EAU(+) endothelial cells. 21.9%
(93/424) of venous endothelial cells and 9.8% (20/204) of arterial endothelial cells are positive for

EdU. P-value is 0.0001 (Fisher’s exact test).
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Supplementary Figure 13. Cell proliferation model with asymmetric inheritance rules. (A)

Schematic of the asymmetric inheritance rules. The Delta and Notch activities of the daughter
cells are D, + D, and N, + EN,, respectively. The value of £ is a random variable following
the uniform distribution U(—¢,¢). (B) Example of the expression pattern of the cell proliferation
model with asymmetric inheritance rules. The red line represents Notch expression and the black
line represents Delta expression. As ¢ increases, the amplitude of the pattern gets smaller, but
the amplitude does not converge to 0. (C) Time evolution for H(t) with different values of g. We
set € = 0.1, and the other parameters are the same as in Fig. 2. (D) Time evolution of H(t) with

different values of € and q.
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Supplementary Figure 14. Numerical and analytical results for the Sprinzak model (S47). (A) The
dispersion-relation of the Sprinzak model for different values of k.. (B) Example of the expression
pattern of the cell mixing model (upper panels) and the cell proliferation model (lower panels).
Similar to the Collier model, as the frequencies of the cell rearrangement events p and ¢ increase,
the amplitude of the pattern decreases and the homogeneous steady state becomes stable. (C) The
balanced frequencies p* (left panel) and ¢* (right panel) against k.. The blue line represents p*
and ¢* obtained by the same analysis we used for the Collier model, and the black dots represent
the numerical estimation of p* and ¢*. Conditions for numerical simulations; Initial cell number
n = 100, time step At = 0.001, duration ¢ = 1000 (iteration 1000000), and (krs, Bn, Ba, Br, m) =
(300000, 200, 1000, 3000, 3). Initial conditions are N,(0) = N°(1 + &), D.(0) = D°(1 + ) and
R.(0) = R°(1+k). Here N°, DY and R? are the spatially homogeneous steady state (Supplementary

text C [28]), and k is a random variable from the uniform distribution in [—0.01,0.01].
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